STUDIA MATHEMATICA 117 (2) (1996)

Contents of Volume 117, Number 2

R. HARTE and M. MBEKHTA, Almost exactness in normed spaces II	101-105
R. HARTE, On Kato non-singularity	107-114
R. Berntzen, Accretive approximation in C^* -algebras	115-121
A. Jourani, Open mapping theorem and inversion theorem for γ -paraconvex	
multivalued mappings and applications	123-136
M. Cabrera Garcia, A. Moreno Galindo, A. Rodríguez Palacios and	
E. I. Zel'Manov, Jordan polynomials can be analytically recognized	137~147
C. Núñez and R. Obaya, Ergodic theory for the one-dimensional Jacobi operator	149-171
F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and	
trigonometric-Fourier series	173-194
S. D. Silvestrov, Hilbert space representations of the graded analogue of the	
Lie algebra of the group of plane motions	195203

STUDIA MATHEMATICA

Executive Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-293997

Correspondence concerning subscription, exchange and back numbers should be addressed to

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
Publications Department

Šniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-293997

© Copyright by Instytut Matematyczny PAN, Warszawa 1996

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute
Printed and bound by

Incurrences & Incurrences

PRINTED IN POLAND

ISSN 0039-3223

Almost exactness in normed spaces II

by

ROBIN HARTE (Dublin) and MOSTAFA MBEKHTA (Lille)

Abstract. In the normed space of bounded operators between a pair of normed spaces, the set of operators which are "bounded below" forms the interior of the set of one-one operators. This note is concerned with the extension of this observation to certain spaces of pairs of operators.

If $T \in BL(X,Y)$ and $S \in BL(Y,Z)$ are bounded operators between normed spaces we shall call the pair $(S,T) \in BL(Y,Z) \times BL(X,Y)$ weakly exact if

$$(0.1) S^{-1}(0) \subseteq \operatorname{cl} T(X),$$

whether or not the "chain condition"

$$ST = 0$$

is satisfied, and almost exact ([2]; [3], Definition 10.3.1) if there are k > 0 and h > 0 for which

 $(0.2) y \in \operatorname{cl}(\operatorname{Disc}_Y(0; h \|Sy\|) + T \operatorname{Disc}_X(0; k \|y\|)) \text{for each } y \in Y;$

this means that if $y \in Y$ is arbitrary there is (x_n) in X for which

$$\limsup_n \|y - Tx_n\| \le h \|Sy\| \quad \text{and} \quad \sup_n \|x_n\| \le k \|y\|.$$

For example, if T=0 then (0.1) says that S is one-one, and (0.2) that S is bounded below; if S=0 then (0.1) says that T is dense, and (0.2) that T is almost open [1]. In general it is sufficient for (0.1) if either S is one-one or T dense, and sufficient for (0.2) if either S is bounded below or T almost open. Restricted to the closed subspace of "chains"

$$BL(X,Y,Z) = \{(S,T) \in BL(Y,Z) \times BL(X,Y) : ST = 0\},$$

the condition (0.2) defines an open set ([2]; [3], Theorem 10.3.8; [6], Prop. 10, Ch. 10), although not ([2], (1.4.8), page 261; [3], (10.3.8.8), page 441) relative

¹⁹⁹¹ Mathematics Subject Classification: 47A055, 47B07, 46B08.

to the full cartesian product space of operators. In this note we show further that the condition (0.2) defines the interior of the condition (0.1), relative to the space of chains; relative to the full product space of pairs of operators both conditions lead to the same interior, pairs (S,T) for which either S is bounded below or T almost open. We begin with the two "one variable" cases:

THEOREM 1. There is equality

$$(1.1) \quad \{S \in BL(Y,Z) : S \text{ bounded below}\}\$$

$$= interior\{S \in BL(Y, Z) : S \ one-one\}$$

and equality

 $(1.2) \quad \{T \in BL(X,Y) : T \ almost \ open\}.$

= interior
$$\{T \in BL(X,Y) : T \ dense\}.$$

Proof. If $S \in BL(Y, Z)$ is bounded below, with $||y|| \le h||Sy||$ for each $y \in Y$, then

$$|h||S' - S|| < 1 \Rightarrow ||y|| \le h'||S'y||$$
 with $(1 - h||S' - S||)h' = h$.

This proves that the bounded below operators form an open subset of the one-one operators; conversely, if $S \in BL(Y, Z)$ is not bounded below then there are (y_n) in Y and bounded linear functionals (g_n) in the dual space Y^{\dagger} for which

(1.3)
$$||y_n|| = ||g_n|| = g_n(y_n) = 1$$
 and $||Sy_n|| \to 0$;

now the rank one projection $P_n = g_n \odot y_n : w \mapsto g_n(w)y_n$ in BL(Y,Y) satisfies

(1.4)
$$||SP_n|| = ||Sy_n|| \to 0$$
 and $0 \neq y_n \in (S - SP_n)^{-1}(0)$.

This means that S is not in the interior of the one-one operators and proves (1.1). Dually, recall ([3], Theorem 5.5.2) that

$$T$$
 almost open $\Leftrightarrow T^{\dagger}$ bounded below,

so that also the almost open operators are an open subset of the dense. Conversely, if $T \in BL(X,Y)$ is not almost open then there are (h_n) in Y^{\dagger} and (z_n) in Y for which

(1.5)
$$||h_n|| = h_n(z_n) = 1$$
 and $||z_n|| \le 2$ and $||h_nT|| \to 0$;

this time $Q_n = h_n \odot z_n \in BL(Y,Y)$ gives

(1.6)
$$||Q_nT|| \le 2||h_nT|| \to 0$$
 and $0 \ne h_n \in (T - Q_nT)^{\dagger -1}(0)$.

This excludes T from the interior of the dense operators and proves (1.2).

In the space of chains, we have

THEOREM 2. If W = BL(X, Y, Z) is the space of chains then

$$(2.1) \quad \{(S,T) \in W : (S,T) \text{ almost exact}\}\$$

= interior_W
$$\{(S,T) \in W : (S,T) \text{ weakly exact}\}.$$

Proof. If $(S,T) \in BL(X,Y,Z)$ is not almost exact then ([2]; [3], Theorem 10.3.7) either $S^{\wedge}: Y/\operatorname{cl} TX \to Z$ is not bounded below or $T^{\vee}: X \to S^{-1}(0)$ is not almost open, so that by the proof of Theorem 1 there is either $P_n = g_n \odot y_n: Y \to Y$ for which

(2.2)
$$\operatorname{dist}(y_n, TX) = ||g_n|| = 1 = g_n(y_n) \text{ and } ||Sy_n|| \to 0$$

or
$$Q_n = h_n \odot z_n : Y \to Y$$
 for which

(2.3)
$$||h_n|| = 1 = h_n(z_n)$$
 and $||z_n|| \le 2$ and $||h_nT|| \to 0 = Sz_n$.

In the first case

$$(S(I-P_n),T) \in BL(X,Y,Z)$$
 and $(S-SP_n)^{-1}(0) \not\subseteq cl(TX)$,

while in the second

$$(S,(I-Q_n)T) \in BL(X,Y,Z)$$
 and $S^{-1}(0) \not\subseteq \operatorname{cl}(T-Q_nT)(X)$.

In the full product space, we have

Theorem 3. If $W = BL(Y,Z) \times BL(X,Y)$ is the full cartesian product then

$$(3.1) \quad \{(S,T) \in W : S \text{ bounded below or } T \text{ almost open}\}$$

$$= \operatorname{interior}\{(S,T) \in W : (S,T) \text{ weakly exact}\}.$$

Proof. If either S is bounded below or T is almost open then it is clear that the pair (S,T) is in the interior. If neither S is bounded below nor T almost open then there are sequences (P_n) and (Q_n) of projections as in (1.4) and (1.6); if in addition we could arrange that $h_n(y_n) \neq 0$, so that $Q_n P_n \neq 0$, then we would have excluded (S,T) from the interior. To do this take (h_n) and (z_n) as in (1.5), and (y_n^0) in Y with $||y_n^0|| = 1$ and $||Sy_n^0|| \to 0$, and then (y_n^1) in Y with

(3.2)
$$||y_n^1|| \le 1/2$$
 and $||y_n^1|| \to 0 \ne h_n(y_n^0 + y_n^1);$

now take

$$y_n = rac{y_n^0 + y_n^1}{\|y_n^0 + y_n^1\|}$$
 and $\|g_n\| = 1 = g_n(y_n)$.

In the special case

in which S is not one-one and T not dense, we have an alternative argument: with (3.3) there are y and z in Y and $g \in Y^{\dagger}$ for which

(3.4)
$$z \notin \operatorname{cl} T(X)$$
 and $y \in S^{-1}(0)$
and $||Sz|| = ||y|| = 1 = g(y)$ and $g(z) = 0$:

now if $\varepsilon > 0$ is arbitrary and $R = g \odot z : w \mapsto g(w)z$ we claim

(3.5)
$$\|\varepsilon SR\| = \varepsilon \|g\|$$
 and $y + \varepsilon z \in (S - \varepsilon SR)^{-1}(0)$
and $y + \varepsilon z \notin \operatorname{cl} T(X)$.

The first part is clear; for the second note that

$$\varepsilon SR(y + \varepsilon z) = \varepsilon g(y + \varepsilon z)Sz = \varepsilon Sz = S(y + \varepsilon z);$$

finally, if there were $x \in X^{\mathbb{N}}$ for which $y + \varepsilon z = \lim_n T(x_n)$ then

$$\varepsilon z = \lim_{n} Tx_n - y \in \operatorname{cl} T(X) + S^{-1}(0) = \operatorname{cl} T(X),$$

contradicting the assumption about z.

If in particular Z = Y = X and $T = S^n$ for some $n \in \mathbb{N}$ then it is clear that the projections (P_n) and (Q_n) from the proof of Theorem 3 work for the pair (S, S) as well as for the pair (S, T); thus the interior of the sets of "selfexact" operators (see [4]) $S \in BL(X,X)$ for which the pair (S,S^n) satisfies either (0.1) or (0.2) is, independent of n, the "monothetic" operators, those which are either bounded below or almost open. The interior is unchanged if S is assumed to be "perfect" in the sense of Saphar (see [5]) with or without closed range.

Theorem 2 also tells us that the "Taylor spectrum" of a pair of commuting operators is closed. The result of Wrobel [7], which complements Theorem 2, is also more readable than its extension ([3], Theorem 10.3.9) to incomplete spaces.

References

SCHOOL OF MATHEMATICS TRINITY COLLEGE DUBLIN, IRELAND

Current address of Robin Harte: INSTITUTO DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO MÉXICO 04510 DF, MEXICO E-mail: RHARTE@GAUSS.MATEM.UNAM.MX

UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES DE LILLE U.R.A. D 751 CNRS "GAT" U.F.R. DE MATHÉMATIQUES F-59655 VILLENEUVE D'ASCQ CEDEX

Current address of Mostafa Mbekhta: UNIVERSITY OF GALATASARAY CIRAGAN ACD, NO: 102 ORTAKOY 80840

ISTANBUL, TURKEY

Received April 30, 1992 Revised version June 14, 1995 (2936)

^[1] R. E. Harte, Almost open mappings between normed spaces, Proc. Amer. Math. Soc. 90 (1984), 243-249.

^{-,} Almost exactness in normed spaces, ibid. 100 (1987), 257-265.

^{-,} Invertibility and Singularity, Dekker, New York, 1988.

^{-,} Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-801.

M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.

^[6] F. A. Potra and V. Pták, Nondiscrete Induction and Iterative Processes, Pitman Res. Notes 103, Pitman, New York, 1984.