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Ergodic theory for the one-dimensional Jacobi operator
by

CARMEN NUNEZ and RAFAEL OBAYA (Valladolid)

Abstract. We determine the nwmber and properties of the invariant rmeasures under
the projective flow defined by a family of one-dimensional Jacobi operators. We calculate
the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce
the existence of the non-tangential limit of Weyl m-functions in the L'-topology.

1. Introduction. Let {2 be a compact metric space, T' a minimal home-
omorphism on {2 and myg an ergodic measure for T Given a real function
Vs € C{12) we consider the family of Jacobi operators

(Lgz){n) = =z(n+ 1) — 2(n - 1) + Vo(£ - n) 2(n)
for £ € §2, where £ - n = T™{. We are mainly interested in the associated
spectral problems
(1.1) sz = Fz

for E € C. This family of difference equations, which can be represented in
matrix form by

an (aty)- (5 vagem- 2) ()

Mx(€ ) (z(’;‘(;;)”) ,

defines a flow on the complex bundle 2 x C?, given by Sg(£,z) =
(€ - 1,Mg(¢)z). Define Ug(n,&) = Mg - (n —1))...Mp(£). Then, if
zi(n, €, z) represents the solution of (1.1) corresponding to the initial data
(zp(~1,£,2), 2p(0,£,2))® = =, one has SE(€,2) = (£ n, (zg(n — 1,€,2),
ZE(n,f, z))k) = (6 ' TL,UE(TL,Q') Z). S

The Lyapunov emponent of the equation (1.1) corresponding to a value
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of the energy F € C is defined as

YE) = lim —Il\7 In{|Ug (N, E)I);

this limit exists and takes the same value almost everywhere on (2.
The rotation number of the family of equations (1.1) corresponding to a
real value of F is given by

o(B) = lim Z=0p(N,£),

N BN
where #z(N, £) denotes the number of eigenvalues A < F for the boundary
value problem

Lez=FEz in *[—=N,N], z(-N-1)=2(N)=0.

This limit is the same for almost every £ € 2 and defines a continuous
function on the real line which increases exactly on the spectrum.

If E € B the negative Lyapunov exponent —y(E) and the rotation num-
ber a(E) agree respectively with the real and imaginary parts of the so-called
Floguet coefficient, w(E}, which is the extension to the real axis of an an-
alytic function with the same name defined on C — R in terms of Weyl
m-functions. The existence of the latter is guaranteed by the fact that we
are dealing with operators which are in the limit-point case. Here we con-
sider the definition of Weyl m-functions based on the concept of ezponential
dichotomy (see Johnson [4]), which provides them with a dynamical mean-
ing. It is proved in [4] that the resolvent set of L, agrees with the set of
those values of £ for which the family of equations (1.2} admits exponential
dichotomy.

Pastur [12] obtains a common spectral decomposition for L¢ for almost
every £ € {2, 0 = 0ne. U Oge Uopp.. Let A be the set of those (real) values
of the energy with null Lyapunov exponent. Kotani's theory, given in Simon
[14] for the Jacobi operator, assures the existence almost everywhere on A of
the non-tangential limit with non-null hmaginary part of Weyl m-functions.
This finally permits one to identify o, .. with the essential closure of A.

Let P*(C) be the one-dimensional complex projective space. By linearity
on the fiber Sg induces a homeomorphism on the complex projective bundle
Kc =2 x PYC) via the map IT : 2 x C? — K¢, (£,2) — (£, Z = z3/21).
The same syrabol Sg will represent the restriction of this homeomorphism
to any invariant subset. Writing Z(n) = z(n)/z(n — 1) we obtain from (1.1)
the family of equations

(13 —Z(n+1)—~z—(1~7;)-+%(a-n)=ﬂ

for £ € £2. Let Zg(n, £, Z) be the solution of (1.3) with initial data Zg(0,§, Z)
= Z. The homeomorphism Sz on K¢ is thus given by Sg(£,2) =
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(5 -1, ZE(:L?i?E))’ and moreover S.TEL?(’E: Z) = (€ " T ZE(n:€>E))

Let M C K¢ be an Sg-invariant subset and 7 : M — {2 the projection
onto the base. We say that M is a measurable k-sheet if there exists an
invariant subset {29 C 2 with mg(f2) = 1 such that cardn~1(¢) = k
for every £ € {2y and the multivalued function defined on §2; taking £ to
7 HE) = {(&, Z1(£)), (&, Z2(€)), ..., (€, Zx(€))} is measurable. If such a set
exists there 13 an Sg-invariant measure u on K¢ given by

k

[ o6 21an= 23" [ o(6.2,() dmy

Ky j=1 £
for every g € C'(Kc). One can easily check that p projects onto mg and is
concentrated on M. We say that M is an ergodic k-sheet if y is an ergodic
meagure; for k = 1 we simply refer to M as a measurable or ergodic sheet.

On the other hand, if F € R then 2 x R? is an Sg-invariant subset of

2 x C? and K = 2 x PHR) {where P!(R) is identified with R/(#Z)) is
an Sg-invariant subset of K¢. Representing the projective coordinate of a
real solution as w(n) = cot™Ye{n)/z(n — 1)) the family of equations {1.1)
becomes

(1.4) @w(n 4+ 1) = cot™}(—tanp(n) + Vo (£ - n) — E).

We denote by wg(n, £, ) the solution of {1.4) with initial data ¢ g(0,£,¢) =
; then the restriction of Sg to Kp is given by Sg(&,¢) = (-1, pr(1,£,¢)).
Analogously S%(£,¢) = ({-n,pg(n,&,¢)). The relation X = cot i gives the
change between the two systems of coordinates we have introduced on Kp.
Let I be the Lebesgue measure on R, [1 its normalized restriction to P*(R)
and m1 = mo @ I; the complete product measure on Ky. Throughout this
paper all measures are supposed to be positive and normalized.

A function ¢ : Krp — R i3 said to be gquadratic on the fiber (or fiber-
quadratic) if it hag the form

(€, ) = A(€) cos® o+ B(€)sin® v +2C(€) sinpcos

for almost every (£,¢) € Kp. Let 4 be an Sg-invariant measure on Ky
absolutely continuous with respect to maq; we say that p is a linear invariant
measure if dy = (1/q) dm, and the function ¢ is quadratic on the fiber.

In the first part of this paper we study the ergodic structure of the
projective flow and the dynamical consequences of this structure. The inter-
polation of Sz by a linear continuous flow $g, as given in [4], allows us to
transfer the information from the continuous case (see also Delyon-Souiliard
2]). We determine the number and properties of the §g-invariant measures:
they turn out to be the restrictions to Ky of invariant measures for the con-
tinuous flow. Thus the ergodic classification described in Novo-Obaya [7]
is also applicable to the Jacobi case. The number and type of Sp-invariant
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measures depend directly on the qualitative behavior of the solutions of
(1.1). We refer to the absolutely continuous case when there exists an in-
variant measure on K absolutely continuous with respect to m., and to the
singular case when every invariant measure for the projective flow is singular
with respect to my. Both cases present completely different dynamics.

The second part of the paper deals with the behavior of the Floquet
coefficient on the absolutely continuous spectrum. Let Ag be the set of
those £ ¢ R for which (Kg,Sg) admits a linear invariant measure with
square integrable density function. Oseledec’ ergodic theorem shows that
Ay C A (see [11]), and we deduce from Kotani’s theory that (A — Ag) = 0.
We obtain the derivative of the Floquet coefficient on A, and answer a
guestion on the variation of the rotation number posed in Deift-Simon [1].
From the previous ergodic conclusions we calculate the non-tangential limit
of Weyl m-functions in the L'-topology. In particular, the case where the
projective bundle decomposes into a collection of identical ergodic sheets is
of interest from the spectral and qualitative points of view. These results
are an extension of those obtained in N1ifiez—Obaya (8] for the second order
Schrodinger equation.

2. The ergodic measures. In this section we recall the well-known
suspension construction and its most basic properties. We also give the
explicit relation between the solutions of {1.3) and the trajectories of the
suspension and prove that the dynamics is of the same type for both cases.
This fact will be fundamental in the next sections since it allows us to
transfer the study to a continuous flow.

Let X be a locally compact Hausdorff space and 5 : X — X a homeo-
morphism. We define on X x R an equivalence relation by

(@,8) ~

The quotient set X is also a locally compact Hausdorfl space; in fact, it is
compact if X is, Each equivalence clags, denoted by x - s, admnits a unique
representative (z, s) with s € [0,1). This is the one we will choose whenever
ﬁxmg a representative is needed. We consider the real ﬂow g on x glven by
Sit,z-8)=xz-(s+t)forz-s € X and t € R This flow (X, 5) is called the
suspension of (X, 8). -

If the trajectory (S"a)nez of an element » € X is dense in X, then
(z - (8 +1t))en is dense in X for every s € R. In particular, if the homeo-
morphism S is minimal so is the suspension.

For each s € R, consider the map i, : X — X z — x5 We can identify
X with 49(X) C X; thus the restriction of § to Z and X agrees with the
sticcessive iberation of the initial homeomorphism: §(n,z) = z-n = S 4.

(#',s") ©» s—§ =neZanda =S5z
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Given a measure g on X we define, for g € G()? ),
1
(2.1) Jo@ s)ip= [ [ goi(z)duds.
e 0 X

It is immediate to check that [ is & measure and that it is invariant whenever
j+ is; in fact, if 4 is ergodic so is fi. Notice that if Xg c X is an S-invariant
subset such that i(Xp) = I then u({z |z s ¢ Xo}) =1 for every s € 0, 1].

This process allows us to construct (2, T) and (12 x (C”, SE), the suspen-
sions of (12, T) and (£2x C?, Sg) respectively. The space 2% 2 turns out to
be a trivial bundle with base £ and its trivialization permits transforming

Sg to a new real flow of skew-product type. Let Fg : 2 x [0,1} — GL{2,C)

be the homotopy between £ + Id and £ ( 1 v (IE) E) given by

et = (22 ).

—sin o{s)
o|i1/2-61) = 7/2,

Tl-61 = 1,

sino(s)
cos o (s) + 7{s)(Vo(€) -
where o and 7 are suitable C*°-functions:

o:[0,1] — [0,7/2],

7 :[0,1] = [0,1],
for some § € (0,1/4). This permits periodic C'*®-extensions of ¢’ and 7 to
the whole real line. The map

(p: R xC2 = {xC2

ol0.6) =0,

7| 10,17246 = 0,

(f:z) s (E : SaFE(gz S)Z),
(s € 10,1)) is a homeomorphism. We denote by @ the continuous flow
obtained from Sg via (. If ¢ € R and s € [0,1) then
Gu(t&-s,2) = (€ (s +1), Up(t,€ ) ),
where
(2.2) Ug(t,& - 8) = Fe(€-n, ) Ug(n, €) Fg(é,8)™

with n = [8 4+ t] and | = 9 + ¢ — n. (As usual, we denote by [-] the integer
part of a real number.) The restr 1ct10n to 2 x C? C 2 x C? and Z gives

qu(’ﬂ,, &: Z) = (5 ' TL,FE (5 N, 0) UE(TL, E) FE(‘S: O)M Z)
=({-n, Ur(n,§)z) = Sg(£, 2),
that is, the homeomorphism Sg is recovered.

ProraosiTioN 2.1. The flow 5 1is given on % C? by the family of
two-dimensional linear sysiems

(2.3) 2z’ =Dg(f-(s+1)) 7,



icm

154 C. Niiez and R. Obaya

where ()
0 o'(s
Dg(-s)= (_g’(s) +7'(s) (Vo(&-[s]) - E) 0O )
for £ € 2 and s €R.

Proof. Let s € (0,1
Unle,€-5) = Fp(é,5+ ) Up(0,6) Fp(€,s)™" = Fp(¢, s + &) Fg (£, )™

Hence

) and take € such that s + & € (0,1); then

D¢ -5) = = Daltré )

t=0 - (% Fx(§, 3)>FE(55 §)

It is immediate to check that this is the matrix that appears in the statement.
For 5 = 0 the proof is analogous. m

Let us denote by Zg(t, € - s,2) the solution of (2.3) with initial data
Z5(0,6-5,2) = z; then (¢, £-9,2) = (£-(s+1), 2g(t, £+5,2)). By construction
of the suspension we also have Zg(n,&,2) = (z5(n — 1,£,2),25(n, £, 2))%
Hence one deduces that the Lyapunov exponent of the family of systems
(2.3) coincides with the one of the original discrete equation. The analogous
result for the rotation number is proved in [4].

Relation (2.2) allows us to express the value of Zg(n +¢,£,2) in terms
of zg(n —1,£,z) and zg(n, &, z): for t € [0,1),

Zea(n+i,€,2) = coso(t) zp(n — 1,6, 2) + sino(t) zs(n, £, 7),
(2.4) Zgaln+t€z)= —sino(t)zp(n—1,§,2)
+ [cos o (t) +7(1)(Vol§ - n) — B)] zp(n, £, 2).
As in the discrete case, by linearity on the fiber we can define a new flow on
K¢ = 02 x PY(C) via the projection [T : 2xC* — K¢, (£-8,2) — (£-5,2 =
z9/71). The trajectories of this flow satisfy the Riccati equations

(2.5) Z = a1+ ZD) 4 (s F (Vo€ [s+t]) —
Let Zp(t,¢- s, Z) be the solution of (2.5) With initial data Zp(0,¢5,2)=Z
the flow on K¢ is given by @5(,¢ -5, 2) = (£ (s+1), Zu(t, & -5, Z)) and by
means of (2.4) we can establish that, for ¢ E [0 1),
_ —sino(®) + [coso(t) + r(O) V(& - n) = B)] Zp(n, )
coso(t} + sino(t) Zg(n, &, Z)

'Analogously, for E € R, &g defines a flow on Kg = §} x P (R). If p =
cot (g /1) this flow corresponds to the equation :

27) @ =0 (s+t) (s + (Vo€ [s+t]) - E)sin® p = Fu(€- (s41),¢).
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If $u(t, €+ 8, ) is the solution with the initial data $g(0,¢- s,¢) =
@E(tag 8, (P) = (6 ' ('3 + t)w‘ﬁE(t: £-s, EP)) Moreover, for ¢ € [ ) )=

(2.8) @mln+t,Es,0)
= cot "M eot{pm(n, &) + o (t)) + 7(£) (Vo€ - n) —

@, then

The following result characterizes the density function of a measure on
Kp absolutely continuous with respect to my and Sg-invariant. The proof
is a simple verification and we omit the details,

PrROPOSITION 2.2. Let p € L1 (Kg,m1) be a positive function. The fol-
lowing assertions are equivelent:

(i) the measure u given on Kp by dy = pdm, is Sg-invariant;
(1i) p satifies the functional equation

(2.9)  p(8e(&¢)) = p(& plcos® p + (—sinp + (Vo{€) ~ E) cos p)?].

If 4 is a linear invariant measure with dy =
quadratic solution of

(2.10)  q(Se(&, @) = q(&, @)lcos? v + (—sinyp + (Vo(€)

(1/g)dm, then ¢ is a fiber-

— E)cos p)?]™"

Let now iy be the ergodic measure induced on 2 by mg via (2.1) and
M1 = Mo @ {1 the complete product measure on I?R. The existence of mea-
sures on the real projective bundle which are invariant under the flow corre-
sponding to a family of two-dimensional systems and absolutely continuous
with respect to the product measure is studied in Obaya~Paramio [10]. Tt
is clear that the results appearing there can be applied to the suspension.
The density functions of such measures correspond to the solutions of the
functional equation

a

¢
@11) F@sE s 0) =5 s P { - [ FE@nlugos ).
[

®

Let i be a linear invariant measure for (I?R, &) with di = (1/§) dmy; then

7 satisfles the equation

f .
o « 81
(212) a(qjﬁ'(taf ' 8, 50)) = Q(E -8, Cp) exp { f W(Gﬁﬂ(uzg * 8, (P)) du ¢,
0
The pext results show the connection between the absolutely continuous
invariant measures for (Kg, Sg) and (Kg,$p); in particular, their density
functions are within the same class of integrability.
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THEOREM 2.3. Let © : I?R ~ R and p: Kp — R be two measurable
functions such that for every (£,¢) € Kr and every s € [0,1),

P (Bl ) du )

8

(2.18) P(er(s,f ) =p(l p)exp { -/

0

Then B is a solution of the functional equation (2.11) if and only if p is a
solution, of (2.9). Moreover, if r > 1 then p € L"(Ky, ) if and only f
p & LT(Kg,m1).

Proof. From (2.8) we deduce that, for u € [0,1),

AL

=7'(u){Vo (&) -
= (w)(Vo(§) -

E)sin 285 (u, €, »)

E) 2 [eot{p + o (u)) + 7(u) (Vo (§) ~ E)|
1+ [eot(yp + o(u)) + r(u)(Vo(€) — E)?
/ 2 [~ tanp + 7(w)(Va(£) - E)

=0~ 1T im0 (18 - B
since 7/ (u) # 0 implies o(u) = /2, and cot(p + 7/2) =

(2.14) exp{——f %—f*—E-

. v (QSE (’Lt., g: cp))du}

—tan . Hence

= exp{la(L + [~ tanp + 7(u)(Vo(§) ~ B)*)lim0)
= cos? i + (~sing + 7(8) (Vo (&) — E) cos )*.
In particular, for s = 1 we obtain
1
(2.15)  exp { - f %(@E(u,f, ) du}
0
= cos” p + (—sing + (Vo (€) ~ E) cos p)®.

Now suppose that § is a solution of (2.11). Since p(é, ) = D(£, p) one
deduces from the above equality that p is a solution of (2.9). Conversely,
let p satisfy (2.9). In order to prove that 7 solves (2.11) in the whole Kp it

~suffices to show that it solves it for a point of each trajectory and for every
t € R. Take (£,0) and ¢ =n + s with n € Z and s € [0,1). Then

B(Pa(t. £,9)) = F@s(s, Pu(n, &, 9))

= p{SE (£, (p)exp{ f Tﬂf_ @E (n+wé, z,o))du}
0
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From (2.15) it is easily deduced that for every n € Z,
o
(B9 = pie-eeme{ - [ FE@atuppan}.
0
The fact that 7 is a solution of (2.11) is a consequence of the last two

equalities.
Now we prove the last assertion of the theorem. By (2.13),

[ p7(6, ) dm,

K
f ffp £, @) dmgdsdly

PLRY
=[ [5E s@s(s6) [exp{f%%u& #)d H dly dig
i PYR) o ¥

3

. y 7 7—1
= [ 7 s [exp{ f %%@E(u,&,aws,f-s,w)))du}] dy.
Ry 0 .

The function [8fs/8] is continuous on Kz and hence upper bounded by a
constant M. This gives

Nf € sp)din < [P @) dmi <N [ 5§ s,0)di,
Ky K[R
where N = exp(M(r — 1)). Obviously this completes the proof of the state-
ment. m

THEOREM 24. Let §: Kgp — R and ¢ : Kp — R be two measurable
functions such that for every (€,¢) € Kg and every s € [0,1),

& ¢
- dfe
216)  a@als e = al6plem { [ PR (Bsut ) ).
a
Then § is a fiber-quadratic solution of the functional equation (2.12) if and
only if ¢ i3 a fiber-quadratic solution of (2.10). Moreover, if r > 0 then
g& LKy, M) if and only if g € L™ (Kgn, my).

Proof. The facts that 7 satisfies (2.12) if and only if ¢ satisfies (2.10)
and § € L"(Kg, ) if and only if ¢ € L"{Kgr,my) can be proved in the
same way as in the previous theorem. Moreover, since ¢(£, ) = g(€, @), i
is obvious that if 7 is quadratic on the fiber so is g. Now suppose that

4(&,¢) = a(£) cos® @ + b(¢) sin® ¢ + 2¢(£) sin peos
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for some measurable functions a,b,c : 2 — R. Using (2.14) in (2.16) we
obtain

g€ s,y =& - s) cos” +3(£ - 8)sin® p 4+ 26(£ - 5)sin p cosp,
where
@€ 5) = a(t) cos? o(s) + b(€) sin® o(s) — 2¢(¢) sino(s) cos o (s),
b

(£ 5) = a{€) sin? o(s) + b{E) (cos® o(s) + 72 (s)(Vo(¢) — B)?)
(2.17) + 2¢(&)(sino(s) coso(s) + r(8){Vu() — E)),

€ - 3) = a(f)sino(s)coso(s) — b(€)(sino(s) coso(s)
+ r(s)(Vo(&) — E)) + c(£)(cos? o (s) — sin? o(s)),

which completes the proof of the theorem. Notice that G(¢ - s)B(¢ - 8) —
2(¢-s) = al&)b(€) — c2(¢) for every £ € 2 and s € [0, 1]. By ergodicity on
the base it is easy to deduce the existence of an Sp-invariant subset {2y C 12
with mq({2g) = 1 and a constant 5 such that @(¢ - s)b(€ - s} —22(€-8) =7
forevery £ € @nand s€R. »

Now it is clear that absolutely continuous or singular dynamics occurs si-
multaneously for both cases. In consequence, the ergodic classification given
in [7] is also valid for the Jacobi case. That is, if an absolutely continuous
invariant measure exists then this measure is either ergodic, being necessar-
ily a linear measure and the only invariant measure that projects onto mg,
or non-ergodic, in which case every ergodic measure which projects onto
myo is concentrated on an ergodic k-sheet. (Notice that an ergodic k-sheet
on (Kg, Sg) extends by means of (2.6) to an ergodic k-sheet on (Kg,$5).)
And in the singular case three different options are possible: (Kg,Sg) ad-
mits either two different ergodic measures, each of them concentrated on
an ergodic sheet, or a unique ergodic meagure, concentrated on an ergodic
sheet or a 2-gheet.

3. Differentiability of the Floquet coefficient. Consider the {amily
of equations (1.1} and define A, as the set of those values of E for which
the real projective flow admits a linear invariant measure with square inte-
grable density function. The same kind of argument as uged in [10] for the
continuous Schrédinger equation allows us to prove the following result:

THEOREM 3.1. The set Ay is contained in A and I(A — Agy) = 0.

Throughout this section we will work with a fixed Ey &€ As, suppose
Ej =0 and suppress the subscript to simplify the notation. Let 4 be a linear
invariant measure for the homeomorphism § on Kg. Then dy = {1/q) dmy
with 1/q € L*(Kg,m,) and

g{&:%0) = A(£) cos® p + B(£) sin® ¢ + 20(£) sin cos .
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Let }1\, B and & be the coefficients of the fiber-quadratic function 7 defined
from ¢ according to (2,16). Theorem 2.4 assures that dil = (1/7)diy is a
linear invariant measure for $ on Kg; moreover, there exists an S-invariant
subset {20 C 2 with mg(f2y) = 1 such that A(€- s} B(£-8) — C*E-s) =
A(EYB(E) — C*(&) = 1 for every £ € {2y and s € R.

This section is concerned with the Floquet coefficient. In particular, we
will study its directional differentiability at V4. To this end, we consider the
families of equations

(3.1) —z(n+1) —z(n— 1)+ V(€ - n)z(n) = BV( n)z(n),
for V € C(£2), and the corresponding suspensions, given by
(3.2) =

_( 0 ’(s+t)>z
T\ of(s4t) + (s V(e [s+E) —EV(E- [s+4)) 0

Let Sg be the homeomorphism that (3.1) induces on Kc (resp. Kg) and
& the continuous flow defined by (3.2) on Re¢ (resp. KR) We denote by
wy(B) = —yv(E) 4 oy (E) the Floquet coefficient of (3.1) and (3.2) for
EeC.

We now consider the measurable Perron transformation for g

1 0
o Ag-5)
Pi@—GLRC) sl gy Ag-s)
-8
Ag-9)

The linear change of variables
(3.3) F:OxC?oaxC? (£.52)- (¢ 8w,

with w = P(£ - (g + 1)) z takes the two-dimensional systems (3.2) for -5 €
25 to

(3.4) w'
0 Aa’(sﬁ-t)
o - CEE G |,
—ﬁ% B s+ O VE s +DAE (s +1) 0

It is known that H preserves the rotation number and the Lyapunov expo-
nent (see [10] and [8]) and induces a fractional transformation on the pro-
jective bundle that takes (K¢, $x) (resp. (Kr, $zg)) to anew flow (K¢, ¥p)
(resp. (K, ¥g)). Moreover, the invariant measures are taken to invariant
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measures for the new flows. These facts allow us to make the study of w at
Vo by means of the equations and properties of the transformed flows.

PROPOSITION 3.2. The rotation number ot F = 0 is given by

= f cot™H{(~C(€)) dmg.
7

Proof Let wg(f) be a solution of the system (
cot™ (wg 2(t)/we,1(1)); then

o'(s+1)
A (s+1))

whence one derives that

3.4) and Wit =

1 — cos2p

s+ V(E s+ DA (s +1) —2E,

(3.5) ¥lp =

1 !
= f f ,\0- () ds dmy.
20 A(&'S)
According to (2.17),
1/2 (

—

)

ff £)cos? o(s) + B(€) sin® o (s)
=/ cot“l(w(s))
2

which proves the result. =

—2C(¢)sino(s) coso(a) ds dmo

dma,

We denote by z(n, &, ») the solution of the equation (3.1) for £ = 0 with
initial data (0, £, ¢} + iz (—1,£,¢) = expip and by X(¢,£ 5, @) the solution
of the equation (3.2) for F' = 0 with initial data T2(0, £-5, ©)+i%1(0, £ 8,p) =
expip. Given a function V & C(£2) we define

(o) = ): V(£ n)a®(n, ¢ @)

nm N

w 2N 41

The Birkhoff ergodic theorem shows that this limit exists for almost every
(€,0) € Kr and the function gy is a solution of the functional equation
(2.10) (see [10]). Moreover, by linearity on the fiber we can find an invariant
subset {25 C (2 with my(£2p) = 1 and measurable functions av, by, cy : 2 —
R such that

gv (€, )'_., ay{£) cos® o + by (£) sin? p + 2ev (€) sinp cos

for every (£,) € £25 x P'(R). In particular, we denote by g1y the limit
associated with V = 1. Now it is easy to check:

icm
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PROPOSITION 3.3. Let V € C’( ) and

hm e

aV(g : 3»‘:9) 2T

T(s+ V(€ [s+e])BL(LE s, ) dt.

Then the functions gv and Gy satzsfy

@\V(QS(S) 61 ‘P))

&

= qv{§ p) exp { S

of
J 5’;(9@(%6,@))6@%}-

Therefore Theorem 2.4 assures that gy is a fiber-quadratic solution of
(2.12) whose coefficients dy, by and Gy are defined by {2.17) in terms of
ay,by and ey. Moreover, there exist an S-invariant subset £y C 2 with
mo(f2) = 1 and a constant ny such that Gy (£ - s)by (€ s) - E3(¢-3) =
ay (E)by (€) = % (€) = ny for every £ € {2 and 5 € R.

DEeFINITION 3.4. Let V € C(£2). We say that V belongs to the set
Cy if gv = 0 (almost everywhere) or gqv preserves sign on Kp, that is,
gy > 0.

From the existence of a linear invariant measure it can be deduced that
1 € Cy; in fact, since £2 is a compact set, any function V" > 0 belongs to Cy
and gy > 0.

If pv > 0 we set Ay = sign{gv)/Tv, Av = av/Av, By = by /Ay and
Cyv = cy/Av; then Ay (&) By (£) — C&(¢) = 1 for almost every £ € {2,
Let py = Av/qv; thus py, given by duy = pydmy, is a linear invariant
measure with square integrable density function that we call associated with
V. Clearly the coefBicients of the linear invariant measure iy induced by v
according to Theorem 2.4 are Ay = v /Ay, By = bv/:\v and Cy = v /Av;
they are also related to Ay, By and Cy by (2.17).

DerFiniTiON 3.5. Let V' € €y with 5y > 0. We define the my-func-
tions by

. —Cy(§) i
4, — P VAN T
mig 12— PHC), £ A
and the My -functions by
~Cy(§-s)=i
i J’2—+P1(C) £8 b — .
v Av(€-s)

Notice that the equation qv = 0 (resp. gy = 0) determmes the com-
plex ergodic sheets M3 = {(¢,mE(€)) 1 ¢ € _Qg} (resp M ). We can also
wiite dy(¢) = ﬁl/@mv(ﬁ), By () = xlmi(§)*/Imy(¢ ) and Cy(¢) =
:FERmV( )/SmE(€).

Recall now the ergodic structure of the projective flow described in the
previous section. If either a unique ergodic measure exists or Kg decom-
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poses into ergodic k-sheets with k > 2, then (KR, ) admits a unique linear
invariant measure g and every function V € C({2) determines this measure;
that is, C; = C(2), py = p and fm‘if = m¥, On the contrary, if k = 1, then
Cy is a non-trivial subset of C(£2) and different functions V' € C; determine
different linear invariant measures and my-functions.

THEOREM 3.6. If V € Cy and nyv > 0 then the Floguet coefficient has
the derivative in the direction of V, namely,

2
oy (0) =43 f e lmv (?) Amo

Proof Let ¢ € R, € # 0. From (3.5) we can prove the existence of an
invariant measure U, for (Kg,%,) which projects onto g such that

and vy {0) = 0.

2wl zovl - Jrevie Ao 2,
Kp
yvie) , ~ sin 24
- Kf () VE) AE - 5) —5— de.

On the other hand, Proposition 3.3 implies that the function 7y preserves
sign on Kg; equivalently, that the continuous function £ - s — 7'(s) V(£) on
{2 belongs to the set C; according to the classification. given in [8] for the
continuous cage. The techniques used in the proof of Theorem 3.2 of the
cited paper allow us to prove the existence of the limit of the incremental
quotient for the Floquet coefficient, namely,

ab(0)=§f () V(€) Av (£ s)din, 4 (0) =0,
@
Finally, from (2.17) we find
2
_mr{f ¢) By (£) ds dmq = i% v |mV 2') dmo,
1/2 17

which completes the proof of the theorem.

4. L'-convergence of Weyl m-functions. Let V & C'(2) be a strictly
positive function. We consider the family of equations

(A1)  —2(n+1) = 2(n— 1) + Vo(€ - n) 2(n) = B V(£ -n) 2(n),
which are equivalent to

(42) = (Z(Z(i)l)) = (.(.)1 vn(g-n). -—1EV(§.n)> (Z(:(;)l)) ’

icm
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and the corresponding flows (£2x C?, Sg). It is easy to prove that if $E > 0
then the family (4.2) admits exponential dichotomy. This fact provides the
Weyl functions in the direction of V' (or Weyl my -functions), m‘i, (¢, E),
which satisfy the equation

1

=+ .
. - - 0, E Vi EV({ -n).
(4.3) my (€ (n+1),8) - wEE i E) +Vo(€ n) =EV({ n)
Let 25 be the only solutions of {4.1} that belong to [*(Z*) respectively.

Notlcc that mE(E - n, E) = 2E(n, ¢, E) /zv(n 1,¢,E). We consider the
suspension of the low defined by (4.1), given by (3. 2) Obviously this family
of systems also admits exponentml dichotomy. In fact, the only solutions
belonging to L*(R*) are & ( €+ 8, FE) defined by continuation in ¢ of the
solutlons correspondmg to thc discrete equation. Hence we can introduce

(5 5, E) = kvg(o £ E) ~V1(0 £ s, E), Weyl Mmy-functions for the
suspensmn Notice that

(4.4) (WFY (€5, B) = — o' (s)(L + (AF)*(€ - 5, E))

+7'(s)(Vo(g) — EV(£)),
with (RE)(€- 5, E) = (d/dt)ME(E - (s + 1), E)|s=0 and s € [0,1); more-
over, mﬁ(& 8, E) and mi; (€, E) are related by the corresponding equal-
ity (2.6).

The maps FF:‘J}(E 5, F) and mﬁ(f,E) are jointly continuous in both
variables; furthermore, for cach fixed £ € 2 and ¢ € [0, 1) they are Herglotz
functions on the upper half-plane SE > 0 (see Johnson [3] and Sacker-Sell
[13)). Kotani’s theory assures the existence of their non-tangential limit with
non-null imaginary part for almost every B € Ag. In this section we will
prove this convergence in the L'-topology. To this end, we take, as before,
Ey € Ay and suppose Fy = 0.

The Floquet coefficient in the direction of V' is a Herglotz function on
¥E > 0, where it is given by ([5])

wy (B if 5 3, E) ding;

it admits a continuous extension to the real axis. From (2.6) we derive that

wy(B) =% [ lmi(é E) dmo.
£
The positwe function V belongs to the set €y and hence determines the my
and iy -functions, according to Definition 3.5.
Consider the sector §5 = {E € C | E = |E|expif and 6 € [§,7 ~ 8]} for
each § € (0,7/2]. Existence of non-tangential limit at E = 0 is equivalent

to convergence in each set Ss. The following results appear in [8] for the
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Schrédinger equation. The same proofs work for our case, once the results
of Section 3 are established.

LemmA 4.1, The incremental quotient of wy has the following limit from
the wpper half-plane:

wy (E) —wy '(s)V dm
E.v.ofrélmo E =3 f E}mv
—xl f "”v de
2 %‘m v

LevmA 4.2, The Weyl My -functions hove the following non-tangential
limits from the upper half-plane:

ME(E - 8) = llm mv(E s, E)  in measure.
Convergence in meagure can be characterized by means of pointwise

convergence of suitable subsequences of the initial family of functions. Since
the above set of convergence is invariant we deduce

CoOROLLARY 4.3. The Weyl my -functions have the following non-tan-
gential limits from the upper half-plane:

m$(§) = E_lignn.t'm‘i,(ﬁ, EY in measure.

These results allow us to prove

ProrosITION 4.4. The following non-tengential limits from the upper
half-plane exist:

() |mV 5)[2

Smi(e)

mi (&, B)I®

. 1. .
EMIOI’ﬂn.t. St (6, E) in the L*-topology;

1
ii = lim et in the L'-topology.
(i) Smy (&) Embint. Smo (€, E) poreqy
Proof Let (E,),en be a sequence of complex numbers with QF, > 0
which tends non-tangentially to 0. We can suppose that (vn$(§ -8, Bp)nen
converges to m?}(f -5) for almost every £.5 € §2, From the Riccati equations
(4.4) we obtain

wi(Ee) _ T8 V) -
58, f SWE(E - 8, Fn) o

From Lemma 4. 1 it follows that

T (s)V{£) T VE) .
.nlingoifm if ) é)dno;
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hence we derive that

. r'(s) m(s)
lm =
=00 " OG(E 5, B)  Smp(é-s)

in the L}(§2, 7y )-topology

as an easy consequence of the Egorov theorem. On the other hand, (2.6)
gives

'r’(s) - r’(s}]m"‘}(&,E)\z
IME(E-5, B)  SmE(EE) ~ SE(s) V(E)|mE (€, B)’
whence one deduces that
s)  TE)mE B
ImGE- s, E) T SmigE)
RO N r(8)lmy (€, B)P
s
Smy (6 1,B)

The Vitali theorem shows that 7/(s)/Sm (¢, E) and 7'(s)/Smy; (61 , ) re-

spectively converge to 7/(s)/Smi (£) and 7/(s) /Smy(£-1) in the LY{(§2, 7g)-
topology, which is equivalent to the statements (i} and (ii). m

The proof of the analogue of the preceding proposition for the functions
1/9mi and |my|?/Smy requires the next result, which can be derived in
the same way as the corresponding one in [8].

Prorositton 4.5, The following non-tangential limit from the upper
half-plane exigts: '

Tr(s)‘%ﬁbi(fs) — )%ﬁlv(fs,E)
SaEe s oo VSRS B)

in the LY({3, fg)-topology.
Now we can establish

ProrosiTion 4.6. The following non-tangential limits from the upper
half-plane erist:

. 1
) R | Y in the L' -topology:
¥ gm¢(£) E——*lf)xﬁm,t. E}m-l‘}(g, E) tn e opology
D v ,
(i) M = lim M in the L*-topology.

Smy(6)  E-bint. Smy(E, B)
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Proof. From the Riccati equations (4.4} we obtain

(RAE) (€5, B) = — o'(s)(1+ RIAG(E -5, B) - SR (& -5, B))
+7'(8)(Vol€) — REV(E)),

(IWEY (£ 8, B) = — 20/ (RAG(E - 5, EYSME (€ - 5, E) ~ SET()V(€).
A straightforward calculation shows that

(1+| T s+ 1), )2)
dt\ SAE(E (s +8),E) ) lpmo

=mmﬂnwau+WﬁmaaE»ﬂ2maemﬂm§pqéiﬁﬁ
+2(s) V() - REV(E) Ay & & F)

SRy (€5, E)
From Proposition 4.5 we deduce that
14+ R2ME(E - 5, B)

E_l}lé'nn . SFE ; ( )V(E) gzﬁi(f -8, ) 4o
_ g RAE(E - s8)
21{ mdma
2 mE
= -2 fr (8) Vo §)(T(5) (ﬂ (()|) irn%%)dmn
_ 2 ‘ﬂ}('g)‘ 3 %m'&(ﬁ)
;! (Vo Sy~ PO g;;%@) dmo
— : =
B J(mﬁ€2) %ﬁ@ﬂmm"m

by (2.17) and (1.3). On the other hand,

(- 1 )
dt\ ML (s +1),E)/ |imp

e TGOV, RASE-sE)
B smEe e n P Vst B

Obviously. the right hand term belongs to Ll(ﬁ, o) and hence

R (
f 207 ( M difig
Sy,

4. lim -
@8 ol (€5, 8)

E—D,n.t
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y (2.6) for 5 € [0,1/2] and the definition of fy we obtain

-’*i
fz _.__.,,._..__.__Tzﬁ 5 B) i

1) sin 20(s8) + 2RmE (£, E) o8 20(3)
ng(Ea E)

Mg

_f |mvf E)* ~

m (&, )2 ~ 1
d
f %‘mng ™

Equality (4.5), Proposition 4.4 and equation (1.3) give

S ImHQF , 1
F—-rO,nL f%m (‘5 E f dimg _H;!S’m-li;(f) dmy,

f [mi (€. B3 )L _ f
E—+0 n.t. i}mv E, Im V
Once this is known, (i) and (i) can be established as a consequence of the

Egorov theorem and from the pointwise convergence already known. =

We can write mE (6, E) = (mE (&, E)//2Smy(€, E))/EImG(, E).
Propositions 4.4, 4.6 and the fact that the map

P LA(2,mo) x L*(12,mo) — L*(£2,m0),

is continuous lead us to the main result of this section:

(91,92} = 9192,

THEOREM 4.7. The Weyl my -functions have the following non-tangential
limits from the upper half-plane:

mﬁ(E,E) in the L*(§2,mg)-topology.

k :
my(§) = m

5. Some remarkable relations. The results obtained in Sections 3
and 4 permit us now to improve some previously known relations.

Fix Ey € Ay. As proved in Theorem 3.6, the derivative in the direction
of the parameter is

(5.1) o (B

1 1 1
i dmp =z | — 7%~ dm
2 J;?f S‘ma E Ep) mo=3 f S‘m (E Eo) o
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‘This means, in particular, that the known inequality

! 1 i :
51 m e d
a4 (ED) =9 5 E_.zlﬂlg,ln.t. S‘ma)(E,E) 0

obtained in [1] from Kotani’s theory is in fact an equality. The derivative
of the rotation number is lower semicontinuous on Ay, as proved for the
continuous case in [9].

On the other hand, the Jensen inequality implies that

sina(Ep) = sin f cot™H (=Cl1y(€, Eo)) dmo
2

1
> dmo:
_;! v Aqy (€ Eo) B,y(€, Ey) "o
that is,
Im;, (€ Eo)
5.2 inalEy) > [ ——si
(5.2) sin U)—nf \ma)(f,Eo)F mo

= [ /3md) (€ Bo) Sm (€ - 1, Ey) dmo.
2

This substitutes the inequality sina(Ey) > f o %‘ma)(f . Fo) dmyg, posed as
an open question in [1], which in general is not possible (see the example
below). Moreover, the Schwarz inequality provides, from (5.1) and (5.2), a
very simple proof of the relation 2sina(Eq) o' (EBy) > 1. In fact, if equality
holds for a point Fy then Ay and By {and hence Cy1y) are necessarily
constant functions. The equations describing the evolution with respect to
T of these coefficients, that can be derived from (2.17), permit us to deduce
that Vj is also constant.

The periodic case: an ezample. Let 8y,..., B, be complex numbers. We
define the n x n matrix A(By,..., 8,) = (§;) by

6ij = { -1 i~ =1,
_ 0 otherwise,
and set D(By,...,0,) = det A(B1, ..., fn). It is immediate that
D(/Bla X :ﬁn) = ;BID()BE: v :ﬁn) ~ D(ﬁ-?n v 148'!1)
- ﬁnD(ﬁl’ ver :ﬁ'n-—l) - D(ﬁl: sees ﬁn-2)'
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Let us introduce the terminating continued fraction

1

F{f1y. . Bp) = ———r

PR

S

B

Tt follows from the preceding relation that

-D(ﬁ% Lo :)871-)
F Tyeeogfpy) = mrmmes—————r,

B Bo) = B )

Let B € € with SE > 0 and € € 2. To simplify the notation we write
v = Vo(€n) — E. We assuine that there exists a natural number k& with
Unt+k = Uy for every n € N. One can prove by an induction argument that
for n > 3,

. —-D(’Ul,...,‘vn_z) D(“Uo,...,vnMQ)
UE(H’é) - ('—D(’U]_.,...,'Un_l) D(vo:-"av’nwl) ’

that is, if ey = (1,0)* and ey = (0,1)? then zg(n, &, e1) = —D{vy, ..., vp-1)
and zg(n,€,e2) = D(vo,-..,Un~1).- On the other hand, we know that the
solution of the equation (1.1},

2 (n, &, E) = zp(n, € e1) +m{, (£, B) 25(n, €, )
2= zE(n,.f,eg)(mEﬁ}(&, E) — F(vo,...,%n—1)),
belongs to 1?(Z1), which means that
my (6, B) = lim Fug,....vn) = F(v,...,ve-1,1/mf, (¢, B))

D(ul,.,.,vk_l,l/ma)(E,E)}
" Do, vk, 1/m (6, B))

~zi (k€ e) + zg(k—=1,¢,e1) m?‘l) (&, E)
" Tnh, € en) — 2p(k — L€ ea) m (€, E)

The spectrum in this case is known to consist of the union of k bands (closed
intervals) of the real line. If Ky is a point of its interior then |[tr Ug, (k, £)| < 2

and
‘ = a2y (k= =7 Uy (k1)

o — sz,(k,.f,eg) zEc(k 1=€’el) ~|~’b\/4 tr UEU( 157
'f?‘l'(l)(ésEﬂ) == 22}3‘“(’,{7"1?6589) 2|ZEQUG“1:€=92)|
Equation (1.3) easily yields 'ma)(é 1, Eo),. .0, m'(*'l)(g - (k — 1), Ep). Notice

also that, according to the results of Section 3,
k-1 R, (€ -n, Ey)
1 —1 MRy » 20
", [ 1., " ittt
a(Eg) ; Zco E}m?."l)(ﬁ-'n.,En)

ris=()
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and

k—1

1 1

o (Bo)= o7 ) oA
2 = S‘m?’l)(f ‘1, Fy)

This expression for the derivative of the rotation number coincides with the
one appearing in Last [6].
The computation in Mathematica 2.2 of the my-functions correspond-
ing to the periodic operator
—z{n+1) — 2(n~ 1) + Acos(nw/2 + §)z(n) = Ez(n)
for A = 1 and £ = 0.1 provides a graphic sample of the inequality (5.2):

Fig. 1

The solid line represents the function sin a(F), the dotted line corre-
sponds to

Il \/%mg)(g,ﬁ) Imi, (€ - 1, B) dmy,
2

and finally [, %‘m?i)(f,E) dmyg 15 represented by the dashed line, for £
within a band of the spectrum. Notice that the third function exhibits a
fast growth near one of the edges of the band, hefore decreasing to zero.
This behavior becomes more marked when the period k is increased.
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