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respect to the basis of convex sets to have the best smoothness condition in
some direction. This in no way restricts the global growth of a function.

3. As we have already noted, A. Zygmund proved nondifferentiation of
the class of characteristic functions of measurable sets with respect to the
basis of arbitrarily oriented rectangles. At the same time, he established dif-
ferentiation with respect to this basis of the class of characteristic functions
of open and closed sets. As far as we know, other classes of sets have not
been considered yet.

Our Theorem 2 makes it possible to introduce one more class: the class
of sets of finite perimeter in the sense of De Giorgi and Caccioppoli (see [1]).
Let us denote this perimeter of a set E by wn(F). Since [5, p. 238]

7(E) < supw(xe; h)/h,
h>0

differentiation of integrals of the characteristic functions of such sets is a
direct consequence of Theorem 2.

To conclude, the author would like to express his gratitude to the referee
for his deep analysis of the article, useful advice and editorial work.
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On the axiomatic theory of spectrum
by

V. KORDULA and V. MULLER {Praha)

Abstract, There are a number of spectra studied in the literature which do not fit
into the axdomatic theory of Zelagko, This paper is an attempt to give an axiomatic theory
for these spectra, which, apart from the usual types of spectra, like one-sided, approximate
point or essential spectra, inclode also the local spectra, the Browder spectrum and various
versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular
or essentially semiregular).

I. Basic properties of regularities. All algebras in this paper are
complex and unital. Denote by Inv(A) the set of all invertible elements in
a Banach algebra A and by o(a) = {A € C:a — A ¢ Inv(A)} the ordinary
spectrum of an element a € A. The spectral radius of & £ A will be denoted
by r(a). _

The axiomatic theory of spectrum was introduced by W. Zelazko [23]
(see also [19]). He gave a classification of various types of spectra defined for
commuting n-tuples of elements of a Banach algebra. The most important
notion is that of subspectrum.

DerintTiON 1.1, Let A be a Banach algebra. A subspectrum & in Ais a
mapping which assigns to every n-tuple (a1, ..., an) of mutually commuting
elements of A a non-empty compact subset 7{ay,...,a,) C C" such that

(1) 7(a1,...,6n) Cola1) X ... x olan),
(2) F{play, ..., an)) = p{c(ai,...,an)) for every commuting ay,...,an €
A and every polynomial mapping p = (p1,...,Pm) : C* = C™.

This notion has proved to be quite useful since it includes for example
the left (right) spectrum, the left (right) approximate point spectrum, the
Harte (= the union of the left and right) spectrum, the Taylor spectrum
and various essential spectra.
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110 V. Kordula and V. Miiller

However, there are also many examples of spectrum, usually defined only
for single elements of A, which are not covered by the axiomatic theory of
Zelazko. The aim of this paper is to give an axiomatic description of such
spectra. For related concepts see [5] and [15].

Instead of describing a spectrum, it is possible to describe equivalently
the set of regular elements.

DEFINITION 1.2. Let A4 be a Banach algebra. A non-empty subset R of
A is called a regqularity if
(1)ifac Aandn e Nthena € R < a™ € R,

(2) if @, b, ¢, d are mutually commuting elements of A and ac+ bd = 1 As
thenebe R ac Randbe R,

PROPOSITION 1.3. Let R be a regularity in a Banach algebra A.
(1) If a,b e A, ab=ba and a € Inv(A) then
abE R&a€ R andbeR.

(2) Inv(A) C R.

Proof. (1) We have a-a™' 4+ b -0 = 14, so that it is possible to apply
property (2} of Definition 1.2.

(2) Let b€ R. By (1) for a = 14 we have 14 € R. Let ¢ € Inv(.A). Then
¢ ¢l =14 € R, sothat ¢ € R by (1).

A regularity R C A defines a mapping 6 from A into subsets of C by

or(a) ={AeC:a-AgR} (acA).

This mapping will be called the spectrum corresponding to the regularity R.
When no confusion can arise we will write simply &(a).
. Remarks. (1) In general 5g(a) is neither closed nor non-empty. Propo-
sition 1.3(2) implies that Fr{a) is bounded, since Fr(a) C o(a).

(2) If ab = ba and b € Inv(A) then a € R & ab € R. In particular, if

a € R and A is a non-zero complex nurmber then Ja € R.
(3) Consider the following property:

(P1) abeReacRandbe R for all commuting elements a,b € A.

Clearly a non-empty subset R of A satisfying (P1) is a regularity.

(4) Let & be a subspectrum. It is an easy observation (see [13]) that the
set R defined by R = {a € A:0 ¢ &(a)} satisfies (P1) and therefore it is a
regularity.

(5) Let (Ra)a be a family of regularities. Then R = () « Bo is aregularity.
The corresponding spectra satisfy

7r(a) = | JFr.(a).
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ExaMPLES. Let A be a Banach algebra. The following subsets of A are
regularities:

(1) Ry = A; the corresponding spectrum is empty for every a ¢ A.

(2} Rz = Inv(A); this gives the ordinary spectrum o{a).

(3) Let Ry (R4) be the set of all left (right) invertible elements of A.
Then the corresponding spectrum is the left (right) spectrum in A.

(4} Let Rs (Rg) be the set of all elements of .4 which are not left (right)
topological divisors of zero. The corresponding spectrum is the left (right)
approzimate point spectrum.

In the algebra £(X) of all bounded operators in a Banach space X we
have:

(5) Rs is the set of all operators bounded below, Rj is the set of all sur-
jective operators. The corresponding spectra in this case are usually called
the approzimate point and the defect spectrum.

(6) Let R7 be the set of all Fredholm operators in X. This regularity
gives the essential spectrum.

(7) Let Rg (Rg) be the set of all upper (lower) semi-Fredholm operators
in X . The corresponding spectra are called the upper (lower) semi-Fredholm
or sometimes left (right) essential approzimate point spectrum.

All the sets defined above satisfy (P1) so they are regularities. However,
all these examples are rather trivial since it is well known that the corre-
sponding spectra can be extended to commuting n-tuples of elements so
that they become a subspectrum.

More interesting examples of regularities will be given later.

Every spectrum defined by a regularity satisfies the spectral mapping
theorem:

THEOREM 1.4. Let R be a regularity in o Banach olgebra A and let &
be the corresponding spectrum. Then

#(f(a)) = F(F(a))
for every a € A and every function f analytic on o neighbourhood of o(a)
which is non-constant on each component of its domain of definition.

Proof. It is sufficient to show

(1) 0 ¢3(f(a)) &0 ¢ f(5(a).

Since f has only a finite number of zeros Aj,..., A, in o{a), it can be
written as f(z) = (z — A\ )* ... (2 — An)¥=g(2), where g is a function ana-
lytic on a neighbourhood of o(a) and g(z) # 0 for z € o(a). Then f(a) =
(a— Ak ... (e — Ap)*ng(a) and g(a) is invertible by the spectral mapping
theorem for the ordinary spectrum.
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Thus (1) is equivalent to
(2) fleYe Rea-AER(i=1,...,n).

Since g(a) is invertible, by Remark (2) above and by property {1} of Defini-
tion 1.2, this is equivalent to

3 (a-A)".(a~M)" €R® (a- A ER (E=1,...,n)

Since for all relatively prime polynomials p, ¢ there exist polynomials p,
g1 such that ppy + g1 = 1, ie. pla}pi(a) + ¢{a)qi(a) = 14, we can apply
property (2) of Definition 1.2 inductively to get (3). This proves the theorem.

We shall see later that the assumption that f is non-constant on each
component is really necessary. However, in many cases it can be left out. We
give a simple criterion (in the most interesting case of the algebra L£{X))
which is usually easy to verify.

Let R be a regularity in £{X} and let X = X; ¢ X;. Define Ry = {T} €
LIX1):T1®I € RYand Ry = {Th € L{X») : & Ty € R}. If X; # {0}
then B; is a regularity in L£(X;) (¢ = 1,2). Indeed, to see condition (2)
of Definition 1.2 (e.g. for Ry), note that if 4;Cy + B1 D1 = Ix, for some
commuting Az, By,Ch, Dy € £(X;) then

(LoD (Cieil)+ (Bial)(Di@il) =Ix.
IfT) € £{X1) and T € £(X3) then
N1egT,e ReTy € Ry and Iy € Ra.
Indeed, this follows from the observation that
(MieH0a+ (e T){I&0)=Iy.
Denote by o; the spectrum corresponding to R; (i = 1,2).

THEOREM 1.5. Let X be a Banach space, let R be a regularity in L£{X)
and let 7 be the corresponding spectrum. Suppose that for all pairs of comple-
mentary subspaces Xy, Xz, i.e. X = X1 @& Xy, such that Ry = {51 € L(X1):
S1@1 € R} # L{X) the corresponding spectrum 71(Ty) = {\: Ty =N &l
¢ R} is non-empty for every Ty € L{X1). Then ¢(f(T)) = F(&FT)) for
every T € L(X) and every function f analytic on a neighbourhood of o(T).

Proof Let A € C. We must show that

Aga(f(T) « X g f(FT)).
Let T71, U5 be open subsets of the domain of definition of f such that Uy U
Uz D o(T), f|Uy is identically equal to A and for f5 = f|U; we can write
Fa{2)—X = p(2)g(z), where p is a polynomial and ¢ has no zeros in UsNo(T).
Let X3 and X; be the spectral subspaces corresponding to U; and Up, i.e.
X = Xl EBXz and T == T]_ @Tz, where Ti = T’Xq; and U(Ti) C U,; (2 = 1,2).
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Let R; C £(X1) and Ry C £(X2) be the regularities defined above and
let 71 and &3 be the corresponding spectra. Clearly 7(T") = &1 (1) Uda(T2).
The following statements are equivalent: '

o X & 5(F(T)),

o f(TY- A €R,

e} & Ry and (fg — )\)(Tz) & R,

o Ry = L{X;) and p(Ts) € Ry,

¢ 51(T1) = 0 and 0 ¢ p(d2{T3)),

o 51(T1) =0 and 0 & (f2 — A)Fa(T2),

e 0¢ (f - N(@(T)),

» A g f(3(T)).

‘We are now going to study the continuity properties of spectra. Let R be

a regularity in a Banach algebra A and let 7 be the corresponding spectrum.
We consider the following properties of R (or 7):

(P2)  “Upper semicontinuity of 6"
Ifan,a €A an —a, Ay Ecr(an) and A, -ﬂ)\then)\ea'( ).

(P3)  “Upper semicontinuity on commuting elements”:
Ifan,a € A, &y — 0, G = aay for every n, A, € &(a,) and A, — A
then X € &(a)-

(P4)  “Continuity on commuting elements”:
If an,0 € A, a, — a and a,0 = aa, for every n then A € &(a) if
and only if there exists a sequence A, € &(an) such that A, — A.

Clearly either (P2) or (P4) implies (P3). If & satisfies (P3) then, by
considering a constant sequence a, = @, we see that ¢(a) is closed for every

a€ A

PROPOSITION 1.6. Let R be a regularity in a Bonach algebra A, and let
G be the corresponding spectrum. The following conditions are eguivalent:

(1) (P2).

(2) F(a) is closed for every a € A and the function a ~ &(a) is upper
SEMACOTHINUOUS.

(3) R is an open subset of A.

Proof. Clearly each condition implies that &(a) is closed for each a € A.
The equivalence {1)<(2) is well known (see [2], p. 25).

(3)=(1). Let an, 0 € A, Gn — @, An € 5(an) and Ay —+ X Then an—An €
R. Since A — R is closed, we conclude that @ — A € R, L.e. A € F(a).

(1)=>(3). We prove that A — R is closed. Let a, € A— R, a, — a. Then
0 € &{ay) for each n. From (1) we conclude that 0 € &(a), i.e.a € A— K.

PRroPOSITION 1.7. Let R be a regularity in a Banach algebra A and let
7 be the corresponding spectrum. The following conditions are equivalent:
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(1) (P3).

(2) 7(a) is closed for every a € A, and for every a € A and o neigh-
bourhood U of 7(a), there exists ¢ > 0 such that 5(a + v) C U whenever
u & A, au=ua and |ju)| < e

(3) If o € R then there exists £ > 0 such that u € A, ua = au and
||nl] < & implies a +u € R.

Proof Analogous to that of Proposition 1.6.

DermNrrioN. If M, N are bounded subsets of C, we denote by 6{M, N)
the Hausdorff distance of M, N:

§(M, N) = max{sup dist {z, N}, sup dist {w, M}}.
ZEM weN

ProroOsITION 1.8. Let R be a regularity in o Banach algebra A, and let
o be the corresponding spectrum.

(1) Suppose that for all commuting a,u € A with ||u}j < inf{|z| : z €
o(a)} we have a4+ v € R. Then 8(5(a),5(b)) < |la — b for all commuting
a,be A

(2) If &(a) is closed for every a € A and §(F(a), F(b)) < |la—b| for all
commuting a,b € A then & satisfies (P4).

Proof (1) Let a,b € A with ab = ba and let A € F(a). We prove
dist {A,7(b)} < ||a — b||- This is clear if A € &(b). If A & &(b), then

la =8l = (e —A)— (b= A})|| = inf{|z] : 2 € 5(b— )}
=dist {0,5(b — A) } = dist {A,F(b)}.
Thus
sup dist {, 5(8)} < lo - b]
Aed(a)
and by symmetry 6(F(a),7 (b)) < {la — b|\.

(2) Let @na = @G, an — @, An € F(a,) and A, — A. Then, for each n,
there exists pn, € o{a) with |g, — An| < ||an, — a/|. Clearly p, — A, so that
A € &(a) since 7(a) is closed. This proves the upper semicontinuity.

The lower semicontinuity is straightforward.

All regularities Ry, ..., Rg in the examples above are open, and therefore
they satisfy (P2). In fact, they also satisfy (P4).

THEOREM 1.9. Let & be a subspectrum in a Banach algebra A. If a,u €
A, au = uo aend ||u| < inf{lz|: 2 € 5{a)} then 0 € &(a + u). Consegquently,
7 (considered for single elements of A) satisfies (P4).

Froof Let a,u € A, au = va and ||ul| < inf{|z]|: z € 5{a)}. Then
olatu) = {A+u:(Ap) €d(a,u)} CF(a)+5(u) CF(a)+{p: |l <llull},
so that 0 & &(a + u). By 1.8, & satisfies (P4).
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Remark. Frequently, a spectrum o is defined only for single elements
of A and we would like to extend it to commuting n-tuples of A so that &
becomes a subspectrum. A necessary condition for that is {P1) (see [13]).
Property (P4) (or more precisely, au = ua, ||ul] < inf{|z|: z € F(a)} = 0 &
#(a + u)) gives another necessary condition.

Yet another necessary condition is: if a,u € A, au = ue and o(u) = {0}
then &(a + u) = &(a).

It is an open problem to give some sufficient conditions.

The upper semicontinuity on commuting elements enables us to weaken
the axioms of regularity.

TuroReM 1.10. Let R be o non-empty subsel of e Banach algebra A
satisfying

(1) if a € R and n € N then o” € R,

(2) if a, b, ¢, d are mutually commuting elements of A and ac+bd = 14,
then abc R<a € R and b€ R,

(3) R satisfies (P3).
Then R is o regularity.

Proof. It is sufficient to show that o™ € B = a € R (n > 2). By (3),
a" — pa = a{a™ ! — 1) € R for some non-zero complex number u. Since

(@ ) (—uT) +a(uTa" ) = 1,

we have a € R by (2).

THEOREM 1.11. Suppose R is a reqularity in a Banach algebra A such
that the corresponding spectrum & saotisfies max{|A| : A € 5(a)} = r(a) for

every a € A. Then 8a(a) C 5(a) (a € A).

Proof. Suppose on the contrary that Ag € do(a) and there exists € > 0
such that {z : Ao — 2| < €} N&(a) = §. Choose Ay € C — o(a) with
AL = Ao| < /2. Consider the function f(z) = (A1 —2)™*. Then

dist {\1,5(a)} ! = max{|f(z)| : z € 5(a)}
= max{|z| : z € 7(f(a))} = r(f(a)

max{|f(2)|: 7 € o(a)} = TXI'}TTJ > (e/2)".

Thus there exists Az € &(a) with [Aa — A1| < £/2, ie. [da — o] < &, 2
contradiction. :

I

1L Browder and Apostol spectra. Let T be an operator in a Banach
space X. Denote by R(T) and N(T) its range and kernel, respectively. In
general N(T) ¢ N{(T%) C ... and R(T} D R(T?) D ... Define N*(T) =
U2 o N(T™) and R°(T) = Nnso B(T™).

=0



116 V. Kordula and V. Miiller

Denote by Rg(X) the set of all operators T € L(X) such that T is
Fredholm and either T is invertible or 0 is an isolated point of o (7).

THEOREM 2.1. Ro(X) is o regularity. Moreover, Ro(X) is an open sub-
set of L(X), so that the corresponding spectrum (the Browder spectrum)
satisfies (P2) (upper semicontinuily).

Proof Cleatly T € Rp(X) if and only if there exists a decomposition
X = X; & Xy such that TX; C X; (i = 1,2), dim X3 < o0, o(T|X1) C {0}
and T'| X3 is invertible. It is easy to see that X, = N°°(T') and X, = R>{T).

We prove that Ro(X) satisfies (P1). Let T, S € £(X) with T'S = ST. If
T,5 € Ry(X) then TS is Fredholm and the inclusion ¢(T'S) C o(T) - (5)
gives easily T'S € Rp(X).

Conversely, suppose T'S € Ryp{X). Then X = N*(T'S) @ R*>(TS),
dim N*°(T'S) < oo and T|R*(T'S) is invertible.

Let M be the spectral subspace corresponding to all non-zero eigenval-
ues of the finite-dimensional operator T|N*°(T'S). Then X = N*®(T) &
(R*(T'S) & M) is the required decomposition so that T € Ro(X).

We show that Ro(X) is open. Let T € Ro(X). Let § > 0 satisfy {z :
|z| < 36} No(T) < {0}. From the upper semicontinuity of the ordinary and
essential spectra there exists £ > 0 such that ||.5|| < ¢ implies that T+ § is
Fredholm,

o(T+ Sy {z:]z] £} U{z: |z > 26}
and oo (T'+.5) C {z: |z| = 26}. It follows from the properties of the essential

spectrum that either T+ § is invertible or 0 is an isolated eigenvalue of T+5
of finite multiplicity. Thus T'+ .5 € Ro(X) for every S € L(X) with || 5] <e.

Remark. By [3] it is possible to extend the Browder spectrum to a
subspectrum defined on commuting n-tuples of operators. Thus Ro{X) also
satisfies (P4) by Theorem 1.9,

Let T' be an operator from a Banach space X into a Banach space Y. We
say that T has a generalized inverse if there exists an operator §: ¥V — X
such that I"ST == T _

It is well known that T has a generalized inverse if and only if T has
closed range and both N(T) and R(T) are complemented subspaces of X
and V, respectively.

Let M, N be closed subspaces of a Banach space X. We write M CN
if there exists a finite-dimensional subspace F C X such that M C N + F.
Equivalently, dim M/(M N N) < co.

NoTATION. Let X be a Banach spa,ce. Denote by

(1) B1(X) the set of all T € L£{X) such that R(T) is closed and N(T) C
R=(T), :
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(2) Ra(X) the set of all T' € L{X) such that R(T) is closed and N(T') c
R=(T),

(3) Rs(X) the set of all T € £(X) such that N(T) ¢ R®(T) and T has
a generalized inverse,

(4) Ra(X) the set of all T € £{X) such that N(T) & R®(T) and T has
a generalized inverse.

The elements of R; (X} are called semiregular (see [10]), and the elements
of R2(X) essentially semiregular. Correspondingly, the elements of R3(X)
and R4(X) will be called regular and essentially regular.

The semiregular operators in Hilbert spaces were first studied by Apostol
[1] (note that in Hilbert spaces semiregular = regular) and further in [9],
[11}~[13] and [17]. For essentially semiregular operators see [13] and [14]. The
regular operators were studied in [18] (cf. also [13] and [16]). The essentially
regular operators has not been studied yet. We fill this logical gap.

We now summarize the basic propertles of semiregular and essentially
semiregular operators:

TuEOREM 2.2 (see [9], [11], [12]}). Let T € L(X) be an operator with
closed range. The following conditions are equivalent:

(1) M) < R=(T),

(2) N=(T) ¢ R(T),

(3) N(T) © R=(T),
(4} the function A — R(T—A) is continuous at A = 0 in the gap topology,
(5) the function X\ — N(T—X) is continuous at A = 0 in the gap topology,

(6) the function A — ¢(T — X) is continuous at A = 0, where c is the
Kato reduced minimum modulus defined by ¢(S) = inf{||S=|| : dist {z, N (5)}
=1} (see [7]),

(7} liminf o (T — A) > 0,

(&) there ewists a closed subspace M of X such that TM = M and the
operator T : X/M — X/M induced by T s bounded below. For M, it is
possible to take R™(T).

In fact, we are going to use only conditions (1)-(3} and (8).

THEOREM 2.3 (see [9], [13], [14]). Let T' € L(X) be an operator with
closed range. The following conditions are equivalent:

(1) N(T) € R=(T),

(2) N=(T) € R(T),

(8) No=(T) & R>(T), .

(4) there exist subspaces Xo, X1 C X such that X = Xo & X3, dim Xo
< 00, TXy C Xp, TXy C X1, T|Xo 4s nilpotent and T|X) is semniregular
(the Kato decomposition),
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(B) there ezists a closed subspace M of X such that TM = M and the
operator T : X/M — X/M induced by T is upper semni-Fredholm (R(T) is
closed and dim N(T) < o0). For M, it is possible to take R™(T).

We prove that R;(X) (i = 1,2,3,4) are regularities. We shall need several
lemmas. Most of them are known but since they are usually stated in a little
bit different form and they are scattered in many papers, we give the proofs.

LeMMA 2.4 (see [13], Theorem 3.5). If A, B € L(X), AB = BA, N(AB)
¢ R*=(AB) and R(AB) is closed then R(A) and R(B) are closed.

Proof There exists a finite-dimensional subspace F C X such that
N(AB) C R(AB) + F. We prove that R(A4) -+ F is closed. Let v; € X,
fi € F and Av; + f; — w. Then BAv; + Bf; — Bu and Bu € R(AB)+ BF
since R(AB) + BF' is closed. Thus Bu = ABv + Bf for some v € X and
f € F so that

Av+ f-uwe N(B)C N(AB) C R(AB)+ F C R(A)+ F

Hence u € R(A) + F and R(A)+ F is closed. By a lemma of Neubauer (see
13]), R(A) is closed. ‘

LeMMa 2.5 (see [13], Lemma 1.7). If R(A) is closed and N(A) & R (A)
then R(A™) is closed for every n.

Proof. Let F be a finite-dimensional subspace of N(A) such that N({A)
C R™(A) + F. We prove by induction on n that R(A") is closed. Suppose
n > 1and R(A") = R(A™). Let u € R(A™t1), ie. A"ty - u (j — o) for
some v; € X. By the induction assumption v € R(A™), i.e. u = A™v for some
v € X. Thus A(A"v;—A" 4} — 0. Consider the operator 4 : X/N(A4) — X
induced by A. Clearly 4 is bounded below and E(A“fuj —A"ly+-N(A)) — 0,
so that A™v; — A" v+ N(A) — 0 (§ — oo) in the quotient space X/N(4).
Thus there e:snst vectors k; € N(A) C R(A™) + F such that A™w; + k; —
A"y, Since R(A™)+F is closed we have A1y = A"a+ f for some a E X
and f € F C N(A). Hence u = A™v = A" g ¢ R(A"!) and R(A™) is
closed.

LemMa 2.6. Let 4, B, C, D be mutually commuting operators in X such
that AC + BD =1I. Then

(1) For every n there are Cpn, Dy, € £(X) such that A™, B™,Cp, Dy, are
mutually commuting and A™Cy, + B™*D,, = I.
(2) For every n, R(A"B™) = R(A™YNR(B™) and N(A"B"™) = N(A™)+
N{(B"). Further, R®(AB) = R™(A) N R™(B) and N®(AB) = N>=(4) +
Ne2(B).
(3) N*°(A) C R*(B) and N*(B) C R®(A).
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Proof. (1) We have
2n—1 o — 1
I = (AC | BD)2n_1 = Z ( . )AiGiBZn—1~iD2nwl-i
=0 t
= A"C, + B"D,

for some Cp, Dy, € £(X) commuting with A™, B™.

(2) Clearly R(AB) C R(A)NR(B).Ifz € R{A)NR(B),i.e.z = Au= By
for some u,v € X, then set w = Cv + Du. Then

Bw=BCv+ BDbu=Cx+ BDu=ACu+ BDu=u,

so that ABw = Au = z. Thus R(AB) = R(A) N R(B).

By (1) we have R(A"B") = R(A™) N R(B™) for every n and

R*(AB) = | R(A"B™) = [ |(R(4™) N R(B™)) = R®(4) N R>(B).

k) n

Similarly N(A)+N(B) C N(AB). ¥z € N(AB), then z = ACz+BDxz,
where ACz € N(B) and BDz € N(A). Thus N(AB) = N(4) + N(B) and,
by (1), N(A"B™) = N{A") 4 N(B"). Further,

N*®(AB) = U N(A™B™) =| J(N(4™) + N(B™)) = N*°(4) + N*(B).
3)Hze N(A) then ¢ = BDz € R(B). Thus N(A) C R(B) and, by (1),
N(A™) ¢ R(B™) for every n. If m > n then N{A™) C N(A™) C R(B™),
so that N(A™} ¢ R°(B) and N°°(A) C R*°(B). The inclusion N*°(B) C
R*=(A) follows by symmetry.
LeMMa 2.7. Let A, B € L(X) with AB = BA. If N(AB) C R*(AB)
then N(A) C R®(A). If N(AB) & R®(AB) then N(4) C R=(4).
Proof If N(AB) C R™(AB) then
N(A) c N(AB) C R*(4AB) C R*(A).
Similarly, if N(AB) C R®(AB), then
N(A) C N(AB) C R®(AB) C R®(A).

LEMMA 2.8. Let 4, B, C', D be mutually commuting operators in a
Banach space X with AC +BD = I. Then AB has a generalized inverse if
and only if both A and B have generalized inverses.

Proof Suppose ASA = A and BTB = B for some §,T € L(X). Then
ABTSAB = ABT(CA+ BD)SAB = ABTCASAB+ ABTBDSAB

= ABTCAB+ ABDSAB

= ABT(I — BD)B-- A(I -CA)SAB
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= ABTB —~ ABTBDB + ASAB — ACASAB
= AB - ABDB+ AB - ACAB
=2AB — A(BD + CA)B = AB.
Conversely, let ABZAB = AB for some Z € £{X), Then
A[C+ BZ(I - AC)|A=ACA+ ABZA - ABZACA
= ACA + ABZA[I — CA]
= ACA+ ABZABD = ACA+ ABD = A
and similarly B[D + (I — DB)ZA|B = B.
LeMMa 2.9. Let A, F € L(X), let A have a generalized inverse and let
F be a finite-dimensional operator. Then A + F has a generalized inverse.

Proof. Since R(A) is closed, R(A) + R(F) is closed. Since R(A + F) is
of finite codimension in R(A} + R(F'), we conclude that R(A + F) is closed.

Let M be a subspace of X such that R(A) & M = X. Let x,...,2,
be a basis in R(F) with 2; = Aw; + m;, where u; € X and m; € M
(i=1,...,n). Set Mg = \V{m; :i=1,...,n} and let M; be a subspace of
M with My @ M; = M. Then

X = R(A) @ (Mo ® My) = (R(A) + R(F)) & My

since R(A) + R(F) = R(A) & My. Thus R{A) + R(F) is complemented
and R(A + F') is of finite codimension in R(A) + R(F). Hence R(A + F) is
complemented.

Similarly one can prove the complementarity of N(A + F).

LEMMA 2.10. Let A be an operator with closed range such that N (A) &
R>{A). Suppose that A has o generalized inverse. Then A™ has a generalized
tnverse for every n.

Proof. (a} Suppose first N(4) ¢ R*°(A). Let ASA = A for some § €
L(X). We prove by induction on n that A"S™A™ = A™ for every n. Suppose
A8 A" = A" Then

APTEGRHL AL = ATAMS™(SA — I) + A™S™| A",
By the induction assumption A®S™ is a projection onto R(A™) and SA I
is a projection onto N(A) C R{A"). Thus
AMHIGntL ATl — AI(SA ~ ) 4+ A"S™)A™ = A APS™A® = AL

(b) The general case N(A4) ¢ R (A) can be reduced to (a) by the Kato

decomposition (Theorem 2.3(4)) and the previous lemma.

Lemma 2.11. Let A € Ry(X) and let F € £L(X) be a finite-dimensional
operator. Then A+ F € Ry(X).
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Proof. See [8].

Lemma 2.12 (cf. [18]). Let T € L(X) be a regular operator (= semiregu-
lar eperator having o generalized in’ueme). Then there emists £ > 0 such that
T — U has o generalized inverse for every operator U € L{X) commuting
with T such that |U|| < e.

Proof. Let T'ST =T for some § € L(X). Set £ = ||| 7. Let 7 € £(X)
with UT =TU and {|U]| <.

We first prove by induction on n that U(SU)"N(T) C N(T") for
every n. This is clear for n = 0. Suppose U(SU)"~N(T) ¢ N(T™} c R(T)
and let 2z € N(T"). Then, for some v € X,

THU(SUY 2 = T"UTSTv = T"UTv = UT"U(SU)* 1z = 0

by the induction assumption. Since I' — ST is a projection onto N(T), we
have

UEUYMI - ST)X C N(T™Y) ¢ R(T) (n>0),
so that
(I-TSYUBUY"(I-ST)=0 (n2=0).

Then
(T—UYS(I-US)y YT ~U)

={(T-U)S i(US)*’(T -U)

i=0
=T8T —UST — TSU + TSUST

+ > _(TS(US)™*T - US(US)T'T — TS(US)HU + US(US)'V)
i=0

=T —UST — T'SU + TSUST + > (I - TS)(US)U(I - ST)

=T ~U+ (I -TSU(I ~ 8T) + i(l — T8U (SU)*HT -~ 8T)
i=0
=T ~U.

THEOREM 2.13. The sefs R;(X) (i =1,2,3,4) are regularities satisfying
(P3) (upper semicontinuity on commuting elements).

Proof. It is easy to see that Inv(L(X)) C R:(X) (i=1,2,3,4).
The implication T' € R;(X) = T" ¢ Ri(X) (i = 1,2,3,4) follows
from Lemmas 2.5 and 2.10 and the trivial fact that R*(T™) = R>(T)

and N (I™) = N> (T).
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Suppose that A, B, C, D are commuting operators satisfying AC+BD =
I. The implication AB € R;(X) =» A, B &€ R;(X) (i = 1,2, 3,4) follows from
Lemmas 2.4, 2.7 and 2.8. The opposite implication follows from Lemmas
2.6(2),(3) and 2.8.

By Theorem 1.10 it remains to show (P3).

Let T € Ry(X). By condition (8) of Theorem 2.2, R*(T') is closed,
TR*(T) = R*{T) and the induced operator T : X/R*(T) X/R*=(T)
is bounded below. If U is an operator commuting with T' such that [|U]|
is small enough, then (T'+ U)R™(T') = R™(T} and the induced operator
T+U : X/R*®(T) — X/R*{T"} is bounded below. Thus T'+ U € R;(X)
by condition (8) of Theorem 2.2. Hence Ry(X) satisfies (P3).

Condition (P3) for R3(X) follows from Lemma 2.12.

Let T € Ey(X) and let X = X; @ X5 be the Kato decomposition:

dim X; < o0,
{17 0
(% z)

in this decomposition and T3 = T'|X; is semiregular (l.e. Th € Ry(Xo)). If
UeL(X),UT =TU and
Uy Ul2)
U=
(UZ}. Usa

in the decomposition X = X; @ X then TyUss = Uz and ||Uss]] < ¢||U]|
for some positive constant ¢ depending only on the decomposition X =
X1 X,

If |U|| is small enough, then Tp + Uy is semiregular and 7'+ U € Ra(X)
by Lemma 2.11. Hence Ra(X) satisfies (P3).

Property (P3) for R4(X’) can be proved analogously using Lemmas 2.9
and 2.12.

COROLLARY 2.14 (see [11]-[14], {17], [18]). Let T' € L(X), and let f be
o function analytic on o neighbourhood of o(T). Then

a{f(T)) = f(o:(T)) (i=1,2,3,4),
where &; 1s the spectrum corresponding to the regularity B;(X) (i=1,2,3,4).

Proof If X = X; & X3 is a decomposition of X, Ty € £(X;) and
T e C(Xg) then

ez € Ri(X) & T1 € R(X;) and Tb € Ri(X3)
Since 73(T1) D &1(Th) D o (Ty), for i = 1,3 we have
oi(Th) # 0 & Xy # {0}.
Since 74(Ty) D 52(T1) D 8o.(T), for i = 2,4 we have similarly

(i=1,2,3,4).
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7:(T) # 0 < dim X; = oo.
The spectral mapping theorems now follow from Theorem 1.5.

The spectra o1 and &2 are not only upper semicontinuous on commuting
elements, but even continuous.

THEOREM 2.15. The regularities Ri(X) and Ra(X) satisfy (P4).

Proofl. (a) Let T € Ry(X). Define ¢ = inf{|z| : T — z & Ry(X)} and
M = R®(T). Since R®(T —A) = M for |\| <¢, we have (T —AM =M
and the induced operator T-A: X /M — X /M is bounded below.

FUT =7TU and |U|| < ¢, then UM C M and (T +U)M = M by
Theorem 1.9 for the defect spectrum. Similarly the induced operator T+U:
X/M — X/M is bounded below. Thus T'+ U € R;{X).

(b) For Ry(X) the proof can be done analogously by using condition (5}
of Theorem 2.3.

PROBLEM. We do not know whether the regularities R3(X) and Ra(X)
satisfy (P4). :

Remark. The regularities R;(X) (i=1,2,3,4) sa:-tisfy neither (P1) nor
(P2) (see [13], Examples 2.2 and 2.5).

I1I. Local spectra. Further examples of regularities are provided by
the local spectra.

NOTATION. Let = be a vector in a Banach space X. Denote by R, (X)
the set of all operators T € £(X) for which there exists a neighbourhood
U c C of 0 and an analytic vector-valued function f : U — X such that
(T—2)f(z)=z(z€U).

If f(z) = 352y @12t is the Taylor expansion of f in a neighbourhood
of 0 then (T' — 2)f(2) = Tay + Yooy 2Ty — z;) so that Tz = @5
(4 =1,2,...) and Te; = «. Thus T € R,(X) if and only if there exist
vectors z1,%z,... € X such that Tw; = @1 (2 = 1,2,...), where o = x
and sup; 3, [|4]|/* < co.

We start with the following lemma.

Lemma 3.1. Let A, B, ¢, D be mutually commuting operators in a
Bonach space X such that AC + BD =1, and let z;,y; € X (i=0,1, )
satisfy Azm; = wiy, By = yi-1 (:=1,2,...), To = Yo and Sup;>; o] * <
00, SUP;s |[us]|Y? < oo. Then there ewist vectors zi; € X (3,7 = 0,1,...)
such that Z0 = $g, 20,4 = Yi (1,7 = Q, 1,...), Azjj = 21,5 (2 2 1), Bzyy; =
Zigo1 (§ = 1) and sup; >y || 235 ||1/#+ < oo. In particular, ABzi; = 2i—1,-1
(i >1).
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Proof Set 29 = %:,20; = y; and define z; inductively by z; =
C’zi_l,j + Dzi,j_l for all 4,5 > 1. Then

Aziy = ACzj1j+ ADzj_1 = 215 — BDzi_1; + ADz; j_1
=z —Daa 1+ Do -1 =21
and
Bzij = BC’zi_l,j + BDZt',j_l = Zii-1 Aczi,j_l -+ BCZ{,_.]_,_-,' = Zi-1

for all 4,7 > 1. Further, if k is a positive constant satisfying ||z;| < k¢

and |ly:|l < & (i = 1,2,..'.),. then it is easy to show by induction that
251 < max{k, |Clf+ IDIY (4,7 = 0,1,...).

THEOREM 3.2. Let = be o vector in a Banach space X. Then R, (X) is
a regularity sotisfying (P3).

Proof If T € L(X) is invertible then set z; = T~z (i = 0,1,...).
Clearly T' € R (X).

Suppose T € Ry(X) and let n be a positive integer. Let a; € X satisfy
Tz;=a;_ (i=1,2,...) and sup;sq ||&:]|*/? < co. Set y; = 2 ( = 0,1,...).
Then T”yi = T”:z:m = wn(i—l) = ?-;—1'_1 (2. == 1, 2, e ) and

sup |yl = [sup fysl| /1" < fsup [fef*]" < oo,
izl izl ixl

Thus T" € Ry(X).
Let A, B,C, D be mutually commuting cperators with AC + BD = 1.

The implication 4,B € R,(X) = AB ¢ R,(X) follows from the previous
lemma.

Let AB = BA € Ry(X). Let z; € X satisfy ABx; = z;.1 (i =
1,2,...) with zo = 2 and let sup;s [|@;]'/? < oo. Set y; = Biz;. Then
Ay; = AB'zy = Bz = g (0= 1,2,...) and supgsq iV <
| B|| sup;ss fl#i]|'/* < oo. Thus A € Rg(X) and similarly B € Rp(X). In
particular, T™ € R,(X) implies T' € R, (X) so that R,{X) is a regularity.

To prove property (P3), let T € R (X), let z; € X satisfy Tx; = 31
(1=1,2,...}, o = = and let & be a positive number with k > sup;», ||lz:||*/%.
Let U € £(X) with UT = TU and |[U]] < k™. Set g(A) = £, (U+A) zie1.-
This series is convergent for |A| < k™! — ||U|| and we have

(T— U—-— )\)g()\) = T.’J}l ~}~Z(U+A)ZT"E1+1 — Z(U+A)i+l$i+1 = TIL']_ =.$.

i=1 i=0

Thus T — U € Ra(X).

Denote by . the spectrum corresponding to the regularity Ry (X).
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Remark. The standard notation is r(z) and this local spectrum has
been studied intensively (see e.g. [4], [6], [20]-[22]). For our approach, how-
ever, the notation vy, (T is much more appropriate.

CoOROLLARY 3.3 (see e.g. [20]). Let z be a vector in a Banach space X,
and let T € L(X). Then

1= (F(T)) = f(7(T))

for every function f analytic on o neighbourhood of o(T) which is non-
constant on every component of its domain of definition.

Remarks. (1) The assumption that f is non-constant on each compo-
nent is really necessary, since v, (T") might be empty (cf. [21]).

(2) Ry(X) does not satisfy (P2). To see this consider a 2-dimensional
space X with a basis €7,¢€2, £ = 1, and

10
(4 o)
Then T € Ry (X) and

(i 8)¢R$(X) for every £ > 0.

(3) We do not know whether R, (X) satisfies (P4).

Consider now the subset R(X) C L({X) defined by: T ¢ R(X) if and
only if there exists a function f: U — X analytic in a neighbourhood U of
0 such that f is not identically equal to 0 and (T — z)f(2) = 0 (z € U).

As before it is easy to see that T € R(X) if and only if there exist vectors
z; € X (1=1,2,...), not all 0, such that Tz; = z;_1 (¢ = 1,2,...}, where
zp = 0 and sup;s, |lz:]|*? < co. We can assume that z; # 0.

THEOREM 3.4. R(X) is a regularity.

Proof If T € £{X) is an invertible operator and z; € X (i =1,2,...)
satisfy Tz; = 2;_1 (¢ = 1,2,...), where zo = 0, then T%z; = 0, so that
z; = 0 for every 4. Hence T' € R(X) and R(X) is non-empty.

Let A, B € £(X) with AB = BA ¢ R(X). We prove that either A ¢
R(X) or B ¢ R(X). Let z; € X satisfy ABz; =z, (i = 1,2,...), where
@o = 0, &1 # 0 and sup;» [z < co. Set u; = Biz; (1 =0,1,...). Then
ug =0, Au; = u;_y (i =1,2,...) and sup;py fjasf|'/* < co. I ug # O then
Ad R(X). N -

Suppose on the contrary that w; = By = 0. Set vg = 0 and v; = 4™ x;
(i = 1,2,...). Then Bu; = vy (i = 1,2,...), sup;»q [wi|** < oo and
vy = 7y # 0. Thus B & R(X). Hence 4, B ¢ R(X), AB = BA implies
AB € R(X).

In particular, A € R{(X) = A™ € R(X) (n=1,2,...).
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Let A ¢ R(X) and let z; € X satisfy the required conditions. Then
¥i = Tni satisfy all the required conditions for A™ so that A™ ¢ R(X).
Hence A € R(X) & A™ € R(X).

Suppose that A, B, C, D are mutually commuting operators satisfying
AC+BD =1and A ¢ R(X). Let z; € X satisfy Az; = m;.1 (1 =1,2,..)),
2o = 0, not all of z;’s being 0 and sup;», ||z < co. Set y; = 0 (i =
0,1,...). By Lemma 3.1 there are z; € X, not all 0, such that ABz =z,
zp = 0 and sup;, | z||*/* < co. Thus AB & R(X), so that AB € R(X) =
A, B e R(X).

Denote by & the spectrum corresponding to the regularity R(X). In
general &(T) is not closed (in contrast, it is always open), so that R(X)
cannot satisfy (P2), (P3) or (P4). Neither does R(X) satisfy (P1). To see
this, let X be a separable Hilbert space, A = 0 and let B be a backward
shift. It is easy to see that 0 = AB € R(X) and B ¢ R({X).

The closure of 5(T') is usually denoted by St and called the analytic
residuum of T.

COR.OLLARY 3.5 (see [20]). Let T € L(X} and let f be a function analytic
on a neighbourhood of o(T) which is non-constant on each component of its
domain of definition. Then

g(f(T) = f(6(T)) and Spr) = S(Sr).

@PROPOSITION 36. Lt Te LX) andw € X, z# 0. Then 6(T) U~a(T)
#0.

Proof. Suppose on the contrary that &(T') U, (T) = 0. Then for every
z € C there exists a neighbourhood U, of z and an analytic function f, :
U, — X such that (T'— A} fo(A) = = (A € U,). Since 5(T) = 9, the functions
fz and f,, coincide on U, NU,, (z,w € C), so that in fact we have an entire
function f : € — X such that (I'— A)f(A) = z (A € C). For |A| > r(T)
we have f(A} = (T — A)~'z, so that limy—o, |f(A)| = 0. By the Liouville
theorem f = 0, so that z = 0, a contradiction.

The closure of F(T) U v,(T) will be denoted by ¢, (T} (the standard

notation is again or(z) rather than o, (7T); this set is also called the local
spectrum.).

THEOREM 3.7. Let T € L(X), x € X, z # 0, and let f be o function
analytic on a neighbourhood of o(T"). Then

FF TN Ur(HT) = FET) U F(7(T)) and ou(f(T)) = f(ou(T)).

Proof. Let X = Xy & X3 be a decomposition of X, let z = 21 D xg be
the corresponding decomposition of z, and let T3 € £(X1) and T} & L£(X5).
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It is easy to see that
el e Ra;(X) ST e le (X]_) and T € sz (.Xg)

and
Tty < R(X) T e R(Xl) and Th € R(Xz)
The previous theorem together with Theorem 1.5 completes the proof.
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On the axiomatic theory of spectrum II
by

M. MBEKHTA (Lille) and V. MULLER (Praha)

Abstract. We give a survey of results concerning various classes of bounded linear
operators in a Banach space defined by means of kernels and ranges. We show that many
of these classes define a spectrum that satisfies the spectral mapping property.

Introduction. Denote by £(X) the algebra of all bounded linear op-
erators in a complex Banach space X. The identity operator in X will be
denoted by Ix, or simply by I when no confusion can arise.

By [15], a non-empty subset R C L£(X) is called a regularity if it satisfies
the following two conditions:

(NifAe £(X)andn>1then A€ R+ A™ € R,
(2) if A,B,C,D € L(X) are mutually commuting operators satisfying
AC+BD=1then ABe R4 A, BeR.

A regularity R defines in a natural way the spectrum og by or(d) =
{AeC:A—A¢ R} for every A € L(X).

The axioms of regularity are usually easy to verify and there are many
naturally defined classes of operators satisfying them (see [15]). Since the
corresponding spectrum always satisfies the spectral mapping property, the
notion of regularity enables one to produce spectral mapping theorems in
an easy way.

The aim of this paper is to give a survey of results for various classes
of operators defined by means of kernels and ranges. For the sake of com-
pleteness we include also some well known classes and results. On the other
hand, we ohtain a great number of new resuits (especially spectral mapping
theorems) for various classes of operators and introduce also new classes of
operators which, in our opinion, deserve further attention.
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