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Derivations on Jordan—Banach algebras
by

A R, VILLENA ({Granada)

Abstract. We establish that all derivations on a semisimple Jordan—Banach algebra
are automatically continuous. By showing that “almost all” primitive ideals in. the algebra
are invariant under a given derivation, the general case is reduced to that of primitive
Jordan-Banach algebras.

0. Introduction. Our knowledge concerning the continuity properties
of epimorphisms onto Banach algebras, Jordan—-Banach algebras, and, more
generally, nonassociative complete normed algebras, is now fairly complete
and satisfactory (see [7], [1], and [13] respectively). However, this is not the
case for another classical topic in automatic continuity theory, namely the
continuity of derivations. The fundamental work in this direction is due to
B. E. Johnson and A. M. Sinclair: in 1969, Johnson [8] proved the continuity
of derivations on semisimple commutative Banach algebras, and this result
was extended to arbitrary semisimple Banach algebras by Johnson and Sin-
clair [9] by using extensively the theory of irreducible representations. The
research in this framework has been further developed in several directions,
and it should be pointed out that the possibility of avoiding the associativ-
ity of the underlying algebra soon drew the attention of many authors. In
1970, Sinclair [16] stated a cutting conjecture in this line, namely that every
Jordan derivation on a semisimple Banach algebra is continuous. The conjec-
ture was found to be true in 1975, when J. M. Cusack [3] proved that every
Jordan derivation on a 2-torsion free semiprime ring is a derivation. This led
naturally to the problem whether every derivation on a semisimple Jordan--
Banach algebra is automatically continuous. This problem remained open
until now and requires new insight into Jordan—Banach algebras. B. Aupetit
(1] seems to be the first author to state this question in 1982, and A. Ro-
driguez [13-15] suggested it insistently, even in a more ambitious setting [13].

In this paper we solve the problem by proving that every derivation on
a semisimple Jordan—Banach algebra is continuous. To do this, we reduce
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206 A, R. Villena

the question to the case of primitive Jordan-Banach algebras, by showing
the invariance of a “sufficiently large number” of primitive ideals under
a given derivation. Actually, for a derivation on a possibly nonsemisimple
Jordan-Banach algebra, a deep connection between the continuity and the
invariance of the primitive ideals under the derivation is established.

QOur approach uses extensively the representation of primitive complex
Jordan~Banach algebras provided by M. Cabrera, A. Moreno, and A. Ro-
driguez [2]. In the first section, we recall this representation together with
some methods due to Zel'manov, which provide the crucial tool in the treat-
ment of Jordan algebras.

In the second section, we construct certain “sliding hump sequences”.
These sequences have amazing properties, which allow us to put a powerful
automatic continuity principle from [18] into action.

In the third section, we derive the continuity of derivations on primitive
Jordan-Banach algebras, The proof combines the tools of automatic conti-
nuity theory based on the sliding hump procedure with the representation
theorem of the first section.

In Section 4, we extend a classical theorem of Sinclair [16] to Jordan—
Banach algebras by showing that continuous derivations leave every primi-
tive ideal invariant and that, for a possibly discontinuous derivation, there
exists only a finite number of exceptional primitive ideals which provide ei-
ther finite-dimensional or quadratic quotients. It should be noted that in
order to establish this last result we use again sliding hump sequences and
the representation theorem mentioned above.

Finally, in Section 5, we prove that, for a derivation on a semisimple
Jordan-Banach algebra, there exists a family of invariant primitive ide-
als having zero intersection, and combining this with the results of the
third section, we deduce the continuity of that derivation. Since every semi-
simple Banach algebra becomes a semisimple Jordan—Banach algebra. for the
symmetrized product, our continuity result contains the classical continuity
theorem by Johnson and Sinclair as a special case.

1. Review of Jordan algebra techmiques. A Jordan algebra is a

nonassociative algebra J, over a field & of characteristic not two, whose
product satisfies

a-b=b-a and (a-b)-a*>=a-(b a?

for all a,b in J. Such algebras were introduced in 1934 by P. Jordan, J. von

Neumann, and E. Wigner in order to generalize the formalism of quantum
mechanics.

Every associative algebra 4, whose product will be denoted by juxtapo-
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sition, becomes a Jordan algebra, denoted by AT, for the product
a-b=1(ab+ ba).
A Jordan-Banach algebra is a real or complex Jordan algebra whose
underlying vector space is endowed with a complete norm || - || satisfying
lla- oIl < lla]l - [|3]
for all ¢,bin J.
By a derivation on a Jordan algebra J, we mean a linear operator D
from J into itself satisfying
D(a:b)=D(a)-b+a-D(b)

for all a,b in J. Derivations of the Jordan algebra AT, for an associative
algebra A, are called Jordan derivations of A.

We define the operator of multiplication by an element a in a Jordan
algebra J as the operator R,, from J into itself, given by

R,(b)=a-b
We also define the operator
U, = 2R — Ra.

Now the multiplication algebra of J, M(J), is defined as the subalgebra of
L(J) (the algebra of all linear operators on J} generated by all multiplication
operators on. J. We note that, for a Jordan—Banach algebra, every element
in M(J) lies in BL(J) (the algebra of all bounded linear operators on J).

Remark 1. Let D be a derivation on a Jordan algebra J. For every a
in J we have DR, — R, D = Rp(,) and so the subalgebra of those elements
T in M(J) for which DT — TD lies in M(J) contains all multiplication
operators and therefore equals M(J). Thus we can define an (associative)
derivation d on M(J) by

d(T) = DT - TD

for all T in M(J). It is straightforward to show that, for every T € M(J)
and n € N, we have
DT = Z

where, as usual, D° and d° mean the identity operators on J and M(J)
respectively.

For an ideal P in a Jordan algebra J we denote by 7p the canonical map
from J onto the quotient algebra J/.P.

Remark 2. We note that, for an ideal P of a jordan algebra J, the
set of those operators T' in M(J)} for which there exists an operator Tp

d”“J (T)D?,
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in M(J/P) with npT' = Tprp is a subalgebra of M(J) which contains all
multiplication operators and so equals M(J). Thus we define an algebra
homomorphism T' +— Tp from M(J) into M(J/P) which is obviously onto.

An element ¢ in a unital Jordan algebra J is said to be invertible if there
exists b in J such that

a-b=1 and o b=a.
This is equivalent to the invertibility of the operator U,.

Starting from this concept of invertibility, the spectrum, Sp(a), of an
arbitrary element @ of a Jordan algebra is defined as in the associative case.
The spectrum of an element a in a unital complex Jordan-Banach algebra
is a nonempty compact subset of the complex plane. The spectral radius of
a is given by

o(a) = max{|A\|: A € Sp(a)} = Jim [|a™ ||

The possibility of applying “spectral techniques” in Jordan-Banach algebras
has allowed a great parallelism with the theory of Banach algebras, but these
methods alone have been inefficient to solve the continuity of derivations
problem (see [1]).

Any Jordan algebra J can be imbedded in a unital Jordan algebra by
externally adjoining a unit providing its unital hull J'.

Now we recall that an element a in a Jordan algebra J is called quasi-
invertible if 1 —a is invertible in the unital hull J'. K. McCrimmon [11] proved
the existence of a largest ideal of J each element of which is quasi-invertible.
This ideal is called the Jacobson-MecCrimmon radical of J and is denoted
by Rad(J). If Rad(J) is zero then we say that J is semisimple.

Remark 3. It is known ([11]) that, for an associative algebra, the
radical in the Jordan sense coincides with its classical Jacobson radical.

Zel'manov [21] introduced the notion of primitiveness for unital Jor-
dan algebras to derive his powerful characterization of prime Jordan alge-
bras. The concept of primitiveness was developed in the nonunital cage by
L. Hogben and K. McCrimmon [5]. By a judicious definition of modularity
they define primitive Jordan algebras as those Jordan algebras for which
there exists a maximal-modular inner ideal that contains no nonzero ideal
in the algebra. An ideal P of a Jordan algebra J is said to be primitive if
the quotient algebra J/P is primitive. It is clear that a primitive ideal is the
largest ideal contained in a maximal-modular inner ideal. It was proved in
[5] that Rad(J) is the intersection of all primitive ideals of J,

From Proposition 5.5 of [5] it follows that every primitive ideal P is
prime, This means that, for ideals @ and @' in J, the condition
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. Ug@)c P
implies either Q © Por Q' C P.
Moreover, primitive ideals in a Jordan-Banach algebra are necessarily
closed (Lemma 6.5 of [4]).

Remark 4. Example 5.6 of [5] assures that the primitive ideals of an
assoclative algebra A are also primitive in the Jordan sense.

A revolution in Jordan algebra theory took place in 1983 when E. Zel’'ma-
nov ([22]) provided his characterization of prime nondegenerate Jordan al-
gebras.

Zel'manov’s theorem becomes the main tool for the proof of the clas-
sification theorem for primitive complex Jordan—Banach algebras recently
obtained by M. Cabrera, A. Moreno, and A. Rodriguez in [2].

THEOREM 1 [2]. A complez Jordan-Banach algebra J is primitive (if
and) only if one of the following assertions holds:

1. J equals the simple exceptional 27-dimensional complex Jordan algebra
ME(C) of all hermitian 3 x 3 matrices over the complez octonions.

2. J 15 the Jordan-Banach algebre of a continuous nondegenerate sym-
metric bilinear form on o complez Banach space of dimension > 2.

3. There ewist a compler Banach space X and an associative subalgebra
A of BL(X) acting irreducibly on X such that J can be seen as a Jordan sub-
algebra of BL(X) containing A os an ideal, and the inclusion J — BL(X)
15 continuous.

4. There exist a complex Banach space X and an associotive subalgebra
A of BL(X) acting irreducibly on X such that J can be seen as a Jordan
subalgebra of BL(X), the inclusion J — BL(X) is continuous, the identity
mapping on J extends to a linear algebra tnvolution * on the subalgebra B of
BL(X) generated by J, A is o *-invariant subset of B, H(A,*) is an ideal
of J and A is generated by H(A, ).

Now we review some Zel'manovian techniques whose application in the
present paper has been unavoidable.

For an element ¢ in an associative algebra A with involution * we write

{a} = 3(a+a").

Let & be a countably infinite set of indeterminates and J(Z) be the free
special Jordan algebra on 5. This has as special universal envelope the free
associative algebra A(S) on 5. Let * be the only linear algebra involution
on A(Z) fixing the elements of =, Then J(Z) ¢ H(A(Z),#) is the Jordan
subalgebra of A(Z) generated by =E.

We say that a polynomial p(xi,...,xm) € J(8) eats imbedded pen-
tads if there exists a natural number k and polynoroials pf;- 1<i<k,
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1 <7 <3)in J(£) involving m + 4 indeterminates, such that, for all
C}, - Cr:€1:€2,£3: 54, '191, . ,19_9 in & we have

k
{Go Gababalapdy . 9} =D {G1- Gplplphos .. 0.},
i=1

where we have written p} instead of pi(£1,£2, €5, €4, X1, - - -, Xom)-

Anyone of the indeterminates arising in the definition of an imbedded
pentad eater can be formally reduced to the unity. It follows that such a
polynomial p eats pentads

{516253'5413} = pf(&-11£2a‘§3’€4:X1:‘ . 'JXm) © j(E)v

and eats tetrads

{flfzfap} = pl(é-la €2a 53:X1s v yX'm) € J(E)

The set of all imbedded pentad eaters is a subspace of J(=) which
contains a nonzero largest ideal denoted by I.
For any special Jordan algebra J we can evaluate the polynomials in

J(Z) on J, and the values taken on by the polynomials in I5 form an ideal
in J denoted by I5(.J).

Remark 5. We note that, if J is a primitive complex Jordan—Banach
algebra, and if J is not as in cases 1, 2, and 3 of Theorem 1, then the

associative algebra A arising in case 4 of the theorem can be chosen in such
a way that H(A, *) equals I5(J).

For more details about Zel'manovian methods, the reader is referred
to [12].

The voraciousness of the ideal I5 leads to multiplication operators, with
a heterodox look, that will be crucial below.

LemMa 1. Let B be an associative algebra endowed with a linear algebra
involution *, let J be a Jordan subalgebra of B contained in the hermitian
part H(B,*) of B, and let A denote the subalgebra of B generated by Is(J).
Forac A o/ e J, and be J, define

Ma(b) = a*b+ba, T,(b)=a*ba, Thu(b)=a"be +a'ba.
Then My, Ta, and 15,00 send J into itself and actually lie in the multiplica-
tion algebrae of J.

Proof. First we note that, by Section (1.3) in [12], we have H(A, *) =
I (7).

Since A is generated by I5(J) and, for all hy, ha, ks, hy € I5(J) we have

hihahshs = {hihahshs} + hiha{hahe} — h1{hohs}hs
+ {hihathahy — ha{hihy}hs + haha{hihs} — ha{hahs}hi,
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it follows that A = I5(J) + I5(J)* + Is{J)%. So, to prove that the operator
M, lies in M(J) it suffices to see that, for hy, hg, hs in I5(J), the operators
MhI:Mhlhm and Mh:thzha all lie in M(J)

Clearly My, and Mp,p, belong to M(J). Concerning My, a5y, We note
that there exist a polynomial p(&y,...,&,) in Is and a;,...,a, € J such
that ha = p(ai,...,am). Since p eats tetrads there exists (€1, &y mat,
§m+2,Em43) € J(5) such that

{em+rémirbmesp(bn, . Emdt =061, €y Emtt, Embzy Emara)-
From this it is obvious that p’ is homogeneous of degree one with respect to
Em+1 and that, for all b e J,

Mh1hzh3 (b) = Q{bhlhzha} = Z{bhlhgp(al, Sy am)}
= 210,(&1, sy Byn, ba hl: h2)
Therefore Mhlhzhg S M(J)

Now, the operator T, also lies in M(J) because T, = (M2 — M,z).

Finally, to prove T, o» € M(J) for a € A and o’ € J, we show that
Thya's Thyhg,ar @04 Thy pohg e liein M{J) forall hy, e, hs € Iy(J) and o’ € J.

Clearly Ty, o € M(J).

Now we put ka2 = p(ay,...,an) for some p(¢y,...,&,) € Is and ay, . ..
s, € J. Wefind p'(&1,...,&m ..., Emts) € T(Z) with

{£m+1£M+2§M+3p(§13 v !E’m)} = pr(gl: v :gm: Em+1: §m+2:€m+3):
and so, for all b € J,

Thiha,or (D) = 2{a'bhiho} = 2{a'bhaplas,...,am)} =2p'(01, .- ., Om, ', b, By).
Therefore Ty, n,,0r € M(J).

Finally, for hy, bz, b3 € I5(J) and o’ € J we put hg = p(a1,...,am) for
some p(£1,...,¢m) € Iy and a3,...,a, € J. Since p eats pentads we can
choose p'(£1,...,Em+4) in J(Z) satisfying )

{£m+1 .- '§m+4p(§l> sy ‘sm)} = P’(fl: - :E’ma £m+1? e 5m+4)-
So, for all b € J,

Thlhnhs,ﬂ’ (b) = 2{a’bh1h2h3} = 2{a’bh1hgp(a1, fan ,am)}
= 2}')’((}1, R 7af'm-1a‘,7 b; h‘ll h2)
Thus Th pohy,ar € M(J), concluding the proof. m

2. 8liding hump sequences. Johnson and Sinclair obtained in [9] the
continuity of derivations on semisimple Banach algebras by building suitable
sequences which solve the continuity problem. The idea of these sequences
has been successfully extended to the context of some relevant classes of
nonassociative algebras in [19] and [20] in order to establish the continuity
properties of derivations on those algebras.
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Now we follow the traditional sliding hump procedure. To do this we
construct appropriate sequences whose properties enable us to solve the
continuity problem in the Jordan context.

We start with a hard purely algebraic construction which provides the
source for building analytically active sequences.

LeMMA 2. Let A be an associative algebra of linear operators acting
irreducibly on an infinite-dimensional vector space X whose centralizer as A-
module equals the base field. If a € A has a nonzero fized point x and finite-
dimensional range, then there exists a' in A such that dim(a'a)(X) = 1,
o'z =z, and (a'a)? = d'a.

Proof. Let {#,u1,...,un} be a basis in a(X). We apply the Jacobson
density theorem to obtain o’ € 4 such that o'z = 2z and a'uy = ... =
a'ty, = 0. Then o' has one-dimensional range and (a’a)z = z. From this it
follows that (¢/a)? =a'a. w

LemMA 3. Let A be an associative algebra of linear operators acting
irreducibly on an infinite-dimensional vector space X whose centralizer us
A-module equals the base field, and assume that A is endowed with a linear
algebra involution *. If there exists b in A with one-dimensional range and
b? = b, then there exist c € A and z € X such that ¢* = ¢, cz = z # 0,
and dime(X) = 1,2. Moreover, if Y and Z are linear subspaces of X such
that B(X) C Y, b*(X) C Y, and b(Z) = b*(Z) = 0, then o(X) C Y and
c(Z)=0.

Proof. We note that bAb = lin{b} and so b* Ab* = lin{b*}. From this it
is easy to show that also dim b*(X) = 1. Also, it is obvious that (b*)% = b*.

If 5*b 5 0 and bb* # 0, then b*b has one-dimensional range and nonzero
square. It follows that (5*b)* = Ab*b for a suitable nonzero scalar A. Hence
¢ = A71b*b satisfies

dime(X) =1,

and we may consider an element y € X with cy # 0 and define z = ¢y which
satisfies cz = 2z 5 0.

Otherwise we have either b*b = 0 or bb* = 0 and we may consider the
elernent ¢ = b + b* which satisfles
dime(X)=2, ¢ =c¢, ecither ch=b or cb*=1D"

If ¢b = b, then we define z = by for a suitable y € X with by £ 0, while if
cb* = b, then we define z = b*y’ for a suitable ¥’ € X with b*y’ # 0, So we
have an element z € X satisfying cz =z # 0. =

cf=c E=c,

THEOREM 2. Let A be an associative algebra of linear operators acting
wrreducibly on an infinite-dimensional vector space X whose centralizer as
A-module equals the base field. Then one of the following assertions holds:
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1. There exist sequences {an} in A and {z,} in X such that

O, - - G1 T, = Tp 7% 0, ap...aqn # 0, G413, = 0.
2. There exists a sequence {b,} in A such that
dimb, (X} =1, b2 =b, bpb,=0 ifm#n.

Moreover, if the algebra A is endowed with ¢ linear algebra involution *, and
if assertion 1 does not hold, then we have:

2*. There exist sequences {c,} in A and {2,} n X such that
dime,(X)=1,2,

CnCn = 0

C:—l = Cny, CnZp = Zn,
if m % n.

Proof. The Jacobson density theorem will be applied in what follows
without further notice.

First assume that dima(X) > 2 for every nonzero element o in A. Let
z1 be an arbitrary nonzero element in X. Then there exists an (obviously
nonzero) element a; in A such that ayz; = z4.

Now we suppose inductively that a1,...,a, in 4 and @1,...,2, in X
have been chosen satisfying the following conditions:

ak,..almkzmk#o, k:l,.,.,n,
61...ak7é0, k:l,...,n,
a1z =0, k=1,...,n—-1

Since dim(ay, ...a1)(X) > 2, there exists n4+1 in X such that z, and
Gy ...Q1%n4+1 are linearly independent. We take a in A such that az, = 0
and a@n ... 81%n41 = Tny1. Since dima(X) > 2, there exists z in X with
oz linearly independent of z,43. Now we choose &’ in A such that ¢’z =
Tn41 and a’az ¢ ker(a; ... a,). By defining any1 = d'a, it is straightforward
to check that

@41+ 01841 = Tyl % 0, @1 ... .dpt1 7’-‘ 0, Ap+i1Ln = Q.
The sequences {a,} and {z,} constructed in this way satisfy the require-
ments of assertion 1 of the theorem.

Now assume that there exists a in A with dima(X) = 1. Let z and 2/
in X be such that a(X) = lin{z} and a2z’ = z. Choose o’ € A such that
a'z = z' and write b = aa’. Then dim b(X) = 1 and b? = b

Now let B be the set of all finite systems {bx}4_, in A with the following
properties:

dimbg(X) =1, k=1,...,N,
bi=by, k=1,...,N,

bubw =0 ifk#Kk, and b,k =1,...,N.
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Since the singleton {b} lies in B, this set is nonempty. Moreover, we consider
in B the partial order defined by

{be <, o N<Mand by =b fork=1,...,N.

If B contains no maximal systems, then one can inductively construct a
sequence {b,} satisfying the requirements of assertion 2 of the theorem.

Otherwise there exists a maximal system {b;}{_, in B. We consider the
linear subspace Y = ker(b;)M...Nker(by) which has finite codimension and
we write Z = b (X)+ ...+ by (X).

Since dimY = oo we can choose 21 € Y\Z and take a; € A such that
arzy = xy and g1 2 = 0.

We claim that dimag(X) = co. Otherwise we apply Lernma 2 to ob-
tain an element a’ in A such that by.y = a’ay satisfies dimby 41 (X) = 1,
b?\r+1 = byt1, and bgbyy1 = bygabry = 0for k =1,..., N. Hence the system
{bk}f:]l lies in B, contradicting the maximality of {bx}{_,. Therefore our
claim is proved.

Thus we have a; € A such that a;z; = z; and dimay(Y) = oo, since
dima;(X) = oc.

Now we suppose inductively that a1,...,0, in A and zy,...,2, in ¥
have been chosen satisfying the following conditions:
..oy =270, k=1,...,n,
dim(ag...e)(¥Y) =00, k=1,...,n,
ay...axp #0, k=1,...,n,
ak+1mk=0, k=l,...,?1~—l.

Then let z,41 € ¥ by such that ay,...a12, and ay, ...012,,1 are linearly
independent and let a € A satisfy agy, ...a13, = 0 and aa, ...a18041 =
T4 -

We claim that dim a{X) = co. Otherwise we apply Lemma 2 to obtain
a' € A such that by defining by11 = a’aan ... a1 we get a system {by }00"
contradicting the maximality of {bx}i_, and the claim is proved.

Since dim a{X) = oo we can take z € X such that 2,4, and az are
linearly independent and so there exists o' € A such that a’zpp1 = Tny1
and o'az ¢ ker(a; . ..a,). Now we define a,+.; = o’a and it is straightforward
that ani10n ... G1Tp41 = Tpit, Gne1%n =0, and a . .. GnQn12 7% 0, which
shows that a; ...@nanyq # 0.

Arguing as above we have dim(an10n ...01)(Y) = co.

The sequences {a,} and {z,} satisfy the requirements of assertion 1 of
the theorem.

Finally, assume that A i3 endowed with an involution * and there exists
a in 4 with dima(X) = 1. First we argue as before to obtain b € A with
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one-dimensional range and b2 = b. Then we apply Lemma 3 to obtainec € A
and z € X satisfying dime{X) =1,2, ¢* = ¢, and cz = 2 # 0.

Now we define C as the set of couples of finite systems {cy}5v_, in A and
{z}_; in X with the following properties:

dimeg(X) =1,2, k=1,...,N,
cg=ck, k=1,...,N,
ckszZk#O, k=1,..‘,N,

ifk+#k and k, k' =1,...,N.

This set is nonempty since the couple ({c}, {2z}) lies in ¢, and we define a
partial order in C by

({Ck}kazl’ {zk}fc\rml) < ({Clk}ﬂ/{zln {zjfc}kM-_nl)
S N<M, ep=c,and 2z =z fork=1,...,N.

CLCr = 0

If C contains no maximal couples, then one can inductively construct a
couple ({cn},{2n}) satisfying the requirements of assertion 2* of the theo-
rem.

Otherwise there exists a maximal couple ({cx Yy, {zx}2,) in C. We
define the linear subspace Y = ker(cy) N ... N ker(cy) which has finite codi-
mension and we write Z = ¢;(X) +... + ex(X).

Let z1 € Y\Z and ay € A be such that a3z = z; and a1 Z = 0.

We claim that dima; (Y} = co. Otherwige dima,(Y) < oo and also
dima;(X) < oo. Then we apply Lemma 2 to obtain &' € A such that
by+1 = a’a; satisfies dim by q(X) = 1, bin =bys1, v (X)) C ¥ and
bN,|_1(Z) = 0. Then C;ch+1 = bN—;—lck == () and so bfv+1ck = Ckb*N+1 = 0 for
k=1,...,N.Thus b}y, ;(X) C Y and by ,,(Z) = 0. By Lemma 3 there exist
eni1 € A and 2y € X such that ({cx Jhi, {2} ay) € C, contradicting
the maximality of ({cx}i_, {#x}i-;). Thus our claim is proved.

Now we suppose inductively that ai,...,a, in A and zy,...,2, in YV
have been chosen satisfying the following conditions:
ag ..o 8, =2 #0, k=1,...,n,
dim{ag...a1)(¥) =00, k=1,...,n,
ay...6, 70, k=1,...,n,
Q1T =0, k=1,...,n-1

Then let ©,41 € Y be such that z, = an...a12, and a,... 012,41 are
linearly independent, and let ¢ € A satisfy az, = 0 and aan ... 01Zp41 =
Tnt1-

We claim that dima(X) = co. Otherwise we argue as before to ob-
tain by41 € A satisfying dimby+1(X) = 1, b31 = b, byvsa(X) C Y,
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bp(X) C Y and byia(Z) = by, 1(Z) = 0. By Lemma 3 there exist
eny1 € A and zy41 € X such that the couple ({ex}f 7}, {z}751) contra-
dicts the maximality of ({cg}L,, {zx}i_,).

Since dim a(X) = oo there exists o’ € A such that a,11 = ¢’ satisfies
Ont1Gn - 01Tnt1 = Tpey F 0, @1...0nGny1 # 0 a0d ap1z, = 0. Again,
arguing as before, we see that dim{a,416y,...61)(Y) = co.

Thus we have constructed sequences {a,} and {z,} satisfying the re-
quirements of assertion 1 in the theorem. w

Curiously in a sufficiently nice analytic context all the sequence types
traced above become essentially type 1 sequences, which are the familiar
sequences used by Johnson and Sinclair,

Let {an} be a sequence of linear operators from a vector space X into
itself and {z,} a sequence in X. The couple {{a,}, {z,}) is said to be a
sliding humyp sequence pair if

al...an#o.

CorOLLARY 1.Let A be an associative algebra of continuous linear op-
erators acting irreducibly on an infinite-dimensional complex normed space
X. Assume that J is a linear subspace of BL(X) containing A and endowed
with a complete norm || - || making the inclusion J — BL(X) confinuous.
Then there exists a sliding hump sequence pair in J.

Op .. 0120 70, Qui1Gn...01%, =0,

Proof. First we note that the centralizer is C. For that we observe that
Lemma B.13 of [15] provides an algebra norm on the centralizer which must
equal C by the Gelfand-Mazur theorem.,

Now we apply the above theorem.

Assume that assertion 1 holds. Then it is obvious that the sliding hump
sequence pair is obtained.

Now suppose that assertion 2 holds. The series 3, 27%||by||~2b;, in A con-
verges absolutely with respect to the norm | - || and so we can define, for
every natural number n, an element a, in J by

&3
A = E 2‘k|lbkuwlbk.

k=n
We note that the above sum converges for the topology of the norm el
and hence also for the topology of the operator norm.

For every n, we take a nonzero x, in X with byz, = z,, and 80 byzn = 0

if m#n. Thus apmz, = 0if m > n and amz, = 27 b, || Yy, if m € n, 50
that, for every n,

O - - G15n = (277 by || ") 2y, # 0,

a1 nZy = (27" |bn ") 2n, andso ar...an #£0,

icm

Derivations on Jordan-Banach algebras 217

Qe 10m, .+ . @1y == 0,
and the required sliding hump sequence pair is obtained. m

COROLLARY 2. Let A be an associative algebra of continuous linear op-
erators acting irreducibly on an infinite-dimensional complez normed space
X endowed with a linear algebra involution =. Assume that J is o linear sub-
space of BL(X) containing the hermitian part of A, H(A, *), and endowed
with a complete norm || - || making the inclusion J — BL(X) continuous.
Then there emist sequences {a,} either in A or in J and {zn} in X such
that the couple ({an}, {%n}) is o sliding hump sequence pair,

Proof. As in the above corollary we note that the centralizer is C and
we apply Theorem 2.

Assume that assertion 1 holds. Then it is obvious that the sliding hump
sequence pair is obtained.

Now, assurne that assertion 2* holds. The series Y 27%||cy)~le; in
H(A, *) converges absclutely with respect to the norm |- || and so defines,
for every n, an element a,, in J by

an = Y 27F|lep | Lep.
k=n

The above sum converges for the topology of the norm || - || and hence also
for the operator-norm topology.
Now we define the sequence {z,} as {2z,}. Since cmz, == cmenzn = 0 if
m #n we have a2 = 0if m > n and apa, = 27 jen|ta, f m < n. It
is obvious that
n - 0120 = (27 cal ") 2 # 0,
Q1. ln #0,  Guy18n...01T, =0
and so the required sliding hump sequence pair is obtained. m
Continuity of derivations for either finite-dimensional or quadratic
Jordan~Banach algebras will be easily obtained in the next section but in
Section 5 we will need to build sliding hump sequences from these types
of algebras. For that we must collect a sufficiently large number of them.
Next we show how the existence of such objects can be obtained, using a
technique inspired by [19].
LemMa 4. Let P, Py, ..., P, be ideals of a Jordan algebra J satisfying:
1. J/P has a unit,
2P+ P =J fork=1,...,n

Then P+ ﬂ}:zl P =J.
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Proof Let m = max{k € {1,...,n}: P~|»~ﬂ;-”___1 P; = J} and suppose
that m < n. Let 1 € J be such that u -+ £ is the unit element for the algebra
J/P. Then there exist a1, a3 € P, by € (wy P and by € Py such that
u = a1 + by = ay + ba. Therefore

u+P=(a1+u-b1)+P=(a1+az'bl+52'51)+Pm52'51+P
Since by - by € ﬂk"; P, we have u, € P-I—ﬂerll:’,fc IfacJ, thena—a-ue P

anda-u€ P+ [\ Pe.Soa=(a~a w+a-u&P+ohl P and

therefore P + m“‘“ Py=J u
LEMMA 5. Let Py,..., P, be ideals of o Jordan algebroa J satisfying:

1. each algebra J/ Py has a unit,
2P-,,+PJ:J£f’L;éJ

Then the homomorphism a — (a+ Py,. ..,
s onto.

a+ Pn) from J into @) _, J/ Py

Proof. If n = 1 the result is clear. Assume it is true for some n and
let Py,..., Ppn, Poyy be ideals of J satisfying the above requirements. If
01,...,0n+1 € J then there exists b € J such that b+ P, = ag -+ Py for
k=1,...,n. By the above lemma, P, + ﬂ;m Py, = J and therefore there
exist b; € Fpyq and by € n:=1 P with b - apy1 = by + ba. The element
a="0—"by satisfies a + Py = ap+ P, for k=1,...,n+ 1 and this proves the
result. w

LeEMMA 6. Let J be o Jordan algebra and Py, . .., P, be poirwise different
primitive ideals of J which provide either finite-dimensional or quadratic
quotients. Then the homomorphism a — (a + Py,...,a + B,) from J into
By, J/ P is onto.

Proof. It is known that for both quotient types the corresponding quo-
tient algebra is simple and has a unit. Thus the ideals Py, ..., P, satisfy the
requirements of Lemma 5, which concludes the proof. w

THEOREM 3. Let J be o complex Jordan-Banach algebra and {P,} be
a sequence of pairwise different primitive ideals of J which provide either
finite-dimensional or quadratic quotients. Then there exists a sequence {an}
in J such that

an € Py form <m,

an + P, is invertible in J/P,,  form > n.

Proof. First we note that every element of the quotient algebras con-
sidered has finite spectrum.

For every natural k let 1; denote the unit of J/F;.
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Now we fix k and apply the above lemnma to obtain, for every j =k, k+
1,...,anelement b; € Jwithb;+P; = 0forj=1,...,j— —land b;+FP; = 1;.
We define ay = Y oo =k 2103 Where the A; are complex numbers deﬁned by
induction such that [|A;b;]| < 277 and, for § > k+1, TI70 M(B:4P)) + A5
is invertible in J/P;.

Clearly the sequence {a,} has the required properties. m

Finally, to activate the continuity power of all of these objects we require
the continuity principle stated by M. P. Thomas in [18] using the earlier ideas
by B. E. Johnson and A. M. Sinclair [9], K. B. Laursen [10] and X. Jiang [6].

'THEOREM 4. Let X be a Banach space, {S.} a sequence of continuous
linear operators from X into itself and {R,} be & sequence of continuous
linear operators whose domain is X but which may map into other Banach
spaces Vn. If F is a possibly discontinuous linear operator from X into itself
such that

Ry FSy ... 5y is continuous for m > n,

then

RoFS1...8, is continuous for sufficiently large n.

3. Derivations on primitive Jordan—Banach algebras. Recall that
we can measure the continuity of an operator F acting between Banach
spaces X and ) by considering the so-called separating subspace

S(F) = {y € Y : there exists z, — 0 in X with F(z,) — y}.

By the closed graph theorem it follows that F is continuous if, and only if,
S(F) = 0. Moreover, it is known (Lemma 1.3 of [17]) that, for any continuous
linear operator G with domain ) but which may map into another Banach
space 2,

S(GF) = G(S(F)),

and so the composition operator GF' is continuous if, and only if, G(S(F))
=0,

Remark 6. It is easy to check that the separating subspace for a
derivation on a Jordan-Banach algebra J is a (closed) ideal of J.

THEOREM 5. Let D be a derivation on a primitive complez Jordan—
Banach algebra J. Then D is continuous.

Proof. Case 1: J has finite dimension. In this case the continuity of
D obviously follows.

Case 2: J is the Jordan—Banach algebra of a continuous nondegenerate
symmetric bilinear form f on o complex Banach space X of dimension > 2.
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Let o € S(D). Then a = lim Do, + @,) for some sequences {c.} in C and
{zn} in X converging to zero. For every y € X we have

D((an +2n) - y) = Dlan + 2p) -y + (0n + z0) - D(y),
which converges to a - y, and on the other hand,
D{{on + zp) - ¥) = D(any + F(@n,¥)) = an DY) + f(@n, y)D(1) = anD(y),

which converges to zero. Thus a - X = 0 showing that a = 0 and so the
continuity of D follows.

Case 3: There exist an infinite-dimensional complex Banach space X
and an associative subalgebra A of BL(X) acting irreducibly on X such
that J is o Jordan subalgebra of BL(X) containing A as an ideal, and the
inelusion J — BL(X) is continuous. We apply Corollary 1 to obtain a
sliding hump sequence pair ({an}, {Z,}) in J and we define the sequence
{8,} of continuous linear operators on the Banach space J by S, = U,,.
Moreover, we define the sequence {R,} of linear operators from J into X
by R,(a) = a%,; these are all continuous because of the continuity of J —
BL(X).

For every m,n € N we have

R.DS51 .. . 8= RpyS1...8mD + Bnd(S1) .. 5m + ..
Since R,51...5m = 0 for m > n, we have
R.DS;...85n = Rpd(5) ... 5m + ...+ RpSy ... d(Sm)

if m > n, which is continuous. Thus we can apply Thecrem 4 to deduce
that also R, D81 ...8,, and so B.S1... 5,1, are continuous for sufficiently
large n, which shows that

A+ RSy d(Sh).

a1...0nS(D )y = 0

for sufficiently large n, where we have written y, for a, ... a12,.

We conclude the proof by proving that a;...enS{D)y, = 0 implies
8§(D) = 0 and so the continuity of D.

For every b € A and ¢ € (D) we have cbany1 + ans1be = {¢, b, anp1} =
2l(c+b) - an+1+ e (brapet) — (¢ any1) - b € 8(D) and so

0=a1...an{C,0, 0nr1}Un =01 ... AnCDBpg1Yn + @1 . .. AnGpi1beyn
=61 ... Anlnr10CYn.
Since @1 ...0n0n4+1 # 0 we have S(D)y, = 0 and so, for all b € A and
c e S(D),
0= (c-b)yn = bey, + cbyn = chyn.

Givenc € §(D) andz € X wetake b € A with by, = z and so cz = chy, = 0.
Hence ¢ = 0 showing that §(D) = 0 and our claim follows.
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Case 4: There exist an infinite-dimensional compler Banach space X
and an associgtive subalgebra B of BL(X) endowed with a linear algebra
involution * such that J is a Jordan subalgebra of B contained in H{B, *),
the inclusion J — BL(X) is continuous, and the associative subalgebra A
of B generated by Is(J) acts irreducibly on X. Now we apply Corollary 2
to obtain sequences {a,} either in A or in J and {z,} in X such that the
couple ({@n},{zn}) is a sliding hump sequence pair.

First assume that {an} lies in A. We define the sequence {S,} of linear
operators from J into itself by

8n(b) = a}bay;

by Lemma 1, these all lie in the multiplication algebra of J and so are
continuous. Also, we define the sequence {R,,} of continuous linear operators
from J into X by R,(a) = az,.

For every m,n € N we have

RoDS1...Sm =RnS1...5mD + Rad(S1) ... S + ... + RSy ... d(Sm),

which equals R,d(51)...Sm+...+ RnS1...d(Sn) if m > n, since R,S; . ..

..8n = 0. Thus R,DS;... 5, is continuous if m > n and so we can
apply Theorem 4 to deduce that also R,DS; ...Sy, and so R,Sy...5,D,
are continuous for sufficiently large n, which shows that

ar ... onS(Dy, =0

for sufficiently large n, where we have written y,, for a, ... a12Zy,.

We conclude the proof by proving that af...a%S(D)y. = 0 implies
8(D)=0.

For every a € A, we recall that the map b — (0*@n41)*d -+ b{0*anp1),
acting on J, lies in the multiplication algebra of J (Lemma 1) and so
Gy y10b + ba*aniy € S(D) for every b & §(D). Therefore, for every o € A
and b € S(D),

0=aj...ap(an18b + b0 ny1)ye = 0 ... apay10byy,

which shows that S(D)y, =0, since a} ...a%a)  ; # 0.

Now (by Lemma 1) for every a € 4, the map b ~ a*b + ba, acting on J,
lies in M{J) and so, for every b € §(D), a*b+ ba lies in §(D). This implies
that

0 = (a*b + ba)y, = bayn,
which shows that S(D) = 0.

Now assume thet {on} lies in J. We define continucus linear operators
Sy, from J into itself by S, == U,,, and a continuous linear operator R,
from J into X by Rp(a) = azn.
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It is straightforward to show that ai...2,8(D)yn = 0 for sufficiently
large n, where a, ...a12, = Yy, and again we conclude by proving that
ai ...anS(D)y, = 0 implies S(D) = 0.

Recall that, for every a € A, the map b — a*bayy1+anr1ba, acting on J,
lies in the multiplication algebra of J {(Lemma 1} and 80 a*bap.1 + ap41ba €
S{D) for every b € §(D). Hence

0=o01...00(a"ban+1 + Gny100)Yn = a1 ... Gnanr1bayy,

which shows that a1 ... apan+18(D) = 0.
For every a € A and b € 8(D), a*b + ba lies in §(D) and so

O=ay... an+1(ab + ba*) = q.. .a,M_lab.

Therefore §(D) = 0, since a1 . .. tpy1 7# 0.
From Theorem 1 and Remark 5 it follows that one of the above cases
holds for J and so the continuity of I always holds. m

4. Invariance of primitive ideals. Sinclair [16] proved that continuous
Jordan derivations on Banach algebras leave invariant the primitive ideals
in the algebra. From this he showed that continuous Jordan derivations on
semimisimple Banach algebras are in fact (associative) derivations.

The aim of this section is to show that, for a derivation on a Jordan—
Banach algebra, there exists a deep connection between its continuity prop-
erties and the invariance of primitive ideals.

We start by observing that Lemma 1.1 of [18] remains true in the Jordan-
Banach context.

LEMMA 7 [18]. Let D be a derivation on o Jordan—Banach algebra J and
P any closed ideal of J such that wp D™ is continuous for all natural n. Then
there exists a positive constant C such that

lwp D™ < C™  for alln € N.

THEOREM 6. Let D be a dertvation on a complex Jordan—Banach algebra
J and P a primitive ideal of J. Then D leaves P inwariant if, and only if,
the operators mp D™ are continuous for all n € N,

Proof. For the necessity we observe that D drops to a derivation Dp of
the primitive Jordan—Banach algebra J/P which must be continuous from
Theorem 5. So 7p D™ = (Dp)"np is continuous for all n € N,

Suppose conversely that the operators 7p D™ are continuous for alln & N,
We first recall that P is a closed ideal of J and so the above lemrma implies
that {|jmp D™ < C" for all n € N,

Now we note that, for every a € P and every n,

D™(a™) 4+ P = nY(Da)" + P.

icm

Derivations on Jorden-Banach algebras 223

Therefore
[(Da+ PY"[|*™ = nt=/™||(mp D™)(a™) |/
< n!~1/n”7TPDnHl/n”an”1/n < n!_llnCHanHl/n,

which converges to zero. Thus (D(P) + P)/P is an ideal of the primitive
Jordan—Banach algebra J/P whose elements are all quasi-invertible and so
(D(P) + P)/P is contained in the radical of J/P which equals zero. Hence
D(P)YCP. w

From the above theorem obviously follows the following invariance prop-
erty for continuous derivations, which provides, by invoking Remark 4, an
extension to the Jordan-Banach context of the Sinclair theorem.

COROLLARY 3. Euvery continuous derivation on o complexr Jordan—
Banach algebra leaves invariant the primitive ideals in the algebra.

THEOREM 7. Let D be a (possibly discontinuous) derivation on a complez
Jordan-—Banach algebra J. Then D leaves invariant every primitive ideal of
J except a finite set of them which must provide necessarily either finite-
dimensional or quadratic quotients.

Proof. We first note that, by invoking Theorem 6, it suffices to show
that the operators wpD* are continuous for all k € N.
We divide the proof in several steps.

CramM. The set of those primitive ideals P of J providing either finite-
dimensional or quadratic guotients and satisfying D(P) ¢ P must be finite.

If the above claim fails, then we find a sequence {P,} of pairwise different
primitive ideals in J, which provide either finite-dimensional or quadratic
quotients, such that for every n € N, mp, D*» must be discontinuous for
some natural number k,,. Furthermore, we can choose k, such that wp, D¥
is discontinuous if k& = k,, but continuous if k < k.

Now we consider the sliding hump sequence {a,} obtained in Theorem 3
and we define the sequences {S,} and {R,} of continuous linear operators
by

Sn = Uana
For every m,n € N we have

R,DSy...8 =mnp D¥U,, ... U,

R, = wp DF1

™m

k
S .
=‘7TP,,Z———. —d™ I ( Uy, ... Us,, ) DY
=t Jl(kn — 3)!
kn
kn! b — i i
= Zm[d " (Ual "'Uam)]PnWPnD
Hkn !

J=0
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kn—1
_ dkn— f
2 : k Tyl i (Uay - Ua )P 7p, D

+ U‘.‘rPn(Cu) e UT[‘Pﬂ(am)TrPnDkn'l

which coincides with the continuous linear operator
kn—1
k! - )
b T(k—_“)—[d "I (U, - Us, 2w, D
j=o I T
for m > n, since wp, (@) = 0.
Applying Theorem 4 we obtain the contintiity of

Ur
for sufficiently large n. Since the operators Ury (4,3, .-+ Unp_(a,) 81€ invert-

ible we conclude that 7p D" is continuous for sufficiently large n, contra-
dicting the definition of k.

puan) - Uy () TP, DF

Cram, If P i3 o primstive ideal of J for which there exist an infinite-
dimensional compler Banach spoce X and an associctive subalgebra A of
BL(X) acting irreducibly on X such that J/P is a Jordan subalgebra of
BL(X) containing A as an ideal, and the inclusion J/P — BL(X) is con-
tinuous, then D(P) C P.

If this claim fails we can define
k' = max{k ¢ NU {0} : 7pD¥ is continuous}.

First we show that S(mpD¥ 1) 4s an ideal of J/P. Let a € J with
a+ P g S(mpD*¥+1) and b € J. Then there exists a sequence {a,} in J
such that ¢ + P = lim7p.D¥ *1qa,,. Now we note that

k41
k41 - ('I‘"" + 1) _
mpD® T ay, b)_:’zoj(k’-l-l )
which converges to (a+ P) - (b+ P) and so (a+ P) - (b+ P) € S(mp.DF+1)
as desired.

Now we apply Corollary 1 to obtain sequences {a,} in J/P and {z,} in

X such that the couple ({an}, {®,}) is a sliding hump sequence pair.
For every n we choose b, in J with mp(b,) = a, and we define the

continuous linear operators S, from J into itself by Sy, = [, and the
continuous linear operators R, from J into X by

Rn(a) = [rpD¥ ()2,

For every m,n e N and a € J, we have

Dkr""l“j(a,n) - wpDI(b),
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(RnDsl e Sm)(a')
= [rp D¥ (T, - .. Vs, ) 0]

B4
(k' -+ 1)! / .
TP Z A+ 1= A (U, me)DJ(G)Jmn

k.’
(k" + 1)1 - .
= LT @ W Bi)eme D! e,
+ Way - . . Uy mp DF 2 (a) 2,
which coincides with

kl 7
2 ﬁ%“d’“’“‘% . Uy ))prp D (a)]n
F=0

for m > n. Since all the operators
a [(d¥ POy, Uy, ) prp DY (a)]2n
are continuous for § = 1,..., %' we conclude, by applying Theorem 4, that
the operator
o Uy, ... Us wpD* T (a)]z
is continuous for sufficiently large n. So we have
ey . anS(TrpDk’“)an L1z, =0

for sufficiently large n. Since S(mpD**+!) is an ideal in J/P, the above
equality shows that S (WP.Dk =90 by arguing as in the similar step of
the proof of Theorem 5. Therefore 7p DF 1 is continuous, contradicting the
definition of &'.

Crama. If P is a primitive ideal of J for which there exist an infinite-
dimensional complex Banach space X and an associative subalgebra B of
BL(X) endowed with a linear algebra involution *, such that J/P is o Jor-
dan subalgebra of B contained in H(B,«), the inclusion J/P — BL(X)
is continuous, and the associative subalgebra A of B generated by Is(J/P)
acts irreducibly on X, then D(P) C P.

If this claim fails we can define
k' = max{k € NU{0} : 7 D¥ is continuous}.

First we note that, as in the above step, S(wpD* 1) is an ideal of J /P.
Now we apply Corollary 2 to obtain sequences {a,} either in A or in J/P
and {z,} in X such that the couple ({an}, {zn}) is a sliding hump sequence
pair.
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First assume that {a,} lies in A. For every n, we consider the operator
T, defined in Lemma 1, which lies in M (J/P) and so there exists a sequence
{8.} in M(J) with 7pS, = T,,mp. Also we define the sequence {R,} of
continuous linear operators from J into X by R, (a) = [rpD¥ (a))2y,.

For every m,n € N and ¢ € J we have

(RuDSy...8m)(a) = (xpD*¥ 25, ... S,n)(a)z,

K41 , , ' |
j=0
k' 7
712l S S D),
> 7 .

+ [Ty, ... Ty, wp D 1 (a)] 2y,

which coincides with
kl’
(k" -+ 1) k41— ;
jgo W[(d (S]_ e Sm))Pﬂ'pD (ﬂ)].’b‘n
for m > n. So we can apply Theorem 4 to cbtain the continuity of the
operator
a [Thy ... To, 7p DF 1{a)|2,
for sufficiently large n. Hence
ay-.. a:b(S'('frpDk""l)an e 1Ty =0

for sufficiently large n, which shows that S(mpD* 1) = 0 by arguing as
in the corresponding step of the proof of Theorem 5. Therefore mpD¥ 1 s
continuous, contradicting the definition of &'.

Finally, suppose that {a,} lies in J/P. For every n € N we choose
bo € J with #p(bs) = a, and we define the operators S, in M(J) by
Sy = Up,. Also we define continuocus linear operators from J into X by
Ra(a) = [1pD¥ (0)]2,. For every m,n € N and a € J we have

(RaDSy ... 8:)(a) = [xpD¥ (U, ... Uy, Va]mn

k41
CEX P ,
= el M (TR, L U, YD .
[WP _7'—20 JHE +1—5)! (U, b} (a) |2
kf
. (B 4+ D g j
- J.;Dj!(k’+1—j)1[(d (Uby - - Uy, ) ) prp D (a)]n

+[Uay - Uapwp D¥ 71 ()],
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which coincides with
kl’
(k' + 1)1 1 ,
§ A1l @ T W T ) pme D a)a
for m > n. So we can apply Theorem 4 to obtain the continuity of the
operator
a s Uy, ... Up.wp D P1{a)]z,,
for sufficiently large n. Hence

?
a1--.a,S(mpDF ey, .. a3, =0

for sufficiently large n, which shows that S(mpD*+1) = 0 by arguing as in
the similar step of the proof of Theorem 5. This implies that mpD¥+1 ig
continuous, contradicting the definition of &',

From Theorem 1 and Remark 5 it follows that any primitive ideal must
fall in one of the above situations and so the proof ends. =

5. Continuity theorem. For a semisimple Jordan-Banach algebra The-
orem 7 provides a sufficiently large quantity of invariant primitive ideals to
solve our continuity problem.

LeMmMa 8. Let D be a derivation on o Jordan algebra Jand Py, ..., P,, Q
be tdeals of J satisfying:

1. A,...,P, are prime.
2.D(P) ¢ P fork=1,...,n.

FPN...P,NQ =0, then @ =0.

Proof. If n = 1, then Ug[D(P) + P,] = 0 C P. Since D(P) + P, is
an ideal of J satisfying D(Py) + P; ¢ Pi, the primeness of P, implies that
() is contained in P, and so @ = 0.

Assume the result is true for some n and let Py,..., Py, Poy1,@ be
ideals of J satisfying the above requirements. The ideals Poy; and Q' =
P 0.0 PN Q satisfy the requirements of the lemma and so Q' = 0. By
the induction assumption it follows that Q@ = 0. m

From the above lemma and Theorem 7 we deduce our main theorem.

THEOREM 8. Buery derivation on a semisimple complez Jordan-Banach
algebra is continuous.

Proof. Let D be a derivation on a semisimple complex Jordan-Banach
algebra J. Then D(P) ¢ P for all primitive ideals P of J except possibly
finitely many exceptional primitive ideals Py,..., P,. Now let Q be the in-
tersection of all the invariant primitive ideals in J. The ideals P,..., P,
and (} satisfy the requirements of the above lemma and so Q = 0.
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From. Theorem 6 it follows that S{D) is contained in every invariant
primitive ideal and hence S(D) C @ = 0. Therefore D is continuous. m

Since every derivation on a Banach algebra A obviously provides a deriva-
tion on the Jordan-Banach symmetrized algebra A, by invoking Remark 3,
the classical Johnson—Sinclair theorem follows.

COROLLARY 4. Fvery derivation on a semisimple complex Banach alge-
bra is continuous.
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