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Topologies of compact families
on the ideal space of a Banach algebra

by
FERDINAND BECKHOFF (Miinster)

Abstract, Let K be a fmnily of compact sets in a Banach algebra A such that X is
stable with respect to finite unions and contains all finite sets. Then the sets U(K) :=
{Ield(A): INK = B}, K € K, define a topology 7(K) on the space Id(A4) of closed
two-sided ideals of A. K is called normal if I; — I in (Xd(A),7(K)) and z € A\ I imply
liminf; ||a - L;|| > 0.

(1) If the family of finite subsets of A is normal then Id(A) is locally compact in the
hull kernel topology and if moreover A s separable then Id(A) is second countable.

(2) If the family of countable compact sets is normal and A is separable then there is
a countable subset S ¢ A such that for all closed two-sided ideals I we have TN S = 1.

Examples are separable C*-algebras, the convolution algebras LP (G) where 1 < p < o0
and G I8 a metrizable compact group, and others; but not all separable Banach algebras
share this property.

1. Introduction. For a Banach algebra A let Id(A) denote the space of
closed two-sided ideals of 4. One of the most famous topologies on Id(4) is
the so-called hull kernel topology or weak topology Ty, which is given by the
basic open sets

U@y yan) = {Ield(d) iz, &1,...,2, ¢ I},
where n € N, xy,..., 2, € A. We generalize this as follows:

DErFINITION 1. Let A be a Banach algebra. A compact family in A is by
definition a set K of compact subsets of A such that

(i) K is stable with respect to finite unions,
(ii) £ contains the family F of finite subsets.
For a compact set K ¢ I let
U(K):={I eld(4): INK = 0}.

1991 Mathematics Subject Classification: Primary 46H10.
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We obviously have U(K;)NU(K2) = U(K1UK3). Hence for a compact family
K the system {U(K) : K € K} is stable with respect to finite intersections
and because X D F each proper ideal is contained in one of the U(K)’s.
So {U(K) : K € K} U {Id(A)} is an open base of a topology (K). Such a
topology on Id(A) is called a topology of a compact family. Trivially such
topologies are compact (since A € Id(A) has only one neighbourhood, the
whole space Id(A)) Tp-topologies.

Obviously 7(F) is nothing but the hull kernel topology and this is the
coarsest of all topologies of compact families. If C denotes the compact family
of all compact sets then 7(C) is the finest of these topologies and this has
been called 7, in [2]. We know from [2] that 7(F) = 7(C) if A is a C*-algebra
and we will see other Banach algebras with this property, but in general the
inclusion 7(F) C 7(C) will be strict.

Finite unions of sets {z} U {z : n € N} where (z,), is a sequence such
that ||z — @p|| — O form another example of a compact family, which will
be denoted by Ks. Let K. be the compact family of all countable compact
subsets of A.

Let Sk(A) be the set of all algebra seminorms of A which are bounded
by k, i.e. Sx(4) is the set of all seminorms p : A — R such that p(ab) <
p(a)p(b) and p(a) < kia|| for all a,b € A. This is a compact space with
respect to pointwise convergence. The map

ki : Sk(A) — 1d(A),

defines the quotient topology 7 on Id(A). We have 7 D m D ... and
Teo 1= [, 7k is & compact topology on Id(A) which only depends on the
Banach algebra topology on A and not on the special norm; it is finer than
7.. If A is a C*-algebra then 7o coincides with the weak topology 7; of all
maps

p — ker(p),

d(A) —R, I fe+I], we€A4,

which has been called the strong topology in [1]. In particular, 7« is Haus-
dorff in this case.

DEFINITION 2. A compact family K in a Banach algebra A is called
normal if the following holds true: If I; — I in (Id(A4),7(K)) and z € A\ [
then liminf; ||z + L] > 0. (||lz + I]] is the quotient norm of 2 + I € A/I.)

Observe that normality of a compact family implies normality for all
larger compact families.

In the next section we will see that if X is normal then 7(K) is a locally
compact topology, i.e. each I € Id(A) has a neighbourhood base consisting
of compact sets. If moreover A is separable then 7(K) turns out to be second
countable, and if X O K, then the converse holds.
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As an application we will prove in Section 3 that normality of K, and
separability of A imply the existence of a countable subset S C A4 such that
INn &8 is dense in I for each closed two-sided ideal I C A. This applies in
particular to all separable C*-algebras (see [3]), and the last section will
provide another class of Banach algebras satisfying this.

If the topology Teo is supposed to be Hausdorff then further characteri-
zations of normality are possible. This is also carried out in the last section.

2. Topologies of compact families. In order to find differences be-
tween topologies of compact families, sequences are not useful, as is shown
by the first result.

PROPOSITION 3. Let A be a Banach algebra. Then 7(Ks) and 7(C) have
the same convergent sequences.

Proof. Since 7(Ky) C 7(C) is clear we have to prove that a 7(Kg)-
convergent sequence, say I, — I, is 7(C)-convergent. Let = € A\ I. By
([2], Lemma 18) it is enough to show that liminf, ||z + I,|| > 0. To this
end assume that this inferior limit equals zero. Then there is a subsequence
(In,)x and elements xy € I, such that |# — || — 0. Since z € A\ I and
I is closed, there is kg € N such that

Ki={e}U{xp: k2 k}eKs and INK=0.

Because (I, x>k, 18 & sequence which 7(KCy)-converges to I we arrive at the
contradiction I, N K = ) for large k € N and this finighes the proof. m

To show that the above defined topologies are different in general, we
consider the very simple example 4 = C? with the euclidean norm and with
trivial multiplication (all products are 0), Then each subspace is a two-sided
closed ideal.

Let I, = C(1/n,1). Let Fy be the set of finite subsets of A not con-
taining 0. For each ' € JFy there must be an np € N such that I, N F = 0.

This shows that the ideal {0} is in the r(F)-closure of {I, : n € N}. But
K= {(1/n,1):neNtU{(0,1)} €Ky and KnN{0}=0.

Sono I, belongs to U (K), and this shows that {0} is not in the 7(/s)-closure
of {I,, : n € N}. Therefore 7(F) # 7(Ky).

Now let Ky be the set of all elements K € Ky that do not contain 0. This
set is directed by inclusion. Since there are uncountably many 1-dimensional
ideals which have pairwise intersection {0}, for each K € Ko there must be
a l-dimensional ideal Iy with Ix NK = . Then the net (Ix)xex, obviously
7(Ks)-converges to the zero-ideal, The 3-sphere S2 C A is a compact set with
{0} € U(S®) but Iy & U(S%) for all K € Ko. This shows that 7(Ks) # 7(C).
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For the next proposition define
V(e, F):={I € 1d(4) : dist(F, I) > €},

PROPOSITION 4. Let K be a normal compact family in a Banach alge-
bra A. Then

(i) 7(K) = 7(C).
(ii) For each z € A and I € Id(A) there is a constant o € Ry such that
for all nets (I;); which are 7(K)-convergent to I we have

lz+I|| < allmimf llz + Ii|.

where € > 0 and F C A.

Let a(z, I) be the smallest of these constants.

(iil) c(-,I) is upper semicontinuous on A\ I for each I € Id(A).

(iv) Let D C A be a dense subset. If K € K and I € Id(A) such that
KN1I=0 then there is an g9 > 0 such that for each 0 < € < gg there is a
finite subset F C D satisfying

Ieint(V(e, F)) C V(e F) c UK).
(Here int(M) stands for the T(K)-interior of a subset M C Id(A).)

Proof. (i) 7(K) ¢ 7(C) is clear. Conversely if I; — I in (Id(4),7(K))
then for all z € A\ I we have liminf; |z + ;|| > 0 by normality and this
implies I; — I (in 7(C)) by ([2], Lemma 18).

(i) If z € I then we can take o = 0. So let 2 € A\ I and assume that
there is no such constant «. Then for each n € N there is a net *(Ii("))ie M,
such that

Ii(") M2 I with respect to 7(K) and |z+I||>n- li.rélﬁgtnf ||z + Ii(n)H‘
1 n

Let Ko be the set of all K € K such that K N I = ), which is a directed
set by inclusion. For each K € Kg let ng be the smallest integer larger
than diam(K). As U(K) is a 7(KC)-neighbourhood of I we can find an index
ig € My, such that

™) e U(K) and |o+I|| > ng - o+ I,

1K

Then the net (IfKK )) Kek, is 7(K)-convergent to I and we have

(nx) 1 K
o+ I3 < o+ 1 S50

This contradicts the normality of /.

(iii) Let z, — z be a convergent sequence in A\ I and «a(z,I) < 7.
We have to show that a(z,,I) < v for large n. Assume that this is not the
case. Restricting to a subsequence we may assume that a(z,, I) > «y for all
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n € N, So there are nets (I,fn))iaM" such that
Ii(”) €My I with respect to 7(K)
and -z + 7| > - liminf an + 1.

For K € Ko (Ko as in the proof of (ii)) there is an ng € N such that

[ = T | < 1/(diam(K) - 1). For this ng we can find an index if € Mp,
such that
J‘z(lf") € U(K) and |n, + 1) > 9|2, +I,-(:")||,

I‘NK)

Then we have =+ I with respect to 7(K) and

Iz + Il 2 lense + 1| = |2 = Zne | > YEng + I = |12 = 20|
> (|2 + I = ||z = 2nge ) = 1€ = Tng|
e 1
> ol I n”) ——»—-—-—-—-—-—-~}-
2l + I diam(K) + 1
Since
v -1 K
el 0

diam(K) + 1
this implies

'I’L}r) ”

el im inf 7 +1
Y 1%%}&““ + 1 hz?é}%%,[ (’YIlm»}nI("K)” m)

E diam(K) + 1
<e+1I|| < limi ]
< e+ Il < e, 1) - liminf lo + L.

Because v > a(x, I') this can only happen if each term in the upper inequal-
ities is equal to 0, but this implies « € I, which is the desired contradiction.

(iv) Let 6 := dist(K,I) > 0 and ¢ == sup,ex o(z, I), which is finite by
(iii). Define g := 6/(3c) and let & be any number in the open interval (0, &o).
The open e-balls around points of D are an open cover of the compact set
K and 50 we may find a finite subset F' ¢ D such that

Kc|J{Bye)iyeF} and Vye F:By,e)nK 0.

We will prove that V (g, F') does the job.

Let us firat prove that I € int(V (e, F')). Assume that this is not the case.
Then there is a net (1;); in Id(A) \ V(g, F') which is 7(K)-convergent to I.
Forall 2 € K we have ¢ < |lz-+1|| € c-liminf; ||+ L. So there is an index
?(513) such that |ja -+ ;|| > (2/3)+ (6/e) for all 4 > i(x). For each y € F there
18an 2y € K such that ||y — ay|| < e. Therefore

, 2 46 1
Iy 5l 2 lloy + Bl =y =yl > 52 =6 > 5

(23 B~

for all 4 > i(aﬁy).
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Since F is finite we can find an index ig > 4(z,) for all ¥ € F and therefore
ly+ 1| > (1/3)-(8/c) for all i 2 g and all y € F. This implies dist(F, I;) >
(1/3) - (6/¢) > ¢ and hence I; € Ve, F) for all 4 > i5. This contradiction
proves I € int(V (e, F)).

Now let us prove V(e,F) C U(K). If J € V(e, F) then dist(F,J} > ¢.
For z € K there is a y € F such that ||z — y| < £. Then for cach z € J we
have

lz— = 2 [z = yll = lly = || > dist(F,J) ~ & 2 0.
So z # x and we proved JNK =0, ie. J € U(K). »

THEOREM 5. Let K be a normal compact family in the Banach algebra A.
Then

(i) (Id(A),7(K)) is o locally compact space.
(ii) If A is separable then 7(K) i3 a second countable topology.

Proof. (i) It is enough to prove that for £ > 0 and ' C A finite, each
V (e, F) is 7(K)-compact. To this end let (I;); be a net in V(e, F). Then
there is a subnet (I;;); such that (qr, ); converges to an algebra seminorm
pin &y, where gz, (z) := |l& -+ L |, z € A. Then |z + ker(p)|| 2 p(z) =
lim; [|# + I, || 2 e for each @ € F, showing ker(p) & V{(e, F). Because
g5, — p implies Ij; — ker(p) with respect to 7. (hence with respect to
T(K) by [2], Lemma 17) the stated compactness of V (g, F) follows.

(ii) By Prop. 4(iv) the sets int(V (g, F)), where ¢ € QF and F runs
through the finite subsets of some dense countable subset of 4, constitute a
topological base for (Id(A}, 7(K)), and this is clearly countable. m

Remarks. R. J. Archbold proved in {[1], Th. 8.7) that for a C*-algebra
A the spaces Primal(A) and Primal(4)\{4} are locally compact with respect
to the hull kernel topology (and the proof is involved). This result can easily
be deduced from the above theorem: for a C*-algebra the compact family F
is well known to be normal and so by Theorem 5, Id(A) is locally compact,
and so must be the closed subgpace Primal(4). Then Primal(4)\ {A} is
locally compact since it is an open subspace of Primal(A4). This proof is
much easier (only depending on the normality of F) and applies to a larger
class of Banach algebras; the lagt section will contain examples of Banach
algebras with normal 7 which are not C*-algebras,

In [6], page 50, D. W. B. Somerset raised the question when the hull ker-
nel topology {restricted to Min-Primal{A}) is second countable. Theorem 5
provides a sufficient condition: normality of F implies second countability of
Id(A) with respect to the hull kernel topology and hence second countability
for all subspaces.
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THEOREM 6. Let K be a compact family containing K, in o separable
Banach algebra A, Then the following are equivalent:

(i) K is normal.
(ii) T(K) ig a first countable topology.
(ili) ~(K) is a second countable topology.

Proof. We have (i)=>(iii) by Theorem 5 and (iii)=>(ii) is trivial. We are
to prove that (i) implies (i). To this end let J; — I in (Id(A),7(K)) and
g € A\ I. Assure liminf, |2 + L] = 0, Let (U), be a countable r{K)-
neighbourhood base of I'. Then for each n we may find an index 4,, such that
L, €Uy L\ < 1/n So Iy, — I (7(K)) and limy, |'& -+ I, || = O.
Since this is a sequence we also have 7(C)-convergence by Prop. 3 and so by
{[2], Prop. 22) we have 2 € I, This contradiction finishes the proof. w

ProOPOSITION 7. Let A be a finite-dimensional Banach algebra. Then C
is o normal compact family.

Proof Let D C A be a dense and countable subset and let Ky be the
set of all finite unions of closed halls around points of D with a rational
radius. It i8 not difficult to prove that the countable collection of the U(K),
K € Ky, is a topological base for +(C). The normality of ¢ follows from
Theorem 6. w

If 4 = C? as in the above example then we have normality of C by the
above proposition while Ky (and K.) is non-normal as seen above.

3. An application and further examples. One might ask whether
there are any good properties of separable Banach algebras implied by nor-
mality of compact families. For this consider the following possible properties
of a separable Banach algebra A:

(P1)  There is a countable set § C A such that for all I € Id(A) we have
I=1n§.

(P2)  There i a countable collection T ¢ Td(A) such that each ideal I €
Id(A) i of the form [ = 2 To, whete Ty ¢ 7.

These propertios are easily scen to be aquivalent. If (P1) holds then take
T to be the countable set of all closod two-sided ideals generated by some
finite subset of §, Conversely, if (P2) holds then choose a dense countable
subset in each of the I € 7 and let § be their wnion; this countable subset
of A satisfies (P1). '

B. Blackadar proved in [3] that all separable C¥-algebras have these
properties. His proof is based on the primitive ideal space. Since for C*-
algebras all compact families are normal, the following theorem provides
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another proof and also generalizes to a larger class of separable Banach
algebras; we will see examples in the next section.

THROREM 8. Let A be o separable Banach algebra such that the compact
family K. of all countable compact sets is normal. Then A has the above
stated properties (P1) and {P2).

Proof. By Theorem 6 we know that v(K.) is second countable, Let (V,,),,
be a countable basis. By ([2], Theorem 20) each V,, is a Lindeléf space, hence
for each n we may find countably many U(K), K & K., which have V,, as
their union. So we have found a topological basis {I7(X,) : n € N}, where
each K, is countable and compact.

Let (an)n be a dense sequence in A. Define § to be the (Q+-iQ)-algebra
generated by {a, : n € N} UlJ,, Kn. Let us prove that this countable set §
has the property (P1).

To this end let I € Id(A) be given. Then TN 5 obviously is a closed
two-sided ideal and for each n € N we have

INSNK, >InSNnK,=INK,>2INnSNK,.

Therefore I € U{K,.) iff INS € U(K,). Since the U(K,,}’s form a topolog-
ical basis of the Ty-space (Id(A), T(K.)) we conclude [ =INS. m

Many prominent separable Banach algebras do not have the properties
(P1) and (P2). Let A(D) be the disc algebra, i.e. the algebra of continuous
functions on the closed unit disc which are holomorphic in the interior.
Assume that there exists a dense countable set S ¢ A(D) satisfying (P1).
Each f € S, f # 0 can have at most countably many zeros in the interior
of the disc. So we can find a point ¢ € int(D) such that f(¢) s 0 for all
non-zero f € S. Then the ideal {f € A(D): f(¢) = 0} has at most the zero
function in common with §. This shows that (P1) cannot hold. :

Let A = C*[0,1] be the Banach algebra of all continuously differentiable
complex functions on the unit interval with the norm || f|| = || f[lsc + 1/l co»
where || - ||oo denotes the supremum norm. Bach closed two-sided ideal of A
is of the form

HO,D):={feA: f(t)=0forallte C, and f'(¢) =0 for all t & D},

where C, D C [0, 1] are closed subsets such that H{C) ¢ D ¢ ¢, with H(C)
dencting the set of non-isolated points of €. We prove that A does not
satisfy (P2). To this end let I(Cp, Dy), n € N, be any countable collection
of ideals. Obviously Oy, \ int H(C,) is closed and nowhere dense in [0, 1]. So
by Baire's category theorem there is a ¢ € [0, 1]\|J,, (Cn\int H(C,)). We will
show that each I(Cy, Dy,) which is included in I({z}, §) is already contained
in I({t}, {t}). If I{C, Dy) C I{{t},®) then obviously ¢ € C,,. By the choice
of t this implies t € H(Cy) C Dy, hence f/'(t) = 0 for all f € I{Cy, Dy,) and
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in fact this means I(Cy, D) € I({t}, {t}). So I{{t},0) is not the closure of
a sum of ideals from {I(Cs, Dy) : n € N} and this shows that (P2) cannot
hold. :

The above Theorem 8 then implies that X, is not normal for A = C 10, 1].
It is possible to give an example of a net which viclates the normality con-
dition for Ket Let J == I({0},{0}) and I, = I({t},§) for each ¢ € [0,1].
Let Ko be the directed set of all K € K, satisfying J N K = @. Then by
compactness of K,

e = Anf{[f(0)] + [£(0)] : f € K} > 0,
and using once again the compactness of K we can find an £ > 0 such that
Vie K vtel(0e: | fE)+ [ >a/2

Soif f e K, 1t e |0,e with f(2) = 0 then |f'(#)] > a/2. Therefore f has
at most finitely many zeros in [0,£]. Since K is countable we can find a
tx € [0, €] such that
1

fltg) # 0 for all K and ¢ e

Jlg)# 0 forall f e an tK(diam(K)+1
Therefore Iy, € U(K) for all K ¢ Ky, implying L, — J{(r{K.)). But for
9 € A defined by g(¢) = & we have ||g + J| =1 and

1

diam(K) +1
So we have found a net of the desired kind. Sequences violating the normality
condition cannot be found because of ([2], Prop. 22).

g+ Lexc || < g ~ (9 2] 0.

= ek = x| <

4. The case of a Hausdorff ideal space. Let Abe a Banémh algebra.
In [2] the author introduced the topology T on Id(A). The construction
has been deseribed above in the introduction,

TurorEM 9. Let A be o Banach algebra such that each I € 1d(A) 4s
generated as o closed two-sided ideal by the idempotent elements in I. Then
Teo 18 Housdorff and the compact fomily F of all finite subsets is normal,

Proof, Lot us lest show that 1, 18 Hausdorff, Let Sy be the set of
algebra serninorms p on A such that p() < k| « | Assume p, — p and
rn = v in S with respect to the topology of pointwise convergence and
ker(py,) = ker(ry,) for all n € N. By ([2], Theorem 23) it is enough to prove
that 1{61‘(3’)) e ker('r),

Let ¢ € A be idempotent, For each algebra seminotm we have g(e) <
g(e)*, hence g(e) & {0} W [1,00). Then € € kex(p) iff ple) < 1/2 iff pale) <
1/2 for large n iff e € ker(p,) for large n. Analogously e € ker(r) iff e €
ker(r,) for large n. Therefore ker(p) and ker(r) contain the same idempotent
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elements, hence they are equal by assumption and this shows that 7., is
Hausdorff.

Now let us prove that  is normal. To this end let J; — I in (Id{4), (F))
and = € A\ I. Restricting to a subnet we may assume that

lz+ Ll 5 limjinf fla 4 Z5]).

Let g; be the algebra seminorm defined by ¢i(y) == [ly + Lij]. Since 8 is
compact we may assume that ¢; — p in &1 For each idempotent element
e € ker(p) we then have gi(e) < 1 for large 4, hence ¢ & I; for large 4, and
therefore e € I because I; — I(T(F)). By the assumption of the theorem this
implies ker(p) C I, in particular @ & ker(p). But this has the consequence
0 < p(z) = liminf; |z + L. =

As an example consider the Banach algebra IP(17), 1 < p < oo, with
pointwise multiplication, where T' is a nonempty set. Then each closed two-
sided ideal of [P is of the form {® € IF : z(n) = 0 for all n € M} where
M C T, and this clearly is generated by the idempotents contained in it.

In order to produce less trivial examples let G be a compact group. Let
A C LY(G) be a Banach algebra under some norm || » [|4 and assume that
the space T'(G) of trigonometric polynomials on G is dense in A and that
A is a left Banach-L*{G)-module.

Let X be the space of equivalence classes of (unitary) irreducible repre-
sentations of G. If ¢ = [u] € X' then define

T,(G) = span({t — (w&,n) 1 &, € Hu}).

For P C X let Tp(G) be the linear span of the union of the spaces Tp (G},
o & P. Finally, define

Ip={fcA:flo)=0fraloe I\ P}

By {[4], (38.7)) we know that each ideal in Td(A) is of the form [p and Ip is
the | - | 4-closure of Tr(G). Because cach i, (@) is isomorphic to a matrix
algebra we see that Iz is generated by the idempotent elements contained
in Ip (by [4], (27.21}).

So if A is a Banach algebra of the kind described ahove then Theorem 8
is applicable. Examples are LP(G), C(G) and other algebras (see [4], {38.6)).
If G is supposed to be metrizable these algebras are separable (by simple
arguments), hence Theorem 8 also applies.

If 7o is Hausdorff one can find other characterizations of normality of
certain compact families. This will be developed now.

DeFINITION 10. A compact family X in A is said to be decomposable i
the following holds true: if K € K, K ¢ Uy U...UU, for open sets U; C 4
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then there are K1,..., Ky & K such that K ¢ Ky U...UK, and K; C U;
forall j =1,...,m. j

Clearly F, Ky, Ke, C are decomposable compact families.

LEMMA 11. Let K be a decomposable compact family and (I); a 7(K)-
convergent net in Ld(A.). Then the set of all limits of this net has the form
{Ield(A): I DL} for some ideal L € Id(A).

Proof. If (I;); converges to I then it clearly also converges to cach larger
ideal. If T < Td(A) is directed downwards (hence I is a net in a natura) way)
then an easy argument reveals that 7 — NI with respect to 7(K).-So using
Zorn's lemana one ocasily sees that each 7(K)-closed set containg a minimal
element under each of ity elements. In particular, this is true for the set of
limit points of (I;);. In order to prove the lemma we now only need to show
that if I; ~ {Ly, Lg} then also I; — Ly M L.

In order to do this let K ¢ K such that KN ILyNLy = @. Then K
(AN L) U (AN Lg) and by the decomposability of K there are Ky, Ky € K
such that K C Ky UKy and Ky C A\ Ly, Ky ¢ A\ Ly. Since I; — {In, La}
with respect to 7(K) we see that ; N Ky = ) and I; N Ky = 0 for large
indices . This clearly lmplies I; N K = () for large ¢ and thus finishes the
proof of the lemma.

It B ¢ Id(A) then define
E = {Ield(A):3J e E:Jc I}
Observe that B = E™ for each 7(K)-closed set.
 THEOREM 12. Let A be  Banach algebra such that To is Hausdorff and
let K be o decomposable compact family. Then the following are equivalent:

(1) K i3 normal. '
(it) If Iy — I in (Id(A), 7(K)) and I is the smallest cluster point of this
net, then this net s Too-convergent to 1.
(iii) For all & ¢ 1d(A) we have BT = (B7Y

Proof (i)=s(ii). Let I; = I with respect to T(X), where I is the smallest
cluster point of the net, We have to show that each subnet (I;,); contains
another subnet which rg-converges to 1.

Anyway, there iy a subnet ("T’ﬂ'jk)’ﬂ such that gy - p in & where the
algebra. seminorm gy, is deflued by gi (@) o= [z + iy, | Then

and so we only have to show that I = ker(p). Since [ is supposed to be the
smallest clugter point and sinee mg-convergence implies 7(K)-convergence
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we clearly have I C ker(p). Conversely let z ¢ I. Then by normality of (X)
we conclude

0 < liminf ||z + L] € iimkinf lz + Iy, || = plz) = = & ker(p).
3

Thus I = ker(p)-

(ii)=>(i). Let I; — I with respect to 7(K) and z € AN T We are to prove
that lim inf; ||z -+ L|| > 0.

There is a subnet (I;,); such that ||z -+ I || — limind;|jz + Ll Let
g; € 81 be defined by g;{y) = |ly + I || Restricting to another subnet if
necessary we may assume that g¢; — p in & and we may also assume that
it is refined to a universal net {[5], Ch. 2, J). By Lemma 11, (f;,}; has a
smaliest limit point J which automatically is the smallest cluster point of
(I;,); by the universality of the net. By our assumption (il} we conclude that
I, — J with respect to 7. But we also have I;, = ker{g;) — ker(p) and
we get J = ker(p) because 7o is a Hausdorff topology. Since clearly J C 1
we see « & J, hence ¢ ¢ ker(p), and this yields

0 < p(z) = limg(z) = li}n & + I, || = liming |2 + L],
2 #

(i)=-(iii}. Since 7(K) C Too we clearly have ™ ¢ ET(’C), hence E C
(E™)" ¢ E® Therefore it is sufficient to prove that (E™)" is r(X)-
closed.

To this end let (;); be a net in this set which 7(K)-converges to I and
let us show that I is also contained in this set. For each 4 there is an ideal
J; € E™ such that J; ¢ I;. Let ¢; € 8 be defined by g¢i(z) := ||z + Jl.
Restricting to a submet in case of need we may assume that ¢; — p € S
If x € I we have p(z) = limy|jz + Jil| > liminf;{|lz + Li| > 0 by the
assumed normality of K, and this means = ¢ ker(p). This implies ker(p) C I.
Moreover, ker(p) is a Teo-limit of the net J; = ker(g;) and therefore lies in
E™. So in fact we have proved that I € (B ™)™

(iii)=>(i). Let I; — I in (Id(A),7(KX)) and @ € A\ I. There is a subnet
(I;;); such that ||z + I, || — liminf; | + L] and g; — p in &, where g; is
defined as above. The latter implies Iy, — ker(p) with respect to Too.

For an index j let B ;= {I;, : k 2 j}. Then I € E;m) o (ﬁ;‘" Y™ for each
4 and so thereis an ideal J; € E;"“ contained in I, Without losy of genaerality
agsume J; is T -convergent to some J. Because Ty is Hausdor(! the intersec-
tion map Id(A) xId(A) —» 1d(A) is 7-continuous by ([2], Lemma 24), and in
the present situation this tells us I D J. Using again the Hausdorf property
of T we get J € [); E;” = {ker(p)}, because this intersection is nothing
but the set of all T-cluster points of the net (I;,); by ([5}, Ch. 2, Th. 7).
Therefore I O ker(p), implying = & ker(p). So lixn inf; ||z -+ I; || = p(z) > 0. =
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I (I;); s & net there is uo reason why it should have a smallest cluster
point. In the condition (i) of the above theorem such a smallest cluster point
js supposed to exist. Condition (iif) states that the r(K)-topology can be
expressed in terms of the 7o,-topology. Observe that the implication‘(i)&(iii)
made use neither of the Hansdorfiess of 7., nor of the decomposability of K.

There are examples of Banach algebras such that F is normal and Tioe 18
non-Hansdorff, Conversely I do not know whether or not Hausdorffness of
Too st imply novmality of 7 or some X,
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