Erratum to
"Tracial states on crossed products associated with
Furstenberg transformations on the 2-torus"

by
KAZUNORI KODAKA (Okinawa)

Due to a fatal error, [3, Lemma 2] cannot hold since it contradicts Baggett [1, Theorem 2]. So the author does not know whether [3, Theorem 3 and Corollary 4] hold or not. But in the same way as in the proof of [3, Theorem 3] we can show the following proposition:

Proposition. Let f be a real-valued continuous function on T. Suppose that there are a $G \in L^\infty(T)$ and a $\lambda \in T$ such that $e^{2\pi i f(x)}G(e^{2\pi i \theta}x) = \lambda G(x)$ ($x \in T$) and that $G \neq 0$ in $L^\infty(T)$. Then the Furstenberg transformation ϕ_f induced by f is uniquely ergodic. Hence the associated crossed product $A(\phi_f)$ has a unique tracial state.

Remark. (1) By P. Hellekalek and G. Larcher [2, Corollary], if a real-valued function f on T is continuously differentiable and $\int_T f(x) \, dx = -1/2$, then the induced Furstenberg transformation ϕ_f is uniquely ergodic.

(2) By the above remark and Baggett [1, Theorem 2] we see that there are an irrational number θ and a real-valued continuously differentiable function f on T such that f cannot be split with respect to $e^{2\pi i \theta} \in T$ and that the induced Furstenberg transformation ϕ_f is uniquely ergodic.

References

Parameter Spaces

Enumerative Geometry, Algebra and Combinatorics

Editor of the Volume
Piotr Pragacz

1996, 222 pages, soft cover, ISSN 0137-6934
$60 ($30 for individuals)

The book contains thirteen papers written on the occasion of the ITEG-Banach Center conference “Parameter Spaces; enumerative geometry, algebra and combinatorics”.

The subjects of the articles include: toric varieties, Hilbert schemes, complete quadrics, moduli spaces of curves, space curves, residues and cohomology, degeneracy loci, flag and Schubert varieties, Schur functions, Schubert polynomials and Hecke algebras. Here is the list of contributions.

M. Brion, Piecewise polynomial functions, convex polytopes and enumerative geometry.

M. Brion, The push-forward and Todd class of flag bundles.

J. B. Carrell, Vector fields, residues and cohomology.

G. Duchamp and S. Kim, Intertwining spaces associated with q-analogues of the Young symmetrizers in the Hecke algebra.

C. Faber, Intersection-theoretical computations on \mathcal{M}_2.

L. Götsche, Orbifold-Hodge numbers of Hilbert schemes.

T. Johnsen, Plane projections of a smooth space curve.

A. Lascoux, B. Leclerc and J.-Y. Thibon, Twisted action of the symmetric group on the cohomology of a flag manifold.

P. Pragacz, Symmetric polynomials and divided differences in formulas of intersection theory.

S. A. Strømme, Elementary introduction to representable functors and Hilbert schemes.

A. Thorup, Parameter spaces for quadrics.

A. Yekutieli, On adelic Chern forms and the Bott residue formula.

The reader can find here research contributions, expository papers bringing some new results and, finally, purely survey articles. All the papers were carefully refereed.

The book will be of interest to researchers and graduate students in algebraic geometry and combinatorics.

To be ordered through your bookseller or directly from
Institute of Mathematics, Polish Academy of Sciences
P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997