Two-parameter Hardy–Littlewood inequalities

by

FERENC WEISZ (Budapest)

Abstract. The inequality
\[(*) \quad \left(\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} |nm|^{-2} \left| \hat{f}(n,m) \right|^p \right)^{1/p} \leq C_p \| f \|_{H_p} \quad (0 < p \leq 2) \]
is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space \(H_p \) on the bidisc. The inequality \((*)\) is extended to each \(p \) if the Fourier coefficients are monotone. For monotone coefficients and for every \(p \), the supremum of the partial sums of the Fourier series is in \(L_p \) whenever the left hand side of \((*)\) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from \(H_1 \) converges a.e. and also in \(L_1 \) norm to that function.

In this paper we show all the results of [17] for two-parameter trigonometric-Fourier series of distributions. The Hardy space \(H_p(\mathbb{T} \times \mathbb{T}) = H_p \) of distributions is introduced with the \(L_p \) norm of the two-dimensional nontangential maximal function. Using the atomic decomposition of \(H_p \) we can formulate a new version of Fefferman’s ([7]) theorem: if a sublinear operator \(T \) is bounded on \(L_2 \) and if there exists \(\delta > 0 \) such that for every rectangle \(p \)-atom \(a \) and for every \(r \geq 1 \) the integral of \(|Ta|^p \) over \((R^\delta)^c \) is less than \(C_p 2^{-r} \), where the dyadic rectangle \(R \) is the support of \(a \) and \(R^\delta \) is the \(2^\delta \)-fold dilation of \(R \), then \(T \) is also bounded from \(H_p \) to \(L_p \) \((0 < p \leq 1)\).

That is to say, to show \((*)\) we only have to consider the left hand side of \((*)\) for rectangle \(p \)-atoms. We also give the dual inequalities of \((*)\). Note that

1981 Mathematics Subject Classification: Primary 42B99; Secondary 42B30.

Key words and phrases: Hardy spaces, rectangle \(p \)-atom, atomic decomposition, Hardy–Littlewood inequalities.

This research was supported by the Hungarian Scientific Research Funds No F4189.
a continuous version of (**) was proved by methods of complex analysis and by interpolation in Jawerth and Torchinsky [12].

Using some inequalities of D’yachkono [3] we extend (**) to every $p > 2$ provided that the Fourier coefficients are monotone. Under this condition a converse-type inequality is also true: the L_p norm of the supremum of the absolute values of the partial sums of f can be estimated by the left side of (**) $(0 < p < \infty)$. For two-dimensional sine and cosine series this result was obtained by Móricz [14]. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary H_1 or L_p function $(p > 1)$ converges a.e. and also in L_p norm to that function.

2. The space H_p. For a set $X \neq 0$ let $X^2 = X \times X$; moreover, let $T := [0, 2\pi)$ and λ be the Lebesgue measure. We also use the notation $|I|$ for the Lebesgue measure of the set I. We briefly write L_p or $L_p(T^2)$ for the real $L_p(T^2, \lambda)$ space with the norm (or quasinorm) $\|f\|_p := (\int_T |f|^p \, d\lambda)^{1/p} (0 < p \leq \infty)$.

Let f be a distribution on $C^\infty(T^2)$. The (n,m)th trigonometric-Fourier coefficient is defined by $\hat{f}(n,m) := f(e^{-inx}e^{-my})$, where $i = \sqrt{-1}$. In the special case where f is an integrable function,

$$\hat{f}(n,m) = \left(\frac{1}{2\pi}\right)^2 \int_{T \times T} f(x,y)e^{-inx}e^{-my} \, dx \, dy.$$

For simplicity, we assume that $\hat{f}(n,0) = \hat{f}(0,n) = 0$ $(n \in \mathbb{N})$. If f is a distribution and $z_1 := re^{ix}, z_2 := se^{iy} (0 < r, s < 1)$ then let

$$u(z_1, z_2) = u(re^{ix}, se^{iy}) := (f \ast P_r \ast P_s)(x,y),$$

where \ast denotes convolution and

$$P_r(x) := \sum_{k=-\infty}^{\infty} r^{|k|} e^{ikx} = \frac{1 - r^2}{1 + r^2 - 2r \cos x} \quad (x \in T)$$

is the Poisson kernel. It is easy to show that $u(z_1, z_2)$ is a biharmonic function on the bidisc

$$u(re^{ix}, se^{iy}) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \hat{f}(k,l)r^{|k|} s^{|l|} e^{ikx} e^{ily}$$

with absolute and uniform convergence (see e.g. Gundy and Stein [10] and Edwards [5]).

Let $0 < \alpha < 1$. We denote by $\Omega_\alpha(x) (x \in T)$ the region bounded by the two tangents to the circle $|z| = \alpha$ drawn from e^{ix} and the longer arc of the circle included between the points of tangency. The non-tangential maximal function is defined by

$$u_{\alpha,\beta}^*(x,y) := \sup_{z_1 \in \Omega_\alpha(x)} \sup_{z_2 \in \Omega_\beta(y)} |u(z_1, z_2)| (0 < \alpha, \beta < 1).$$

For $0 < p \leq \infty$ the Hardy space $H_p(T \times T) = H_p$ consists of all distributions f for which $u_{\alpha,\beta}^* \in L_p$. Set

$$\|f\|_{H_p} := \|u_{1/2,1/2}^*\|_p,$$

It is known that if $f \in H_p (0 < p < \infty)$ then $f(x,y) = \lim_{r,s \to 1} u(re^{ix}, se^{iy})$ in the sense of distributions (see Gundy and Stein [10]).

The equivalences $\|u_{\alpha,\beta}^*\|_p \sim \|u_{1/2,1/2}^*\|_p (0 < p < \infty)$ and $H_p \sim L_p (1 < p < \infty)$ were proved in Fefferman and Stein [6] and Gundy and Stein [10] for $0 < \alpha, \beta < 1$. For other equivalent definitions we refer to Gundy and Stein [10], Gundy [9] and Chang and Fefferman [1].

Let us introduce the concept of the rectangle p-atoms. A function $a \in L_2$ is called a rectangle p-atom if there exists a rectangle $R \subset T^2$ such that

(a) $\sup \{a \in R\},$

$(b) \|a\|_p \leq \mathcal{R}^{1-1-1/p},$

$(c) \int_R a(x,y)x^mdx = \int_R a(x,y)y^mdy = 0$ for all $x,y \in T$ and all $M \leq [2/p - 3/2]$, the integer part of $2/p - 3/2$.

By a dyadic interval we mean one of the form $[k2^{-n}, (k+1)2^{-n})$. For each dyadic interval I let $I^* (r \in \mathbb{N})$ be the dyadic interval for which $I \subset I^*$ and $|I^*| = 2|I|$. If $R := I \times J$ is a dyadic rectangle then set $R^* := I^* \times J^*.$

Let Ω be an arbitrary set and A be a σ-algebra on it. For each dyadic interval I we define $\hat{I} \in \Omega$ such that $I \subset \hat{I}$ implies $I \subset \hat{I}$. For a dyadic rectangle $R = I \times J$ let $\hat{R} := \hat{I} \times \hat{J}$. If $F \subset T^2$ is open then set

$$\hat{F} = \bigcup_{R \subset F \subset T^2} \hat{R}.$$

It is clear that, for open sets, $F_1 \subset F_2$ implies $\hat{F}_1 \subset \hat{F}_2$. We consider the measure space $(T^2, \sigma(\mathcal{A} \times \mathcal{A}), \eta)$ and the corresponding real $L_p(\Omega^2) := L_p(\Omega^2, \sigma(\mathcal{A} \times \mathcal{A}), \eta)$ space.

Although H_p cannot be decomposed into rectangle p-atoms (see Chang and Fefferman [1]), the following theorem, which is a new version of Fefferman’s theorem [7], holds.

Theorem 1. Suppose that $0 < p < 1$ and the operator T, which maps the set of distributions into the collection of $\sigma(\mathcal{A} \times \mathcal{A})$-measurable functions, is sublinear. Furthermore, assume that

$$\eta(\hat{F}) \leq C|F| \quad \text{for all } F \subset T^2 \text{ open}$$
and there exists $\delta > 0$ such that for every rectangle p-atom a supported on the dyadic rectangle R and for every $r \in \mathbb{N}$ one has

$$
\int_{R \setminus FR} |Ta|^p \, d\eta \leq C_p^{2-r} \delta^r,
$$

where C_p is a constant depending only on p. If T is bounded from $L_2(\mathbb{T}^2)$ to $L_2(\mathbb{T}^2)$ then

$$
\|Tf\|_{L_p(\mathbb{T}^2)} \leq C_p \|f\|_{L_p^p} \quad (f \in H_p).
$$

We omit the proof because it is similar to that of Fefferman's theorem (see [7]).

3. Hardy–Littlewood inequalities. Applying Theorem 1 we show our main result.

Theorem 2. For every distribution $f \in H_p$,

$$
\left(\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} \frac{|\tilde{f}(n, m)|^p}{|nm|^{2-p}} \right)^{1/p} \leq C_p \|f\|_{H_p} \quad (0 < p \leq 2).
$$

Proof. Suppose that $0 < p \leq 1$. Denote by \mathbb{Z} the set of integers and let $\Omega := \mathbb{Z} \setminus \{0\}$. Let us introduce on \mathbb{Z}^2_0 the measure $\eta(n, m) = 1/(n^2m^2$).

If

$$
Tf(n, m) = nmf(n, m) \quad (n, m \in \mathbb{Z}_0)
$$

then it follows by Parseval's formula that T is bounded from $L_2(\mathbb{T}^2)$ to $L_2(\mathbb{T}^2)$.

For a dyadic interval I let \tilde{I} be the set $\{k \in \mathbb{Z}_0 : |k| > |I|^{-1}\}$. Obviously, $I \subset J$ implies $\tilde{I} \subset \tilde{J}$. The condition (1) was proved by the author in [17]. Hence we only have to check the inequality (2).

We can suppose that for the dyadic rectangle $R = I \times J$, the support of the rectangle p-atom a, we have $I = [0,2^{-K})$ and $J = [0,2^{-L})$ ($K, L \in \mathbb{N}$). Then $I^* = [0,2^{-K+r})$ and $J^* = [0,2^{-L+r})$. Since

$$
\mathbb{Z}^2_0 \setminus FR = \left\{(Z_0 \setminus F) \times F \right\} \cup \left\{(Z_0 \setminus F) \times (Z_0 \setminus F) \right\} \cup \left\{(F \times (Z_0 \setminus F) \right\},
$$

in the proof of (2) we integrate over these three sets. First we integrate over $(Z_0 \setminus F) \times F$ to obtain

$$
\int_{(Z_0 \setminus F) \times F} |Ta|^p \, d\eta = \sum_{|n|=1}^{\infty} \sum_{|m|=2^{-r}+1}^{\infty} \frac{|\tilde{a}(n, m)|^p}{|nm|^{2-p}}.
$$

By (3),

$$
|\tilde{a}(n, m)|^p \leq \left(\frac{1}{2\pi} \right)^2 \int_0^1 \int_0^1 a(x, y) e^{-inx} e^{-imy} \, dx \, dy
$$

$$
= \left(\frac{1}{2\pi} \right)^2 \int_0^1 \int_0^1 a(x, y) \left(e^{-inx} - \sum_{j=0}^{N} \frac{(-inx)^j}{j!} \right) e^{-imy} \, dx \, dy
$$

$$
\leq C \int_0^1 \int_0^1 \sum_{j=0}^{N} \frac{(-inx)^j}{j!} \cdot \left| \int_0^1 a(x, y) e^{-imy} \, dy \right| \, dx
$$

$$
\leq C \left(\frac{|nx|^{N+1}}{(N+1)!} \right) \int_0^1 a(x, y) e^{-imy} \, dy \, dx,
$$

where $N = [2/p - 3/2]$. Therefore

$$
|\tilde{a}(n, m)|^p \leq C_p |n|^{(N+1)p+2} |e^{-imy} dx| ^p.
$$

Since $N + 2p - 1 > 0$, we have

$$
\sum_{|n|=1}^{2^{-K-r}} |n|^{(N+1)p+2} \leq C_p 2^{(K-r)(Np+2p-1)}.
$$

Consequently, by Hölder's inequality,

$$
\int_{(Z_0 \setminus F) \times F} |Ta|^p \, d\eta
$$

$$
\leq C_p 2^{-r(Np+2p-1)2^{(K-r)(p-1)} \sum_{|m|=2^{-r}+1}^{\infty} \left| \int_0^1 \int_0^1 a(x, y) e^{-imy} \, dy \, dx \right|^p}
$$

$$
\leq C_p 2^{-r(Np+2p-1)2^{(K-r)(p-1)} \left(\sum_{|m|=2^{-r}+1}^{\infty} \frac{1}{m^2} \right)^{1-p/2}}
$$

$$
\times \left[\left(\sum_{|m|=2^{-r}+1}^{\infty} \left(\int_0^1 \int_0^1 a(x, y) e^{-imy} \, dy \, dx \right)^2 \right)^{p/2} \right].
$$

It is easy to check that

$$
\left(\sum_{|m|=2^{-r}+1}^{\infty} \frac{1}{m^2} \right)^{1-p/2} \leq C_p 2^{(-L+r)(1-p/2)}.
$$

On the other hand, by Hölder’s and Parseval’s inequalities and by (β) we obtain
\[
\left[\sum_{|m|=2L-r+1}^{\infty} \left(\frac{1}{I} \int \int a(x, y)e^{-i(mx)} \, dy \, dx \right)^2 \right]^{p/2} \\
\leq \left[\sum_{I} |I| \sum_{|m|=1}^{\infty} \left(\frac{1}{I} \int \int |a(x, y)e^{-i(mx)}| \, dy \, dx \right)^2 \right]^{p/2} \\
\leq 2^{-Kp/2} \left[\sum_{I} \int \int |a(x, y)|^2 \, dy \, dx \right]^{p/2} \leq 2^{K(1-p)+L(1-p)/2}.
\]
This yields
\[
\int (Z_0 \setminus T) \frac{d\eta}{T} \leq C_p 2^{-r(Np+5p/2-2)}.
\]
Observe that \(\delta := Np + 5p/2 - 2 > 0. \)

Next, we integrate over \((Z_0 \setminus T) \times (Z_0 \setminus \overline{T}) \):
\[
\int (Z_0 \setminus T) \frac{d\eta}{T} = \sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} \frac{\hat{a}(n, m)|p|}{nm\bar{2}^{2-p}}.
\]
Again by (γ),
\[
|\hat{a}(n, m)| = \left| \frac{1}{(2\pi)^2} \int \int a(x, y) \left(e^{-i\pi x} - \sum_{j=0}^{N} \frac{(-i\pi x)^j}{j!} \right) \times \left(e^{-i\pi y} - \sum_{k=0}^{N} \frac{(-i\pi y)^k}{k!} \right) \, dx \, dy \right|
\leq C |n|^{N+1} |J|^{N+1} |m|^{N+1} |J|^{N+1} \int \int |a(x, y)| \, dx \, dy
\leq C |n|^{N+1} |m|^{N+1} 2^{-K(N+3/2)2-\frac{L(N+3/2)}{2}} \left(\int \int |a(x, y)|^2 \, dx \, dy \right)^{1/2}.
\]
Applying the definition of the rectangle atom we have
\[
|\hat{a}(n, m)| \leq C_p |n|^{N+1} |m|^{(N+1)p-2-\frac{L(N+3/2)}{2}}.
\]
Using (3) we conclude that
\[
\int (Z_0 \setminus T) \frac{d\eta}{T} \leq C_p 2^{-2r(Np+5p/2-1)}.
\]
Since the integral over \(T \times (Z_0 \setminus T) \) is analogous to the first case, we have proved condition (2) as well as Theorem 2 for \(0 < p \leq 1 \).

Thus \(T \) is bounded from \(H_1 \) to \(L_1(Z_0^2) \). Since \(T \) is also bounded from \(L_2(T^2) \) to \(L_2(Z_0^2) \), by a theorem of Chang and Fefferman [1] or Lin [13], we know that \(T \) is bounded from \(L_2(T^2) \) to \(L_2(Z_0^2) \) \(1 < p \leq 2 \). This completes the proof of Theorem 2.

Note that the continuous version of (∗), due to Jawerth and Torchinsky [12], can be proved in the same way. For the two-parameter Walsh and Vilenkin system, (∗) was proved by the author [17]. Other Hardy–Littlewood inequalities for the two-parameter Walsh and trigonometric system can be found in Weisz [19].

The dual of \(H_1 \) is characterized in Chang and Fefferman [1] and is denoted by BMO. By the usual duality argument (cf. Weisz [19], Theorem 4) we can verify

Corollary 1. If \(|nm| \cdot |a_{n, m}| \) \((n, m \in Z_0) \) are uniformly bounded real numbers then
\[
\left\| \sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} a_{n, m} e^{inx} e^{imy} \right\|_{BMO} \leq C \sup_{n, m \in Z_0} |nm| \cdot |a_{n, m}|.
\]

Again by the duality argument we derive (cf. Weisz [18], Theorem 6.10)

Corollary 2. If \(2 \leq q < \infty \) and \((a_{n, m}; n, m \in Z_0) \) is a sequence of complex numbers such that
\[
\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} \frac{|a_{n, m}|^q}{|nm|^{2-q}} < \infty
\]
then
\[
\left\| \sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} a_{n, m} e^{inx} e^{imy} \right\|_q \leq C_q \left(\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} \frac{|a_{n, m}|^q}{|nm|^{2-q}} \right)^{1/q}.
\]

4. Hardy–Littlewood inequalities for monotone coefficients. In this section we consider only those distributions for which
\[
f(n, m) \rightarrow 0 \quad \text{as} \quad |n|, |m| \rightarrow \infty,
\]
and
\[
R(f(\mu, \nu m) - f(\mu(n + 1), \nu m)) = 0 \quad \text{and} \quad \Theta(f(\mu, \nu m) - f(\mu(n + 1), \nu m)) = 0,
\]
where
\[
\begin{align*}
\mu(n + 1) = \mu(n + 1) \quad \text{and} \quad \nu(n + 1) = \nu(n + 1) \quad \text{for} \quad n \in \mathbb{Z}.
\end{align*}
\]
where \(n, m \in \mathbb{N}, \mu = \pm 1, \nu = \pm 1 \) and \(\Re b \) and \(\Im b \) denote the real and the imaginary part of a complex number \(b \), respectively. It follows immediately from (4) and (5) that the sequences \((\Re \hat{f}(n, m)), (\Im \hat{f}(n, m)) \) and \(((\hat{f}(n, m))) \) are non-negative and decreasing. Since \(H_p \sim L_p \) for all \(1 < p < \infty \), the following result extends Theorem 2 to every \(p > 2 \).

Theorem 3. Under condition (5) suppose that \(f \in L_p \). Then
\[
\left(\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} \left| \hat{f}(n, m) \right|^p \right)^{1/p} \leq C_p \| f \|_p \quad (1 < p < \infty).
\]

Proof. Let
\[
f = \sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} \hat{f}(n, m) e^{i\pi x} e^{i\pi m y} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} + \sum_{n=1}^{\infty} \sum_{m=-\infty}^{-1} + \sum_{n=-\infty}^{-1} \sum_{m=1}^{\infty} - \sum_{n=-\infty}^{-1} \sum_{m=-\infty}^{-1}
= f_1 + f_2 + f_3 + f_4.
\]

Combining the proofs of Lemma 2 of D’yachenko [3] and Theorem 6.12 of Weisz [18], one can show the following result: if
\[
g(x, y) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n, m} \sin nx \sin my \in L_p \quad (1 < p < \infty)
\]

with coefficients \((b_{n, m}; n, m \in \mathbb{N}) \) satisfying (5), then
\[
|b_{n, m}| \leq C|G(\pi/n, \pi/m)| \quad (n, m \geq 1),
\]

where
\[
G(x, y) := \frac{\pi}{0} \frac{g(t, u) \, dt \, du}{0 0}
\]

Using this, we can prove similarly to Theorem 1 of D’yachenko [3] that
\[
\left(\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} \left| \hat{f}(n, m) \right|^p \right)^{1/p} \leq C_p \| f_1 \|_p \quad (1 < p < \infty).
\]

The corresponding inequalities for \(f_2, f_3 \) and \(f_4 \) can be obtained in the same way. Since
\[
\| f_1 \|_p \sim \| f_2 \|_p \sim \| f_3 \|_p \sim \| f_4 \|_p \sim \| f \|_p
\]
(see Gundy [9]), the proof of the theorem is complete.

Note that this result for double sine and cosine series was shown by Móricz [14].

Denote by \(s_{n,m}f \) the \((n,m)\)th partial sum of the Fourier series of a distribution \(f \), i.e.
\[
s_{n,m}f(x, y) := \sum_{k=-n}^{n} \sum_{l=-m}^{m} \hat{f}(k, l) e^{i\pi kx} e^{i\pi ly}.
\]

The following converse-type inequality can be proved as Theorem 6.13 of Weisz [18].

Theorem 4. Under conditions (4) and (5),
\[
\sup_{n,m \in \mathbb{N}} \| s_{n,m}f \|_p \leq C_p \left(\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty} \left| \hat{f}(n, m) \right|^p \right)^{1/p} \quad (0 < p < \infty).
\]

For \(p \geq 1 \) and for double sine and cosine series this theorem can be found in Móricz [14, 15].

Combining Theorems 2, 3 and 4 we obtain
\[
\sup_{n,m \in \mathbb{N}} \| s_{n,m}f \|_p \leq C_p \| f \|_{H_p} \quad (0 < p < \infty).
\]

Since the trigonometric polynomials are dense in \(H_p \), (6) and the usual density argument imply the following generalization of Carleson’s theorem.

Corollary 3. If \(f \in L_p \) \((p > 1)\) or \(f \in H_1 \) such that (5) is satisfied then \(s_{n,m}f \to f \) a.e. and also in \(L_p \) norm \((p \geq 1)\) as \(n, m \to \infty \).

The corresponding theorem for double Walsh and Vilenkin series can be found in Weisz [17].

References

A characterization of probability measures by f-moments

by

K. URBANIK (Wroclaw)

Abstract. Given a real-valued continuous function f on the half-line $[0, \infty)$ we denote by $P^*(f)$ the set of all probability measures μ on $[0, \infty)$ with finite f-moments $\int_0^\infty f(x) \mu^{(n)}(dx)$ ($n = 1, 2, \ldots$). A function f is said to have the identification property if probability measures from $P^*(f)$ are uniquely determined by their f-moments. A function f is said to be a Bernstein function if it is infinitely differentiable on the open half-line $(0, \infty)$ and $(-1)^n f^{(n+2)}(x)$ is completely monotone for some nonnegative integer n. The purpose of this paper is to give a necessary and sufficient condition in terms of the representing measures for Bernstein functions to have the identification property.

1. Preliminaries and notation. This paper generalizes the results of [11] where the identification property on $[0, \infty)$ was proved for the moment function $f(x) = x^n$ with p not being an integer. A related problem for the absolute moments and symmetric probability measures on $(-\infty, \infty)$ satisfying some additional conditions was studied by M. V. Neupokoeva [8] and M. Braverman [1]. In particular, M. Braverman, C. L. Mallows and L. A. Shepp showed in [2] that the function $f(x) = |x|$ does not have the identification property in the class of symmetric probability measures.

The paper is organized as follows. Section 1 collects together some basic facts and notation needed in the sequel. In particular, the notions of Bernstein functions and their representing measures are discussed. In Section 2 we describe the f-equivalence relation for Bernstein functions f in terms of their representing measures. The final section contains a description of Bernstein functions with the identification property. A necessary and sufficient condition is formulated in terms of representing measures and is related to a generalization of the celebrated Müntz Theorem on uniform approximation of continuous functions by polynomials with prescribed exponents (Müntz [7], Szász [10], Paley and Wiener [9], Kaczmarz and Steinhaus [5], Peller [5]).