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On uniqueness of (-measures and g-measures
by

Al HUA FAN {Cergy-Pontoise)

Abstract. We give a simple proof of the sufficiency of a log-lipschitzian condition
for the uniqueness of G-measures and g-measures which were studied by G. Brown,
A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian
condition together with positivity is not sufficient. In the special case where the defining
function depends only upon two coordinates, we find a necessary and sufficient condition.
The special case of Riesz products is discussed and the Hausdorff dimension of Riesz
products is calculated.

1. Introduction and main statements. The G-measures were con-
structed by G. Brown and A. H. Dooley ([2]) and they generalized to some
extent the g-measures constructed previously by M. Keane ([8]). Typical
(-measures are the Riesz products defined by

w= H(l+7‘ncos21rm1 TR T
n=1 -
(-1 < r, < 1,m, > 2 integers) (see [5]). The special case where v, =
7 and m, == m provides typical examples of g-measures. For these two
constructions, a major question is to know when we have a unique G-measure
or g-measure. This is the subject of the present work.

Here are the definitions of G-measures and g-measures, and the results
that will be proved in the sequel.

Let {X;};»1 be a sequence of finite abelian groups of orders {m;}j>1.
We shall denote by X their infinite product [J32, X; and by I their infi-
nite direct sum @?’;1 X;. Then X is a totally disconnected compact metric
group, and I' is viewed as a countable subgroup of X that acts on X. More
precisely, for v € I'and z € X, the action is vz = y-z = (y1+z1, 72-+22, .. .)
(recall that v; = 0 for j sufficiently large}. For n > 1, we shall denote by I,
the finite product H;=1 X ;, which can be viewed as a subgroup of I'. For a
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function f on X, we shall write f oy(x) = f{vz). Let {g;};>1 be a sequence
of non-negative continuous functions on X, g, being invariant under I},_;

(It being the trivial subgroup), i.e. g oy = g for v € I',1, and normalized
in the sense that

— Z gn(yz) =1 (Vz e X)
'}’Exn
(X, has been considered as a subgroup of I'). Define then a new sequence
G = {Gp}n>1 of functions by ‘
Gn(z) = g1(z)g2(2) ... gn(z).

A probability measure u on X is called a G-measure (associated with @) if
for all n > 1 we have

dp
d#n( z) = Gnlz) pn-ae,
where

Hn = 705~

{4 oy being the image of 4 under the action of 3 We shall see that there is
always some G-measure.

For n > 0, we define the modulus of continuity of a continuous function
fon X to be

wn(f)=_sup |f(z) - f(y)l,

TnB=Tn¥y

where 7, : X — I, is the usual projection.

THEOREM 1. There ezists a unique G-measure associated with {Gyr} if
n
S wnloggs) = 0(1)  (m — +co).
g=1

If gn(a?) = gn{n;ZTns1) depends upon only two coordinates, we have
the following complete answer to the question of uniqueness. Denote by Qn

the my, X My matrix with entries Qn(4,4) = 9n (4, §) /My It is a column
stochastic matrix,

' THEOREM 2. Suppose gr,(2)= gn(Zn, Tne1). There is a unique G-measure
iff for every k > 1 and every i € X the limit

(i) = lim Qr...Qn(i,")
exists and is independent of the variable ..

Suppose sup,, m, < co. The sufficient condition in Theorem 1 implies

(H1) 3771 walgy) = O(1),
(H2) gn(z) >0for x € X and n > 1.
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It is natural to ask whether the lipschitzian condition (H;) and the
positivity condition (H;) are sufficient for the uniqueness of (-measures.
The answer is no and we can modify slightly any system without uniqueness
to obtain another one which satisfies (Hy) and (H») but does not have
unigueness.

THEOREM 3. Let {g,} be a fomily without unigueness for G-measures.
There exists a sequence & = {en} of positive numbers such that the family
{g5} defined by f&(z) = (gn(z)+en))/(1+e,) does not have uniqueness for
G*-measures.

Consider now g-measures. It should be pointed out that the construction
of g-measures is different from that of G-measures. These measures are de-
fined on the infinite product X of a fixed finite group S (of order m). On X
we have the shift transformation T : X — X defined by (Ta), = 2pq1. Let
g be a non-negative continuous function on X normalized in the following
sense:

— Z j=1 (vzeX)
Tz:a:
A probability measure ,u, is called a g-measure provided that du/dp = g
G-a.e., where I = — 3 copow, and wy : X — X is the contraction
deﬁned by wa () = (fy,w’s We point out that with the function g defining
g-measures, we can define G-measures with

Gu(z) = g(z)g(Tz) ... g(T™ *x).
TurOREM 4. There exists a unigue g-measure if

[s.=]
an(logg) < 00.
n=1
In the special case where g depends upon only two coordinates we
have a complete answer to the question of uniqueness for g-measures and
(G-measures.

THEOREM 5. Suppose g(z) = g(x1, z2). Denote by Q the column stochas-
tic matriz defined by g/m. There is a unique g-measure iff

n

lim = 3°Q = (x,..., ),

where w = (w(1),...,m(m})* is a column probability vector.

THEOREM 6. Suppose g(z) = g(z1,%2). Denote by Q the column stochas-
tic matriz defined by g/m. There is a unigue G-measure iff

1im Qn == (q,-' -,Q):
L=+ 00
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where ¢ = (g(1),...,¢9(m))* is a column probability vector. The unique G-
measure is strongly mizing under T'.

Theorem 1 generalizes a result of Brown and Dooley ([2]) in two points.
One is that the groups X; are arbitrary finite groups while in [2] the group
X; is Z(mn;), the group of integers modulo my, and this special structure of
groups plays an important role in the proofs. The second is that we have
dropped the g-continuity imposed in [2]. With this restriction, the results of
[2] cannot apply, for example, to the case where g, depends upon only two
coordinates. Also we shall see that our proof is simpler.

Theorem 4 is a known result (|9, 16]). We state it here for the simplicity
of its proof which is based on the Gibbs property and the convex structure
of g-measures. After being introduced and studied by M. Keane ([8]), the
g-measures were further developed by B. Petit ([11]), F. Ledrappier ([9])
and P. Walters ({16]).

We should peint out that in the case of g-measures we also have the
notion of G-measures and that in general there are more G-measures than
g-measures. In fact, g-measures are all T-invariant but that is not the case
for G-measures (see the example at the end of §4).

In the works [2, 8, 9, 11, 16], the authors used the Arzeldi—Ascoli theoram.
Here, instead, our proof is based on the construction of the set of G-measures
which is easily shown to be a compact convex set determined by its extremal
points. These extremal points are exactly the ergodic G-measures which are
shown to share a certain dichotomy property: two ergodic G-measures are
either identical or mutually singular. Our aim is then to show that no two
G-measures can be mutually singular.

In §2, we shall present some preliminaries and some properties of
G-measures which will be useful for the proofs of our theorems given in
the following sections, in §3 for G-measures and in §4 for g-measures. In
§5, we shall use the ergodicity, which is the consequence of unigueness, to
calculate the dimensions of Riesz products.

Acknowledgements. I would like to thank M. Dekking, A. H. Dooley,
J. P. Kahane, M. Keane, F. Parrecau and M. Queffélec either for stimulating
discussions or for their interest and suggestions. The work was done when
I was visiting University of New South Wales. I would like to thank for the
warm hospitality of mathematicians there in the School of Mathematics.

2. Preliminaries. We shall need two notions: I'-quasi-invariance and
I'-ergodicity, and some properties of G-measures. We recall these here as
preliminaries.

A measure pon X is I'-guasi-invariant (or quasi-invariant, for short) if
# and po-y are equivalent for any -y € I'. A probability measure pu on X is
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I'-ergodic (or ergodic, for short) if u(4) = 0 or 1 for any I'-invariant Borel
set A (l.e. vA = A for v € I"). We shall see that if there exists a unique
G-measure, this measure is I™-ergodic (see Proposition 4).

Let n > 1. For any Borel function fon X, define

Anf(2) = \r | > Fly)Grlya).
~+&l,
The restriction of 4, to the space C(X) of all continuous functions is a
positive linear bounded operator such that A,1 = 1 and of norm [|A,|| == 1.
Then the adjoint operator A¥ of A,, which can be directly expressed as
AZ it = Gppin, maps probability measures into probability measures. We see
that a probability measure p is a G-measure iff it is a common fixed point
of all A} ’s restricted to the convex set of probability measures.

The operator A, is a conditional expectation operator as shown below.
We shall denote by F" the o-field generated by the cocrdinates ~;’s with
j = n+ 1. For a measure u, we shall use E, f to denote the expectation of
f with respect to p.

Prorosrrion L. If u is ¢ G-measure, then for any bounded Borel func-
tion f we have A, f =B, (f | F*).

The proof of Proposition 1 is a simple calculation. As a consequence of
Proposition 1, an expression of p(I,(z)) will be obtained where I, () is the
n-cylinder containing =, which is defined to be the set of y € X such that
yj=x;for 1 <j<n.

PROPOSITION 2. Suppose p is a G-measure. For any z € X and any
n > 1, we have

#‘L(Iﬂ-(m)) |1—| IE G (ﬂ-ﬂm g y)

where we toke the expectation with respect to y and 7™y = (0,...
Yn+2; - - ) .
In fact, if 17, () denotes the characteristic function of In (z), we have

) 01 Yn+1,

“(In(m)) = EM[EM(IIn(m)]FnN = E#Anll,.(m)(y)-
But
Anlr, (@) = ; LS L7 Ty TG Ty - 7)

| yeln
> @ - m"y)Caly - 7"y)

IF =
e G (T2 - ™ "y).

= (7O
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Another consequence of Proposition 1 is the following dichotomy prop-
erty of ergodic G-imeasures.

PROPOSITION 3. If p1 and up are ergodic G-measures, then either pq =
pa or fin L pg.

The essential part of the proof is that if u is a G-measure, then by
Proposition 1, 4,f is a reverse martingale in the probability space (X, u)
and thus converges almost surely ([3], p. 388). Morever, if u is ergodic, the
limit must be the constant E,, f. By this dichotomy, we can give a description
of the set of G-measures.

PrOPOSITION 4. The G-measures constitute a non~emply weakly compact
conves sef. A G-measure is ergodic iff it is an extremal point of this conver
set.

The first part is the existence of G-measures. By the Schauder-Tikhonov
theorem ([14]}, the set K, of probability measures u such that A)pu = pis
a non-empty weakly compact convex set. So, for the first part, it suffices
to show that K, has the finite intersection property, which is justified by
showing K, O K,41. The last inclusion is implied by the fact that

A'n.-l—i An = An-l—l-

The second part can be shown by a standard method. It suffices to notice
that if p is a G-measure and E is a I'-invariant Borel set with u(E) > 0,
then 1pu/p(E) is also a G-measure.

Now we state a dichotomy property concerning quasi-invariant and er-
godic measures (not necessarily G-measures).

PROPOSITION 3. Given two guasi-invariant and ergodic measures i and
v, we have either p~ v or pp L v.

This is a particular case of a general theorem ([6]). But a direct simple
proof can be given. Suppose p and v are not singular. We are going to show
they are equivalent. Let 4 = p, + pe be the Lebesgue decomposition of 4
relative to v. Suppose s # 0. Take an F such that us(E) > 0 and v{E) = 0.
Take then F' = |, cp vE. We have u(F) = 1 by exgodicity of 4 and v(F) = 0
by quasi-invariance of v, which is a contradiction. So, ps == 0, ie. u < v,
Similarly v < .

Finally, we state a criterion for the uniqueness whose proof is classical
and can be found in [2].

PROPOSITION 6. There is a unique G-measure iff one of the following is
satisfied:

(i) For each f € C(X), Anf converges uniformly to o constant.
(ii) For each f € C(X), Anf converges pointwise to o constant.
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3. G-measures. We give here the proof of Theorems 1-3.

Proof of Theorem 1. Suppose the log-lipschitzian condition in
Theorem 1 is satisfied. The proof is based on the following two lernmas.

LemMA 1. There exists a constant C > 0 such that for any G-measure
@ we have

forn>landz e X.

‘This can be verified by using Proposition 2 together with the facts that

% = exp(log g;(y) — log g;(x)),

[log g;(y) — log g;(2)| < expuwn(logg;),
for n > 1 and y satisfying 7,y = m.z.

LeMMA 2. Let p' and pi” be two G-measures. Forn > 1 and © € X, we
have

C™H (In(=)) < p(Tnfz)) < Cu'(In(=)),
where C is the constant in Lemma 1.
If C is replaced by G2, the corresponding inequalities are direct conse-

quences of Lemoma 1. In order to obtain the constant C, we proceed like
this. Fix £ € X. For any y € I,(z), by Lemma 1 we have

/ 2 = Gn(y)
W) = 1nfe) < 052,

Integrate this inequality over I,,(z) with respect to p to get
C C

# (In(@)) tr(Inf2)) € 77 | Guly) dun(y) = = 0" (In(z)).

{ ”I Iﬂ(w) |Fﬂ’

In the last equality, we have used the fact that u” = G,p!. To finish the
proof of the second inequality, it suffices to notice that

"X 1
piIne)) = 7 3w ottty = B2 -

2 TR N

The first inequality can be proved in the same way.

We are now ready to prove Theorem 1. Suppose we are given two er-
godic G-measures p' and u”. According to Proposition 4, we shall prove the
uniqueness by showing &' = p”. To this end we only need to show p' < pu”
because of Proposition 3, Actually, even more is true by Lemma 2. m
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Remark 1. The property stated in Lemma 1 can be referred to as
the Gibbs property of the G-measure, and can be used to estimate the
dimension of the measure. By the way, we point out that such a measure is
unidimensional ([4]).

Proof of Theorem 2. The proof is based on the following formula.
Suppose f (€ C(X)) depends only upon the first & coordinates. For n > k,
we can write

Aflay= 3 fln, Qv 12)Q2(v 1) - QnlYas Zrs).
Ylo--sTn
Suppose we have the uniqueness. For fixed k > 1 and fixed ¢ € Xy, take for
§ € C(X) the characteristic function of the set {z € X : 2y = i}. By the
preceding formula, for n > k we have

Anf(5) = Qi+ Quli, Barn).

According to Proposition 6, the limit of A, f(z) exists and is independent
of . Thus we have proved the necessity of the condition. For the sufficiency,
consider first a function f € C(X) which depends only upon the first k
coordinates. By the preceding formula and the hypothesis, we then have

k-1
Ji_r&Anf(m) = Z f(f;/l,..-,%)HQj(’Yj,’Yj+1)Qk(’Yk)~
YipeeesThe J=1

This limit is a constant (and is uniform). For an arbitrary f € C(X) and
any £ > 0, we can find a function g. € C(X) depending only upon the first
finite k& = k(e) coordinates such that || f — ge|| < € and ||ge|| < [|f]|. We have
seen that the limit of Ang. is a constant. Denote it by C.. Observe that
C. is bounded by ||f||. We can suppose C converges to some C (if not, we
can pass to a subsequence of C). A, being a contraction on C(X), we then
have

[Anflz} — C| £ e+ [Ange(m) — Ce| +{Ce — C|.
So, for fixed £ and fixed z € X,
limsup |[A, f(z) ~C| < e+ [C. — O
n—oo

Now letting ¢ — 0, we see that A, f converges pointwise on X to the con-
stant C. =

Proof of Theorem 3. Take a positive scalar sequence ¢ = (én)
with £, > 0 such that C: = exp ¥ voq €n < 2. Suppose we have a unique

G%-measure. We denote it by uf. Observe that
gn(2) € gnl2) + &n < (1 +6n)gn ()
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We then have G (z) < C.G5(2). Let u be an ergodic G-measure and f a
positive continuous function on X. We have

§Gndun < C.\ FGE dppn.

The left integral is just { f du for all n > 1. Observing that G% p,, = AZ*p and
keeping in mind the uniqueness of G*-measures, we can see that GS ., tends
to . So the right integral tends to { fu¢. Thus for any ergodic G-measure
1 we have g < Cept®.

Now take two distinguished ergodic G-measures u; and g, They are
mutually singular. Then there are two disjoint Borel sets By and By such
that uy(B1) = 1 and p2(Bz) = 1. However, by what we have just proved
above we have

Ce 2 Cep®(By U Ba) = Cp(u*(B1) + p*(B2)) = i (B1) + pa(Bz) = 2.
This contradicts the choice C, < 2. n

4. g-measures. Recall the definition of g-measures. Let X be the infinite
product of a finite abelian group 5 of order m, on which we have the left shift
T: X — X defined by (T'#),, = zp41. Let g be a non-negative continuous
function on X normalized in the following sense:

% Z glz)=1 (YzeX).

Ta=w

We define an operator ¢, : C(X) — C(X) by
2,f(2) = — 3 9(2)f(2).

T ==ty
Then &, is a positive linear contraction. We denote by & the operator &,
corresponding to ¢ = 1. It is easy to see that the adjoint of &, can be written
as Sy = gP*u and $*p can be defined directly by

(@1 f@)) = = Yol Fr o))
YES

where (7, ) is a preimage of &, i.e. T'(y,z) = x. Actually, $*p is [ defined
in §1. A probability measure i is called a g-measure provided that it is a
fixed point of &}, i.e du/dd*u = g.

Proof of Theorem 4. Based on Theorem 1, we shall prove this
theorem by showing that g-measures are G-measures for the family {Gy},
where :

Grlz) = g(@)g(Ta) ... o(T"a).

Lemma 3. @, is a left inverse of T, i.e. for every [ € C(X) we have

P, If = f. Consequently, every g-measure is T-invoriant,
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In fact, the first assertion is immediate and the second one can be seen
like this:
(T, ) = (1, TF) = (9®" 1, Tf) = (", oTF) = (. 8T ) = (s, f)-
LEMMA 4. If p is T-invarient, we have the following relation belween
&7 and Ap:
{1, B3 f) = {ps Anf)-
Notice that

1 n
@’;f(m) = mn Z H g(vis- - s s ) F 8- oY T
YigeenPr J=1
As p is T-invariant, we have
(B2 = (T, 0 f) = (, T B2 f) = (, Anf).
We now prove Theorem 4. The two lemmas imply that a g-measure is

T-invariant and thus is a G-measure. So, the theorem is a consequence of
Theorem 1. =

Remark 2. The formalism of g-measures is valid even if 5 is a simple
finite set without group structure. Theorem 4 is also valid in this cage. Here
is a direct proof of that. The set of g-measures is non-empty weakly compact
convex and the extremal points of this convex set are ergodic in the classical
sense. The dichotomy to be used is that of ergodic measures under T'. The
Gibbs property can be deduced from the formula

ﬁ}}f(m)=;i; S T o osmm @y oY @)

V5o Tn J=1

Proof of Theorem 5. The operator &, : C(X) — C(X) is actually
a Markov operator with transition probability

1 -
Nz, A) = — 3 g(e)ba(w (4),
yeS
where w., is the contraction of X defined in §1. So, the uniqueness of
g-measures is equivalent to the fact that for any f € C (X) the mean

n

onf(z) = - S B f(2)

5=1
converges pointwise {or uniformly) to a constant ([7]).

As in the proof of Theorem 2, we first note the following formula. Suppose
f € C(X) depends only upon the first k coordinates. For n > k, we have

1
Ppfla)= = S s m)eln ) gl za).
b0 ¢ FTETPI 478
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Observe that the only difference between this formula and that for A, f is
that @y replaces &n4.1 in the expression of A, f. Now suppose the uniqueness
of g-measures holds. Take f = 1{zy==iy- Using the preceding formula, we have

B fz) = Q" (4, z1).
Then the convergence of o, f t0 a constant implies that

lim =37 Q2 5) = (i),
p==l

n-=+co T}
the limit being independent of j. Conversely, suppose the last fact holds.
We can assume the limit is uniform in j because there are finitely many
¢ and 7. As in the proof of Theorem 2, we only have to show that onf
converges to a constant for all functions f which depend only upon finitely
many coordinates. Writing &7 f as above, it is easy to see that

Tim onf= D fOm- Q0 72) - QUve—v, ve)m(e).

YT

This is a constant. m
Proof of Theorem 6. The first agsertion is a consequence of The-

orem 2. In fact, the condition in Theorem 2 is then

C_((’L) = nang'o Qn(i: ')s
which is equivalent to

g(t) = lim @"(3,7)

n—00

for all § € §. This is the condition of the present theorem. We now prove the

mixing property. For f € C(X) depending only upon the first k& coordinates,
we have

k-1
Erf@) = flrn-m) [T Qs virn)@* (s ma).
YTk F=1
The convergence of (" then implies
k=1

Jim P (i) = ST Fleeem) TT @0 vseale).

YlyeeerYh o=l
The limit is uniform and constant, For an arbitrary f € C(X), we can also
prove the convergence of $} f to a constant as in the proof of Theorem 2. =

. Remark 3. From the proofs of Theorems 5 and 6', we can see that the
distribution of the unique g-measure w is

w(la(®)) = Qa1 %) .. Q(wg—1, 4T (Tk)
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and the distribution of the unique G-measure p is
p(In(2)) = Q(z1,w2) - - - Q(Ti-1, Bk )g(2h)-

As an application, we consider Markov measures. Let P = (pi;) be an
m x ™ Tow Stochastic matrix, i.e. a matrix with non-negative entries and
each row sum equal to 1. Choose a row probability ™ = (m1,...,7m) Wwhich
is fixed by P, i.e. 7P = . Denote by o the Markov measure on X generated
by the initial probability 7 and the transition probabilities P,

Suppose the initial probability = is positive, L.e. m; > 0. Define then

iy
g(x) = M="Pr; 22
Ty

As 1 is fixed by P, g is normalized. It is easy to see that the Markov measure
o is a g-measure. Theorems 5, 6 and some standard argument in [15] give the
following conclusions. There exists a unique g-measure iff P is irreducible in
the sense that for any 4, j- there is a k such that P¥(i,5) > 0. There exists
a unique G-measure iff P is primitive in the sense that there is a k such
that P*(¢,7) > 0 for all 4,j. In this case, the unique G-measure ig strongly
mixing with respect to 7. The case where P(3, j ) > 0 was considered in [8].
In this case, the condition in Theorem 6 can be weakened to

liminf P*(7,7) >0 (¥i,3),
fe—s00
which is more practical to use. In fact, according to Proposition 2, we have

{Ia(2) = o (I ) B0 to2)

"

But, according to Proposition 1, for uy-almost all points y = {4n) we have

E,g(z )= 1 Ten
29\ Tn; Ynt1) = N Do ynr1Ponsttnse - Payvyvg
N—-oo Tk pr1
Frkire TN
'Tr;cﬂ

PY ™%y, ynt1)-

= lim
N 00 7rmN+1

The condition implies that we can choose a positive § > 0 such that pf’j >
for large k and for all ¢ and all j. Then we have

T 5

Eﬁg(mm Unt1) =

. TN+
Thus ¢ < Cp with ¢ = m/§, from which we obtain the uniqueness of
G-measures.
Consider an example. Let ¢} be defined by

0 1 0
=10 0 1
100
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This @ is irreducible but not primitive. In fact, Q% = I. Let P = Q' and
7 = (1/3,1/3,1/3). We have P = 7. Denote by = the periodic point
732 = (132 132...) and by y and z the periodic points 213 and 321. 1t is
easy to verify that the Dirac measures §,, §, and §, are G-measures because
Gnl(z) = Go(y) = Ga(z) = 1 (¥n = 1), but not g-measures because they
are not T-invariant. The unique g-measure is (&, + &, + 6.)/3, which is the
Markov measure defined by P and .

5. Riesz products. Consider the Riesz product on T of the form

oo

o= H(l oy, co8 2mmy L mn(l +(P'n)),

n==],

where —1 € r, £ 1,0 £ @, < 1, my 2 3. (See [5] for the definition.)

Suppose sup,, |r»| < 1. We shall examine its ergodicity and its dimension.
By Theorem 1, the product is the unique G-measure with

gn(z) =14+ 15 cos2my ... (T + @5 )-
Here we have identified T with X by

[« ]
@
g X—T, gqlz)= S B
() EM1...mn

Se, the Riesz product is Mergodic.

As we observed (see Remark 1), u shares a Gibbs property, which al-
lows us to deduce that the Riesz product, viewed as a measure on X, is of
dimension 1 ~ D, where D is the limit ‘

E
D = limsup —“%.
n—00 log !Fnl

Recall that & measure p on X is of dimension o if

.o logu

lim inf w =a o,

il logr

B, (x) being the ball of center # and of radius r. If this is the case, we shall
write dim p = v [4]. In fact, using the Gibbs property in Lemma 1, we see
that the dimension of p is

. log Gy ()
1 = limsup =t
n_,,mp log ||
%f the limit superior is p-a.e. constant. It is really the case and the constant
is D. To see this, congider the series

=]

Z log gn — By, 10g gn
log |I'n| '

n=l
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By a theorem of [12] (p. 141), this series converges u-a.e. Applying the
Kronecker lemma ([1], p. 51) to this series, we find that

log Gy, — E,log Gr 1 i
= log gr. — By log gn)
log [Tl log [ 1| ;( toTEE
converges to zero p-a.e., which implies
I E,logG
lim sup 08 Gn limsup-'“—og-——”l J-a.e.

nroo 10E | 0| oo log |l
If T is equipped with the euclidean metric, the Riesz product is also of
dimension 1 — D but under the supplementary condition

log M1 -
im -
n—oo logmy + ...+ logmy,
In fact, we only have to pass from the metric on X to the euclidean metric by
using a theorem of [13] (p. 268) which concerns the calculation of Hausdorff
dimension.

That p is of dimension 1 — D is equivalent tc p being supported by a
Borel set of dimension 1 — D and any Borel set of dimension strictly smaller
than 1 — D is of zero p-measure ([4]). With this in mind, we see that the
above result concerning the dimension of the Riesz product is more precise
than the result of [12] (p. 142).
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