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On the exponential Orlicz norms of stopped Brownian motion
by
GORAN PESKIR (Aarhus and Zagreb)

Abstract, Necessary and sulllcient conditions are found for the exponential Orlicz
norm {generated by () = exp(!:r[p) ~ 1 with 0 < p £ 2) of maxpgecr [Bi| or [By| to
be finite, where B = (Bt)t;-.-o is a standard Brownian motion and 7 is a stopping time for
B. The conditions are in terms of the moments of the stopping time . For instance, we
find that fmaxo<icr {Bt]|ly, < 00 a8 soon as

B(r*) = O(C*kF)

for some constant ' > 0 as k =~ co (or equivalently ||7|iy, < oo). In particular, if
7~ Exp(A) or [N{0,o%)| then the last condition is satisfied, and we obtain

| e By, < K/E(D)

with some universal constant K > 0. Moreover, this mecl’c nality remains valid for any
class of stopping times v for B satisfying E‘('r < O{B7) k" for all k > 1 with some
fixed constant € > 0. The method of proof rehes upon Taylor expansion, Burkholder—
Gundy's inequality, best constants in Doob’s maximal inequality, Davis’ best constants in
the LP-inequalities for stopped Brownian motion, and estimates of the smallest and largest
positive zero of Hermite polynomials. The results extend to the case of any continuous
local martingale (by applying the time change method of Dubins and Schwarz).

1. Introduction. The main aim of the paper is to investigate and es-
tablish necessary and sufficient conditions for the exponential integrability
of the supreroum. of a reflecting Brownian motion taken over a random time
interval (as well as of stopped Brownian motion itself). o

More precigely, lot B = (B0 be a standard Brownian motion, let 7
be a stopping time for B, and let || - ||, denote the Orlicz norm generaiaed
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Key words and phrases: Brownian motion (Wiener pracess), stopping time, axponenw
tial Young function, exponential Orlicz norm, Deob’s maximal inequality for m,artmgales,
Burkholder-Gundy's inequality, Davis’ best constants, Hermite polynomial, continuous
(local) martingale, Ito’s integral, the quadratic variation process, time change (of Brown-
ian motion), Kahane~Khinchin's inequalities. :
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by the Young function 4. Thus, if X is a random variable, then
1.1) Xy =inf{c> 0 B((IX|/c)) < 1}

with inf(§) = oo. In this paper we are interested in Young functions of
exponential growth, and therefore choose to work with 1, (z) = exp(|z|F) -1
for 0 < p < 2. (To handle the small convexity problem around zero when 0 <
p < 1, we can let 1,(z) = exp(jz[P} — 1 for & > (1/p— 1)Y/? and take 1, ()
to be linear on [0, (1/p— 1)*/?].) The main problem under consideration is to
find out when the quantities |maxo<t<r |Btllly, (or ||Brlly,) are finite, and
to obtain sharp estimates of these for 0 < p < 2. In view of the Burkholder-
Davis-Gundy (and related) inequalities, where the integrability is usually
established for Young functions of a moderate growth, we think that this
problem appears worthy of consideration and its solution by itself might be
of theoretical and practical interest.

At the very beginning of thinking about this problem, it was not clear to
us in what terms the conditions (we should lock for) are to be expressed. For
this reason we find it convenient here to explain our minding in this direction
in more detail. In this context we were firstly motivated by some fundamental
(closely related) results in the discrete parameter case. If £ = {eptr>1 18 a
Rademacher sequence of random variables and {ax }i>1 is a sequence of real
pumbers, then the Khinchin inequality states {see [7]) that

(el 2 (5 )
k=1 P k=1

for all 0 < p < oo and all n > 1, where the constant A, depends only on p.
The best value for A, in {1.2) is known (see [6]):

(L2)

(1.3) - Ay = V2(D{(p+1)/2)/v/m)M? i 2 < p < o0,
| e if0 < p<2.
In particular, taking ay = ... = a, = 1 in (1.2), we obtain
(1.4) | Zakup < AR
k=1

forall0<p<ocandalln>1,

Having (1.2) with (1.3) for 2 < p < o0, and using Taylor expansion
of z — exp(|z|?), the passage from the power Orlicz norms (generated by
vp(z) = |z[?) in (1.2) to the exponential Orlicz norm generated by 2 is
rather smooth (see [11}-{13]):

. Héakek”% < \/g(imk'z)l@

k=1

(1.5) -
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for all a1,...,an € R with n > 1. Moreover, in this way we obtain a very

precise information: the constant 1/8/3 in (1.5) is the best possible. By using
exactly the same procedure one could deduce the inequality (see [7])

T n
1/2
1.6 H GRE H <R ( 2
= =1
forall 0 < p £2and all 4g,...,6, € R with n > 1, where the constant
B, depends only on p. In particular, taking oy = ... =an, =1 in (1.6), we
obtain

e 50
k=1

< Bpy/n
e

foral < p<2andalln > 1.

In view of our main problem stated above, two questions arise naturally
in this setting. The first one is: What happens with the right-hand side in
(1.4) when n on the left-hand side is replaced by a stopping time 7 for £? (It
would be ideal that /n on the right-hand side may be replaced by /E(r)
or E(4/T), but this is not true in general as we shall see below.) The secand
one is: Provided that we have an affirmative answer to the first question,
is it possible to imitate the passage from (1.2) to (1.5) + (1.6) via Taylor
expansion and obtain an analogue of (1.7), with n on the right-hand side
being replaced by +/E(r) or B(/7)? (In view of the negative answer to the
first question, thig also fails in general.)

The answer to the first question is well known (see [3] and [5]):

for any stopping time = for £ and all 0 < p < oo, where the constant C,
depends only on p. It should also be well known that this is the best we
can expect in the context of the first question. Thus, in view of the second
question, this indicates that in order to pass from (1.8) to an analogue of
(1.7} via Taylor expansion, one has to take care about all moments of the
stopping time 7. This observation significantly clarifiss what our approach
should be towards solution of our main problem stated above. In other
words, it becomes clear that our necessary and sufficient conditions should:
be expressed in terms of all moments of the stopping time 7, or rather in
terms of the asymptotic behaviour of the quantity E(7%) as k — oc. Still, it
is not clear what an analogue of (1.7) could be after the extension of (1.8)
via Taylor expansion as explained above. In particular, how large is (and
how can be described) the class of stopping times for which the analogue
of (1.7) remains valid? We find these questions of interest and leave them
unanswered. In this paper we focus only on the continuous parameter case,
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and in this context provide answers to analogous questions. In this process
the preceding discussion will serve mainly as a motivation.

The preceding conclusion about the necessity of taking into account all
moments of the stopping time (in order to gain exponential integrability)
becomes particularly transparent in the continuwous parameter case, after
recalling Burkholder~Gundy’s inequality (see {2]):

/2 ? /2
(1.9) GpE(r?%) < B(max |B.f) < HpE("'"),

valid for all stopping times 7 for B and all 0 < p < co with some universal
constants G, and H, depending only on p. Thus in order to deduce the
exponential integrability of maxp<i<. |By| via Taylor expansion one should
have a precise information on the constants Hj for 0 < p < co. However, the
best values for H,’s in (1.9) do not seem to be known by now. Nonetheless,
we will see that we can approximate these numbers in an accurate way
by using Doob’s maximal inequality (with best constants) and Davis’ best
constants for an analogue of (1.9) with maxg<i<, | B| replaced by | B,|. This
leads to the necessity of estimating the (largest and smallest positive) zero
of Hermite polynomials and is the approach which is taken in this paper.
The details will be presented later. Here we only indicate results obtamed
i this way. _

The main result of the paper (see Theorems 3.4, 3.12 and 3.14) states
that

{1.10) || max IBtHWp < 00

0<t<
for any stopping time 7 for B and 0 < p < 2, as soon as

(1.11) E(r%) = O(C*kH2-2)/p)

with some con_éta.nt C > 0 as k — oo. Moreover (see Theorem 3.12),

/7D (1 + mm-——-—(A“’\(/l;}r)p/z)

for all 1 < p <2 and any D > 0, where we set
E(TF)
Ap(D) = ET;I; (Dkkk(ﬁ—p)/p)
In the case p = 1, we have the following estimate (see Theorem 3.4):

A(D)
gz Bl <6evB(1+ Vo))

forany D > 0. In particular, if 7 ~ Exp(A) or | N(0, 0?)| with some A, 02 > 0,
then (1.11) is satisfied, and moreover in this case (1.14) yields (see Exam-

(1.12) lgax |Bellly, <

(1.13)

(114)
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ples 3.8 and 3.9)

(1.15) Il poax [ Bellly, < K/B

with some universal constant K > 0. We remark that the given stopping
time 7 ~ Exp(A) or [N (0, o)| is not necessarily independent of the Brownian
motion B, and in view of (1.7) we think that the inequality (1.15) is by itself
of theoretical and practical interest. Moreover, this inequahty remains valid
for any class of stopping times 7 for B satisfying E(7*) < C(E+)*k for all
k = 1 with some fixed constant C' > 0 (see Corollary 3.7). Finally, if (1. 10)
is satisfled for some 0 < p £ 2, then (sec Theorem 3.2)

(1.16) E(*) = O(C* k2 tei/p)

for some constant € > 0 as k — oo. We note that there is a gap between
the sufficient condition (1.11) and necessary condition (1,16), but this was
the optimum we could obtain by using our method here (see Problem 3.10).

To conclude the introduction let ng mention that the results just indi-
cated extend from the Brownian motion case to the case of any continuous
local martingale (Ito’s integral). This is achieved by applying the standard
time change method of Dubins and Schwarz, The results in this context are
presented in more detail in Section 4.

2, Power integrability of a stopped Brownian motion. In this
section we introduce the notation and collect without proof several facts
which will be used in the proofs of our main results in the next section.

We work with a fixed probability space (§2, F, P) which is large enough
to support all random functions under consideration. Moreover, whenever
a filtration (F})i>0 of (£2,F, P) is considered, it is assumed to satisfy the
usual conditions: F is P-complete, Fy contains all P-null sets in F, and
Fi+ = Fi for all ¢ > 0. The main object under investigation in this paper is
Brownian motion. We recall that a (standard) Brouwmian motion is a process
B =(B)iz0 defined on (2, F, P) with By = 0 P-a.s. for which there exists
a filtration (Fy)»0 such that By.y, — By is independent of F;, and has the
Gaussian distribution with expectation 0 and variance h for 4, h > 0. A
random variable 7 : 2 — [0,00] is said to be a stopping time for B if
{r <t} € F for all £ > 0. If this condition holds for a filtration- (Fe)ezo of
(£2,F, P} which is not necessarily linked with a Brownian motion, we w111
say that 7 is an (Fy)-stopping time.

Let 7 be a stopping time for a Brownian motion B such that {Byar |
t 2 0} is uniformly integrable (which holds if E(\/7) < oo for instance).
Then Doob’s mazimal inequality states that

2.1 4
(1) ez |Bells < o=

13-
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for all 1 < p < oo with the constant p/(p — 1) being the best possible
{see [16]).

Let 7 be a stopping time for a Brownian motion B. Then Burkholder-
Gundy’s inequality (1.9) is valid for all 0 < p < oo with some universal
constants G, and H, depending only on p. The best values for G, and H,
are not known. However, it is known (see [8]) that

(2.2) L () < B |BIF) < 52 BGP)
whenever 0 <p < 2.
Let 7 be a stopping time for a Brownian motion B. Then Burkholder-

Davis’ inequality states that

(2:3) E(|B[7) < A, B(r*/?)
(2.4)  apB(rP?) < B(|B.JP) if1<p<ocand B{r??) < oo,

with the best values for 4, and a, in (2.3)+(2.4) given by (see [3])
4 = {(z;)p %f25p<oo,

P (zp)f 0<pL2,

_ J{z)? H2Zp<oo,
(2.6) op = { (22 #l<p<2,

where z;; denotes the largest positive zero of the parabolic cylinder function
Dy(z), while z, denotes the smallest positive zero of the confluent hyperge-
ometric function = +— M(—p/2,1/2,x2/2).

We recall that M(a,b, z) denotes the Kummer function; it is a solution
of the differential equation (see {1], p. 189}:

(2.7) ' (2)+ (b— 2)y(2) — ay(2) = 0.

The Kummer function is explicitly given by the expression (see [1],
p. 189) '

if0 < p < oo,

(2.5)

. k
(28 (abz)_1+2b‘;i; Eji:))%
Moreover, we have (see [1], p. 194)
(2.9) M(—=n,1/2,2%/2) = (-1)" 2"( ') Heg, (%),

where He, (z) denotes the Hermite polynomial of degree n:
[n/2]

He,(z) =n! Z

1 n-2k:

(2:10) k!zk (n — 2k
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We recall that the parabolic cylinder function Dp(z) is defined by (see [1],
pp. 261-282)
(2.11} Dy(a) = Y1(z) cos(pm/2) + Ya(z) sin(pr/2),
where Yi(z) and Ya(x) are given by
(2.12) Yi(e) = (2°///m)T((p + 1)/ 2w (=),
(2.13) Yale) = 2@/ R0 ((p +2)/2)ya(=),
(z)

where y1(z) and ya(x) are lineatly independent solutions of the differential
equation
(2.14) v’ (2} + (az® + bz + c)y(z) = 0
with ¢ = ~1/4, b= 0 and ¢ = p+ 1/2. Actually, we have
(2.15) ya(z) = exp(—a®/4)M(-p/2,1/2,2%/2),
(216)  a(e) = v exp(~a/OM(—p/2 +1/2,3/2,2%/2).
In view of (2.9), (2.11), (2.12) and (2.15) we see that 2§, is the largest
positive zero (2o, is the smallest positive zero) of the Hermite polynomial

Hegn (@), Our next aim is to state estimates of these numbers. This will be
used heavily in the proof of our main result in the next section.

For this, let L,(la)(m) denote the generalized Laguerre polynomial:

190w = 3 (-1 (02 Lt

k=0

(2.17)

and let 2i"® denote the mth (positive) zero of L& (:c Let J,(2) denote
the Bessel function:

Ju(z) _ (z/z)l/e—’l.z

v+ 1)

and let J(”) dencte the mth positive zero of Ju(z). Then we have (see [1],
p. 346)

{2.18) My +1/2,2v + 1, 262),

(752
(2.19) = <a;<w>< (zkm+,/4kﬁ 1/4 — aﬂ)

T

where k, = 7 + (@ -+ 1)/2.
In order to apply this result in our context, one should note that

(2.20) Hogn (7) = (—=1)"2"nlI L2 (22 /2),
(2.21) Joyya(E) = \/«T?m;cos(:c).
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Thus j§—1/2) = 7/2, and from (2.19)—(2.21) we obtain
7

et &, 2 ,
(222) Snt 1)
(2.23) 25, </ 2{dn + 1),
foralln > 1.

A useful application of (2.22) and (2.23) is based upon the following two
facts:
(2.24)
(2.25)

This can be easily seen by recalling some results on the square root stopping
boundaries. Namely, let B = (By)i>0 be a standard Brownian motion, and
let us consider the stopping times defined by

P zp 18 (strictly) decreasing on |0, 0o],
p i~ z is (strictly) increasing on ]1, cof.

(2.26) 7o = mf{t > 0:|By| = avt+ 1},
(2.27) 0o = inf{t > 0: B; = avt — 1},

where a > 0. Then we have (see [15] and [10] respectively)
(2.28) E(r)F <oo
(2.29) FE(0a)? <oo ifandonly if a>> 25, whenever 1/2 <p < co.
Hence (2.24) and (2.25) are easily verified.

if and only if @ < 23, whenever 0 < p < o0,

3. Exponential integrability of a stopped Brownian motion. In
this section we present the main results of the paper. Throughout B =
(By)i»o denotes a standard Brownian motion defined on the probability
space (12,7, P), and v denotes a stopping time for B with E(r*) < oo for
all k = 1. Qur main aim is to find necessary and sufficient conditions for the
exponential Orlicz norms

(3-1) Il poax |By|

ostLsr

P

to be finite, and obtain estimates of these for 0 < p < 2 in terms of the
moments of the stopping time 7. By Taylor expansion and (2.1) it is easily
seen that the quantity in (3.1) is finite if and only if ||B;|y, is finite. Here
we shall concentrate on the quantity (3.1), but the proofs and estimates
obtained are easily adapted to cover the case of || B, [y, as well. We begin
by finding necessary conditions. In this context the following lemma is shown
to be useful.

LemMA 3.1, For all p,k > 1 there exist universal constants epn > 0
such that

(32) ep k| X [k S 1 X4,

icm
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for every random variable X, In fact, one can take
(33) Enyk = (pe/k)7.

Proof Fix p,k > 1. It is clear that the problem reduces to finding the
largest constant ¢ > 0 for which

5= (1)) >2

whenever X i8 a random variable. By Taylor expansion, (3.4) can be rewrit-

ten in the form
S B SS L1 X )™
e || X |[Pn) A el X ||x ’

n=sl k na=l
Let m denote the smallest n > 1 satisfying np > k. Then by Jensen's

inequality we will have (3.5) as soon as

mp
1 (1) 1.
ml\e

Hence by Stirling’s formula we can conclude that

o< (L)l/(mmz ( 1 )U(mp) (i)1/p< (EE)UP
~A\ml V2mrmnme—merm m =k :

where 1/(12m 4+ 1) < 7rn < 1/(12m). This completes the proof of the
lemma. m

(3.4)

(35)

IA

We may now state a necessary condition for the exponential integrability
of the supremum of a reflecting Brownian motion taken over a random time
interval (as well as of a stopped Brownian motion itself).

THEOREM 3.2. Let 7 be a stopping time for a Brownian motion B =
(Bi)tpo satisfying E(T%) < oo for all k > 1 such that
(36) limax |Bullly, < oo
forsome 0 < p < o0, Then
(3.7) E(.,Jc) - o(gkkh(%t-p)/?)
forsome C > 0 as k =+ o,

Proof. Put 4 = |maxocicr |Btl|ly,, Where p > 1 is such that (3.6) is
satisfied. Then by (3.2)+(3.3) we have

3.8 se k)M s
(3.8) A > (pe/k) Hol:filﬂaég | Bt [l
for all £ > 1. From (2.2) with p = | we get |
(3.9) B( e |Bil) > §E(VT).
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By (2.4)+(2.8), (2.22) and (2.24) we easily find

k
(310) Pl 89 2 (27 ) B

for all k > 2. Since /11 < 1/3, by (3.9) we see that (3.10) remains valid
for k=1 as well. By (3.8) and (3.10) we have

(pe)® w\* 1 k72
(3.11) 1_>_( T WE(T/)

_ (e}’ 1 -Gk
=\ T4 1L 0w | (kj2)RIDrR/)

z((pe/mlfp i )k(mﬂ(fwz)

A 112 Y(B/2)(152/7)
for all & > 1. Hence we conclude that
(pe/2)¥Pn2\* E(r*)
(312 A ( i ) wemn <

The case 0 < p < 1 is treated similarly. This completes the proof of the
theorem. m

ExAMPLE 3.3. Let 7 ~ log N(it,0?) be a stopping time for a Brownian
motion B = (B;):»o with the log-normal density function

_ 2
fz)= m\l/z_ﬂ exp ( - (i_glc}?‘zgﬁ")”) Ljo,001(2),

where 4 € R and 02 > 0. Thus, if X ~ N(g,0?) is a Gaussian random
variable with mean p and variance o2, then 7 ~ exp(X). Then we have

E(,‘_k) o euk+(a~”/2}k2
for k > 1. Hence by (3.7) we easily find that

Il gax Bl |l = 00

for all 0 < p < oo. In other words, there is no number ¢ > 0 such that
P
E(exp(e( max. |B:[))) < o0

whenever 0 <p < co. m

Next we pass to sufficient conditions. First we investigate the case p = 1.
The main result in this context is as follows,

THEOREM 3.4. Let B = (B, )y»0 be a standard Brownian motion, and let
7 be a stopping time for B satisfying

(3.13) E(r*) = O(C*¥")
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for some C' > 0 ag k — co. Then

(3:14) I s Bl < co.

Moreover, define

 oup (ET5)
(319 (0) = mp (3)
for D > 0. Then
. A (D
(3.16) Iz, 1Bl < 00D 1.+ YD)

forall D > 0.

Proof. Given a stopping time 7 for B satisfying (3.13), define B} =
maxpgs<r |[Be]. Then by (2.1), (2.3)+(2.5), (2.23) and (2.25) we have

k k

(17 BBt < (m)kmw < (m)k(zﬁ)kE(T’“ﬁ)

< () @rzete

EO\K

< (———k — 1) (v/2(4k + 1))*E(r*/?)
for all k > 2. Mcreover, by (2,2) with p = 1 we get
(3.18) E(B7) < 3E(yT).

Since k/(k—1) < 2 and 2(4k + 1) < 9% for k& > 2, from (3.17) and (3.18) by
Taylor expansion we eagily obtain

(3.19) E’(exp (P;E)) e ’iEgﬁ;)k
ST | (g)ffﬁ’_ ()

5 |
¢ = \e k!
o0 by k/2
£ (0 S
ke N :
for all ¢ > 0. Further, by Stirling’s formula we find
k/2 : k
(3.20) Lk il c

= <
kL7 ok kkemkere < /2 k(k+1)/2
where 1/(12k + 1) < 4 < 1/(12k) for k > 1. Inserting (3.20) into (3.19),
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and using Jensen’s inequality, we obtain the estimate
= k k/2
B! 1 6e\ " E{r"/*)
(3.21) E(exp (—1)> 1K=y (—) Y]
c Var i\ ¢ k

1 ) (66\/5)79 E(TE/Q)
= k/2n(k+1)/2
Var =\ e Dk/2 g k+1)7

for all ¢, D > 0. Identifying the last term in (3.21) with 1, we easily find out
that
Al(D))
=6evD| 1+ ~—=).
o e ( —+ o

This proves (3.16), and hence (3.14) follows as well. The proof is complete. m

Remark 3.5.It should be noted that condition (3.13) may be equiva-
lently formulated as follows:

(3.1%) Illys < oo. |
This is easily verified by applying Stirling’s formula. Thus, in short, the re-
sult of Theorem 3.4 may be summarized: If 7 is a stopping time for a Brown-
ian motion B = (By)exo such that ||7]|y, < oo, then {maxogicr |Byllly, < o0
as well.
Remark 3.6. Under the hypotheses of Theorem 3.4, let us refine the

definition of A1 (D) by setting '

. ; E(,rk/z)

* _

Aj(D) = i‘;ﬂ’ (Dkk(k+l)/2

" for D > 0. Then the preceding proof (without application of Jensen’s in-

equality in (3.21)) shows that the following refinement of the estimate (3.16)
is valid: N
' A1(D)

1 < 1 1
(3.16) g Billes < 61+ 22))
for all D > 0. Although not as fine as (3.16"), the estimate (3.16) seems
to be more applicable, since A1(D) is generally computed more easily. We
shall llustrate this in the next corollary and two examples, which serve as
important applications of Theorem 3.4.

COROLLARY 3.7. Let B = (Bi)i»o be a standard Brownian motion, and
let 7 be o stopping time for B satisfying '

(3.22) - . E(+*) < C(Er)*k*
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for all k > 1 with some constant C > 0. Then

(3.23) Il e Byl < 66(1 + \/;—@-;) VEG).

Proof. In the notation of Theorem 3.4 take D = F{(r). Then by (3.22)

we get A1 (D) € C. Hence (3.23) follows straightforwardly from (3.16). This
completes the proof. =

ExaMPLE 3.8. Let the stopping time 7 ~ Exp()) for a Brownian motion
B = (By)izo be exponentially distributed with parameter A > 0. Then
B(r*) = kl/AP for k > 1. Thus (3.22) is satisfied with ¢ = 1, and by (3.23)
we see that 7 satisfies the inequality ‘

1
(524) I8 1Bl < 001+ = ) VEG,

which. is valid simultaneously for all X > 0. Tt should be noted here that
is not supposed to be independent of B (as is occasionally assumed in the
literature). w ' ' '

Further applications of Theorem 3.4 are possible. We will not pursue this
in more detail here, but instead consider another typical example.

ExaMPLE 3.9. Let the stopping time 7 ~ |N(0, ¢2)] for Brownian motion
B = (B)s»0 be from reflecting Gaussian digtribution with mean 0 and
variance o2, Thus, if X ~ N(0, 0?), then T ~ |X|. It is well known that

2!\:/20..'«, (ﬁa)k
3.25 B(r*) = r )/2) € kP
(3.25) (%) 7 ((k+1)/2) < 7k
for all k > 1. In the notation of Theorem 3.4 take D = 20 = /7 B(r).
Then by (3.25) we get A1(D) < 1/y/7. Thus by (3.16) we see that 7 satisfies
the inequality

(3.26) L O )

Which is valid stmultaneously for all o2 > 0. Note that the constant in (3.26)
ts only “slightly” increased in comparison with the constant appearing in
3.24). m :

ProsueM 3.10. It should be noted that our method above, although opti-
mally realized in accotdance with our main idea which relies upon Taylor ex-
pansion and best constants in the LP-inequalities, leaves a gap between nec-
essary and sufficient conditions obtained. To explain this in more detail, note
that Theorem 3.2 states that a necessary condition for |maxg<i<r |Billly, <
o is E(rh) = O(C*k3*), while by Theorem 3.4 a sufficient’ condition is
E{rk) = O(C*E*). We want to make it clear here that no attempt will be
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made in the paper to single out a common necessary and sufficient condition,
due partially to the fact that our sufficient condition is relatively satisfactory
(recall Examples 3.8 and 3.9) and partially to the fact that such an attempt
would require a new method (which is far from being evident). Our main
aim was to extract as much as possible from the method which relies upon
Taylor expansion and best constants in the LP-inequalities, and it is clear
from our proof that this goal is achieved. Anyway, from the general point of
view, the following problem appears worthy of consideration. Consider the
family of stopping times T for a Brownian motion B = (By)izo satisfying
E(m") < 00 for allk > 1, and find the number a > 0 such that the condition
E(1%) = O(C*k=*) is equivalent to ||maxogigr |Bl|y, < oo. Note that our
results above show that such a number « belongs to the interval [1, 3].

In the context of the preceding problem, the following example is of
interest.

ExAMPLE 3.11. Let B = (Bg)s»o be a standard Brownian motion, and
consider the following stopping time for B:

7= inf{t > 1:|Bs| = at’},

where ¢ > 0 and 0 < 8 < 1/2 are given. Set 7, = 7 An for n > 1. Note that
by Jensen’s inequality we hawve
(3.27) B|By, |** = o™ E(1,)*P* < o™ (E(ry,)")**
for all n,k > 1. On the other hand, by {2.4)+(2.6) and (2.22) we have

2k
(3.28) . ) B(r,)* < E|B, |*

( i
/2(ak + 1)
for all n,k > 1. From (3.27) and (3.28) by letting n — 0o, we obtain

10 ,\*

(B2 < (a0 ) ¥
for all £ > 1. This shows that
(3.29) B(r¥) = O(C* M/ (1-28)y
for some C' > 0 as k — co. In view of (2.1) it is clear that | maxg<ct<r | Btlllv
< oc if and only if | B, ”'ﬁl < 00, which is by Stirling’s formula easily verified
to be equivalent to E{r%) = O(C*k*/#) for some C > 0 as k — co. Thus,
putting 1/(1 — 28) < 1/8, or equivalently 5 < 1/3, by (3.29) we see that
B(7*) = O(C*k*/?), showing that

3.3
630) | @2 Bl < o0

for all 0 < 8 < 1/3. (We do not know what is going on with (3.30) for
Bel1/s,1/2))
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It is not known to us whether the estimate (3.29) is optimal, which
would show (take § = 1/3) that there exists a stopping time  for B with
B(*) > C*k3 guch that |meaxocicr [Bil|ly, < oo (recall Theorem 3.2
with p = 1). This sort of argument would pass through in the case of any
optimal improvement upon (3.29) (by taking another 3 as above). Note,
however, that the estimate (3.29) is asymptotically efficient in the follow-
ing sense. The case § | O corresponds to the hitting time of the point
a > 0 given by 7 = inf{t > 1 : [By| = a}. By the ii.d. crements we
have P{r > n + 1} = P{maxicicn41 |Bs| < a} € P{|B; — By| < 2,
By — Ba| < 2a,...,|Bn1 — Byl < 20} = (P{}By} < 2a})" for all n > 1.
Thus P{r > n} < " for all n 2 1 with some ¢ > 0, which easily implies
that B(exp(7/c)) < oo for some ¢ > 0. This is equivalent to |7y, < oo, or
in other words, E(r*) = O(C*k*), which agrees with (3.29) as 3 | 0. The
case 8 T 1/2 corresponds to the case of the hitting time of the square root
stopping boundaries (2.26), for which we know by (2.28) (and (2.24) with
zp | 0 as p — o0) that only finitely many moments are finite, thus again
agreeing with (3.29) as 81 1/2. m . '

In the next theorem we generalize and extend the result of Theorem 3.4
to the case 1 < p < 2.

TaeOREM 3.12. Let B = (By)i»o be a standard Brownian motion, and
let 7 be a stopping time for B satisfying

(3.31) E (%) = O(Ckrk@-r)/p)
for some C > 0 as k — oo, where 1 < p <2 is fized. Then
(3.32) Il pax |Belll, < oo
Moreover,

B(rH)
3. pon LAY
{ 33) AP(D) 21‘;1_:: (Dkkk(z_l’)/ﬁ)
for D > 0. Then

/2

3.34 : ‘ P 1/p (A (D))P
O30 g Bl < VI L \/B<1+ Sl

for oll D > 0.
Proof. Given a stopping time = for B satisfying (3.31), define B* =
maxogicr | By|. Then by (2.1), (2.3)+(2.5), (2.23) and (2.26) we have -

639 BB s (R2y) B < (525) e B
p—-

kp
<
< (k

kp
) )

&
=
¥

i
i
:
i
]
"
i,\
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kp kp
< (k) EHRTD)BE)

for all k > 1. Since kp/(kp— 1) < p/(p — 1) and 2(4k + 1) < 10k for k > 1,
from (3.35) by Taylor expansion we easily obtain

N\ P nd *\kp
(3.36) E(exp (%) ) -1= k}—_; Egﬁﬁ!
k=1
for all ¢ > 0. Further, by Stirling’s formula we find
fhn/2 Re/2 ek
K ank khe—kers = o RR—p/2 172

where 1/(12k - 1) < r, < 1/{12k) for k > 1. Ingerting (3.37) iuto {3.36),
and using Jensen’s inequality, we obtain the estimate

(3.38) E(exp (%k-)p) -1

i (\/“pel/i”)kp E(rkp/2)

(,J..kp/2

(3.37)

T k=1 (p—1) Lk(2-p)/2+1/2
Ly \/‘pel/p\/’— kp B(rke/?)
\/_—‘— é ( ) Dkp/2fk((2~p)/p)(B/2)+1]2
< (AP(D))P/Z Z (mpe1/p\/5)kp
B \/Q‘E k=1 C(p - 1)

for all ¢, D > 0. Identifying the last term in (3.38) with 1, we easily find
that

P ey (BeD)
= VI L etryB(14 (BZD,

This proves {3.34), and hence {3.32) follows as well. The proof is complete. w

Remark 3.13. It should be noted that the scope of Theorem. 3.12 is
rather limited, since 1 > (2—p)/p | 0 asp T 2. If indicates that the real power
of the method which is used throughout this paper lies in the cases when
p is small. This is stated more explicitly in the next theorem. Finally, it is
clear that the analogues of Remark 3.6 and Problem 3.10 can be formulated
In the context of Theorem 3.12 as well. The details are left to the reader.
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THEOREM 3.14. Lel B = (B;)iz0 be a standard Brownian motion, and
let v be a stopping time for B satisfying

(3.39) B(r*) = O(C*kC-n)/7)
for some C >0 as k -~ 00, where 0 < p < 2 is fized. Then
(3.40) E(exp(e (max \By|"))) < o0

for some (amall enough) € > 0.

Proof The cage p = 1 is proved in Theorem 3.4, while the case 1 <
p < 2 ig proved in Theorem 3.12. Consider the case 0 < p < 1. For this, let
J denote the smallest & 2> 2 such that kp > 1, Then by Taylor expansion,
Jensen’s inequality, and (2 2) (with p = 1), we have

oy 2o (Z)) -1

_ BB S BB

port chr k) —- ed

J-1 (BE(/F)** T BB
s T35 1.<heTm1 ol + Z kP!

J-1 B* kp
< L (BBAP + (3B ZCJ

for all ¢ > 1. The firgt term on the right-hand side in (3.41) is arbitrarily
small when ¢ becomes large, while the second term is controlled {(and proved
to be finite and arbitrarily small) in exactly the same way as in the proof of
Theorem 3.12. This completes the proof of the theorem. w

Remark 3.15. Note that (8.41) with (3.35)+-(3.37) (as in (3.36)+(3.38))
leaves a possibility of obtaining an estimate of the quantity on the left-hand
side in (3.40). The details are left to the reader.

4. Exponential integrability of continuous Iocal martingales. The
results obtained in Section 3 for a Brownian motion will be extended in
this section to continuous local martingales (and Ito’s integral). First we
want to display the facts which make this extension possible, Recall that
a procass M = (My)y»o is called a local martingale (with respect to the
filtration (Fi)eso of (§2,F,P)} if My is Fo-mensurable and there exists an
incrensing sequence (Tp,)n»1 of (Ft)-stopping times with Ty T oo as n T 6o
such that each “stopped” process (Miaz, — Mo)spa is & roartingale- (with

3
%
3
g
i




respect to (F)exo) forn > 1L UM = (M})¢>0 is & continuous local martin-
gale with My = 0, then there exists a unigue continuous increasing process
[M] = ([M];)iz0 such that M? — [M] = (ME — [Mt)s>0 is a continuous
local martingale (see [14]). The process [M] is called the quadratic variation
process of M.

The extension mentioned above relies upon a well-known fact that every
continuous local martingale is a time-changed Brownian motion. This result
is due to Dubins and Schwarz [4], and more precisely may be stated as
follows. Let M = (M;)i>q be a continuous local martingale (with respect
to the filtration (F;)ezo of (12, F,P)) such that Mp = 0 and [M); T oo as
t T oa. Define the stopping time

(4.1) 7 = inf{s > 0 : [M]; = t}

and set G; = F,, for t > 0. Then By = M, with t > 0 defines a standard
Brownian motion B with respect to the filtration (G;)¢»0. Moreover, for any
given and fixed ¢ > 0, the random variable [M]y is a (G;)-stopping time, and
we have

(4.2) M = Bp,

for all ¢ > 0. The result remains valid without the restriction that [M]; T oo
ast 1 oo, but at the expense of an enlargement of the underlying probability
setting (2, F, (Fy)i»0, P) (for more details see [14]).

The preceding result has the following analogue for Ito’s integral (see
[9]). Let B = (B;)i»0 be a standard Brownian motion, and let Z = (Zy)i»0
be a non-anticipating random process satisfying f0°° Z? dt < oo P-a.s. Then
there exist a standard Brownian motion B = (ﬁt)tg[j and a stopping time
r for B (both depending on Z) such that

(4.3) Law(r) = Law ( ‘TZ? dt),
: 0

o0
(4.4) Law(B,) = Law ( [z dBt).
0
In order to apply the results of Section 3 in the context of a continuous
local martingale (M;)s»o, it is enough to recall that [M]; is a stopping time
for the Brownian motion B = (By)i»o (relative to the filtration (Gi)izo
defined above), while by (4.2) we clearly have

(4.5)- | B,

for all £ > 0. These two facts clarify generalizations and extensions of Theo-
rems 3.2, 3.4, 3.12 and 3.14, which are formulated in the following theorem.

ax |M,| = max By, | =

m. max
0<s<t 0<ag[ My
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THEOREM 4.1. Let M = (My)eso be a continuous local artingale such
that its quadratic variation process [M] = ([M lt)i=0 satisfies

(4.6) B(Mi)* < oo
for allk > 1 with some fized ¢ > 0. If

(4.7) || max | M|y, < oo

0<e<t
for some 0 < p < oo, then
(4.8) E([M]:)* = O(CFpk2+e)/p)
for some C >0 as k — co. Moreover, if for some 0 < p<2
(4.9) B([M],)* = O(C*EkE-2)/7)
for some C > 0 as k — oo, then
(4.10)

b

I 25, 1My, < o0.

Finally, if for 1 <p < 2 we set

Ap(D,1) = iup (—M)

(411) ~1 Dkkkm_p)/p

for D >0, then
(412) g 41y, < 6evD(1+ L),

N
b 1/p (AP(D5t))P/2
(419) | g 1Mol < VIO 2 et/r/B(1+ (ColDANTY

forallD>0andalll<p<2. m

Remark 4.2. Note that (4.9)+(4.10) with p = 1 states that if M =
{(My)iz0 is a continuous local martingale such that ||[M ltll¢, < oo for some
¢ > 0, then |maxogaqs [M,||ly, < co as well. It is moreover clear that many
of the facts from Section 3 (which are stated in the remarks and examples)
carry over in an obvious way to the continuous local martingale case. We
will not pursue this in more detail here, but instead concentrate on the Ito
integral as a particular example.

The generalization and extension of the results from Section 3 to the Ito

integral follow immediately by use of (4.3) and (4.4). This is formulated in
the following theorem.

THEOREM 4.3. Let B = (By)i»0 be a standard Brownian motion, and let
Z = (Zy)¢>0 be a non-anticipating random process satisfying

(4.14) B( fodt)h <o
0
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for all k& > 1. If

(4.15)

<
p

00 .
|[ 2 dBt‘
5 P
for some 0 < p < oo, then

o k
(4.16) B [ Zfdt) = O(C*p+(2+r)/P)
0

for some C >0 as k — oo. Moreover, if for some 0 <p <2,

(4.17) E( fzf dt)k = O(CkRH -7y
0

for some C >0 as k — oo, then

(4.18) < co.

L

o0
H { 2.dB,
0

Finally, if for 1 <p <2 we set

Ap(D, Z) = sup (w)

for D >0, then

< 66\/5(1 + W‘W)

o0
(4.20) [| [ 248/ N
0

r | | pf2
(4.21) Huf zdBy, < \/EE_?E__IEUP\/E(:[_'_ (Ap(%)) )

forallD>0andalll<p<2 n

Remark 4.4. Note that (4.17)+(4.18) with p = 1 states that if B =
(Bt)izo is a Brownian motion and Z = (Z;)s>0 is a non-anticipating process
such that || f° Z2 dtlly, < oo, then || f;° Zy dBy||y; < 0o as well. '
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