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Solution operators for convolution equations
on the germs of analytic functions on compact
convex sets in CV

by

5. N. MELIKHOV (Rostov-na-Donu) and
SIEGFRIED MOMM (Diisseldorf)

Abstract. If G C CV is compact and convex it is known for & long time that the
nonzero constant coefficients linear partial differential operators (of finite or infinite order)
axe surjective on the space of all analytic functions on . We consider the question whether
solutions of the inhomogensous equation can be given in terms of a continuous linear
operator. For instance we characterize those sets G for which this is always the case.

Introduction. For a given compact convex set G € CV, let A(G) denote
the space of all germs of analytic functions on G. This space is endowed with
its natural inductive limit topology. If K ¢ C¥ is another compact convex
set, for each analytic functional 4 € A(C¥)\{0} carried by K, a continuous
linear operator is given by

Tu: A(G+K) = AG), Tu(h)(2) = (u,h(z+-)), ze€G.

If K = {0}, the convolution operator 7}, is a partial differential oper-
ator on A(G) (of finite or infinite order) and can be written as T.(f) =
EQEW aaf®, f € A(G). The coefficients are determined hy the entire
function fi(z) = u(e®™) = Zaemgf an2”. In this case T, is surjective. If
K # {0}, a characterization of surjective operators T, is known when G has
a nonempty interior,

In the present paper, we investigate whether a given surjective operator
Ty: A(G+K) — A(G) admits a continuous linear right inverse R : A(G) —
A(G+ K), i.e. we investigate whether it is possible to find solutions R(fHe
A(G + K} of the convolution equation T,(R(f)) = f which depend on
f € A(G) in a continuous and linear way.
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To formulate our result, we assume that the origin of C¥ is contained
in the relative interior of the convex compact set G. Let H : CV — [0, 00]
be the support function of G and denote by vy : TV — [~o00,00] the
extremal plurisubharmonic function introduced in [21]: vy is the largest
plurisubharmonic function on CVN with vy € H and with vy (z) < log|z| +
O() as z — 0. If Py C CV denotes the set of all z € CV for which
vr(z) = H(z), then there is an upper semicontinuous function Cy {z €
CY'| |2| = 1} =: § — [0, 00[ such that

Py ={Xa|a€S, 1/Crla) <X <co}.
TuEOREM 1. The following statements are equivalent:

(i) Each nonzero partial differential operator T), 1 A(G) — A(G) admits
a continuous linear right inverse.
(il) There is § > 0 such that Cy = 6 on 5.
(iii) There is a neighborhood of infinity (i.e. the complernent of o compact
set) on which vy = H. In porticular, the interior of G is not empty.
(iv) There is a plurisubharmonic function uw < H on CHN with u(0) < 0
and w = H on a neighborhood of infinity.

If N = 1, we can also characterize whether a single convolution operator
T, : A(G + K) — A(G) admits a continuous linear right inverse. For this
sake let A, C S be the set of all accumulation points of (@/|a|) {sec|a(a)=0}-

TeEOREM I Let N = 1, K a compact conves set in C and p be a
nonzero analytic functional on A(C) which is carried by K. If the convolution
operator Ty, : A{G + K) — A(Q) is surjective, the following are equivalent.

(1) T, : A(G+ K) — A(G) admits a continuous linear right inverse.
(ii) There is some 6 > 0 with Cg > 6 on A,.

In particular, the equivalent conditions of Theorem I imply that for every
compact conwes set K C C all surjective convolution operators T, « A(G+K}
— A(GQ) admit continuous linear right inverses.

By 21], when G is not pluripolar and gg : CV — [0, 0c] is the pluricom-
plex Green function of CV\G with pole at infinity, the function Tz may be
replaced by a function Dg which measures the growth of g¢; at 0G: We put
G, = {z € CY | gg(z) < z}, we denote the support function of Gy by Ho,
for all z > 0, and define

Dg{a) :=lim Hyla) — H{a) € [0,00, a€f.
|0 €T
By [21], Theorem I implies:

TugoreM I For N = 1 let G be a compact conver set in C with
#G > 1. The following are equivalent:
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(i) Bach nonzero differential operator T, A(G) — A(G) admits a
continuous linear right inverse. ‘

(ii) For each (some) biholomorphic mapping 1 : {z€T||z] > 1} -
C\G with ¢(00) = oo, there is § > 0 with [y/| > §.

(i) There is 6 > 0 such that G+ 6zU C Gy for all z > 0, where U
denotes the unit disc in C.

For the evaluation of these conditions, we refer to [21] and to classical
results from function theory. For example the equivalent conditions of The-
orem III bold if the boundary of G is of class C* for some A > 1. They
do not hold if 8G' has a corner. The results of the present paper extend re-
sults of [16], [17] and [20], where the dual case of open convex G C CV was
investigated. There are two special cases for which different but equivalent
versions of Theorem I have been obtained earlier or simultaneously, respec-
tively: If K = G = {0} it follows from Meise and Taylor [13] that only the
nonzero differential operators of finite order admit continuous linear right
inverses. If K = {0} and @ = [-1,1] C R, Langenbruch ]9] proves that a
nonzero operator T}, admits a continuous linear right inverse if and only if
Ay < {—1,1}.

For the proof of our results, we extend the technique which has been
developed in [20] using ideas of Meise and Taylor [14]. Doing this we extend
some results of Langenbruch and Momm [10] to the case of several variables.
Crucial for this extension is the application of a slightly improved version
of a result of Langenbruch [8] on the existence of a continuous linear right
inverse for the d-operator on weighted L2-spaces.

1. Preliminaries. Throughout this paper, for all z,w € C¥ and r > 0,
we will use the following abbreviations: (w, z) 1= T.1_ w;Z;, |2] := (2, 2)1/2,
Ulz,r) = {w e CV | |lw— 2| <7}, U(r) = U(0,r), Blz,7) := {w € TV |
w—z| <}, B(r) i= B(0,7), and § 1= B(1), Ry = [0,00]. If A ¢ TV, we
write I'(A) := {ta |t > 0,a € A}. By int G (resp. G) we denote the interior
(resp. closure) of a set G.

We refer to the book of Meise and Vogt [15] for standard notations and
results from functional analysis. The hook of Schneider [23] may be consulted
for elementary facts about convex sets.

NoTaTION, For the sequel, we fix a compact convex set G of C¥ which
contains the origin in its relative interior. Let H be its support function, i.e.

H(z) = sup R{w,z) € [0,00], ze&C".
WEQ :
If K ¢ CV is convex and compact, the support function of K will always

be denoted by L. Sometimes it is useful to consider H (resp. L) defined by
H(z) = H(%), 2 € CN (resp. L(z) := L(5)). :
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1.1. Function spaces. For each open set D C CV, we denote by A(D)
(resp. A% (D)) the space of all (bounded) analytic functions on D. Let K C
C¥ be convex and compact. Let Gy, = > 0, be a family of bounded convex
domains of C¥ with G = ﬂm>0 Gy and such that Gy C Gy forall0 < 2z < y.
Weput G+ K :={z+w|z€ @ we K} and denote by A(G + K) the
space of all germs of analytic functions on G + K, i.e.

AG+E) = | A%(G.: + K),
x>0
endowed with the usual inductive limit topology defined by the norms

Ifle:= sup |f(2)], [fed%(Gy+K), =>0.
ZEGz+K

If H, is the support function of Gz, # > 0, we denote by A(}f +r, the Fréchet
space of all entire functions f on CV with

[ Flz == sup |f(z)| exp(—Hg(Z) - L(Z)) <oco forallz>0.
zeCN

I L =0 we write A} = A?{_I_L. If H =0 we write A = A}

1.2. Remark. If 2 ¢ C is a bounded convex domain with 0 & 2
and with support function w, let A% denote the Hilbert space of all entire
functions on C¥ with

f |£(2)|? exp(—2w(z)) dA(z) < oo.
CN
It may be well known and can be found in Taylor [25], Thm. 3, that the linear
span of the exponentials {exp(-, W) | w € 2} is dense in A2. This shows that
also for each nonpluripolar set K C §2, the linear span of {exp{., @) | w € K}
is dense in AZ. Otherwise by the Hahn-Banach Theorem, there would be a
functional v € A%\{0} such that the analytic function
U(w) = v(exp{.,®)), w e,

is not identically zero but vanishes on K. This would prove that K is pluripo-
lar.

1.3. Convolution operators. Let K < CN be convex and compact. We
fix an analytic functional p € A(K)'. Then

Tu(f)(z) =pu(f(z+1)), 2€G, feA(G+K),

defines a continuous linear operator T, : A(G+K) — A(G). By the Laplace
transform fi(z) := p(e'®), z € CV (see Hormander [3], Thm. 4.5.3), we may
identify A(K) and A}. If K = {0}, the series P(z) := fi(z) = Daeny Ga”

converges in the topology of AS{ = A? and so does = ZaENON aa(gl()a) in
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A(K), where 6y is the functional of evaluation at 0. In this case

P(D)f:= 3" aaf®™ =T.(f), feAQ).

aENg

P(D) : A(G) — A(G) is called a differential operator. We will gay that
T, : A(G+ K} -+ A(G) admits a solution operator if there is a continuous
linear map R: A(G) — A(G + K) with T, o R = id 406

The following well known results about the Laplace transformation
and the duality theory of Fréchet spaces can be found in Hérmander [3]
Thm. 4.5.3, and in Meise and Vogt [L5], respectively.

b

1.4. DuALITY, Let K C CN be conver and compact. The Laplace trans-
form, giwven by F(v)(2) = v(e"®)), defines by restriction a Fréchet space
isomorphism F : A(G + K)' — AY, ;. Moreover, for all 0 < zy < 21 there
is C > 0 with

W) [ FH ey S V2, for allv € A(G+ K) and
@) |7, S Olflle; for oll f € A,

where | - |7 denotes the dual norm of |+ |5. Let € A(K)Y\{0} be such that
I, A(G+ K) — A(Q) is surjective. Identifying A(G+KY and A(G) with
A% and AY, respectively, the transposed map T A(GY — A(G+K)
is the multiplication operator My : AY — AUH-|-L: Mu(f) =7 f. By duality
theory for Fréchet-Schwartz spaces, the following holds: T, is surjective if
and only if i+ AY 45 a closed subspace of AY +1, (the latter being true by
hypothesis). T}, has a solution operator on A(G) if and only if the quotient
map 72 Al g — AY L /(B AY) has a continuous linear right inverse.

For the following notion compare Ehrenpreis (1], and see Sigurdsson [24]
for further references. In Proposition 1.6 we collect well known results on
the surjectivity of comvolution operators T), : A(G + K) — A(G). These
results have a long history. For this history, in particular concerning much
older results in the case N = 1, we refer to the literature cited in the proof
of Proposition 1.6. '

1.5. DeFNITION. Let K C CV be convex and compact and let y &
A(KY. If A C 8 is closed, p and §I will be called slowly decreasing (or of
regular growth) on the cone I'(A) if the following holds: For each & > 0 there
is & > 0 such that for all z € I'(A) with |z > R there is w € B(z, &|z|) with
|[f(w)| > exp(L(W) — elw|). If A = § we simply say that x and i are slowly
decreasing,

: 1.6. PROPOSITION. Let K C CV be convez and compact and let uwE
A(KY'.
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(a) If i is slowly decreasing (i.e. on CV), then T, : A(G + K) — A(G)
is surjective and (- A(CN) N AY,, = - AY. If K = {0}, then each
p € A(K)Y\{0} is slowly decreasing.

(b) Let I'y denote the support of (dd°H)N. If T, : A(G + K) — A(Q)
is surjective, then [i is slowly decreasing on the cone I'y. If int G # §, then
Ty A(G+ K) — A(G) is surjective if and only if i is slowly decreasing on
the cone I'y. In this case again, (i A(ICN)NAY =0 AY.

(c) Let N = 1. If Ty, : A(G+ K) — A{{) is surjective, then (i A(C))N
A?‘I+L =%- A?f-

Proof. (a) The assertion for arbitrary K C CV compact and convex
follows from Morzhakov [22] (see also [18]). The assertion for K = {0} is
true by Martineau [12], Thm. 7 and Lemme 15,

(b) This is essentially contained in Krivosheev [7]. An explicit reference
is [18], Prop. 2.3 and Thm. 3.9.

(c) For each z > 0, we consider the inductive limit space A g, 1 which
consists of all entire functions f on C with

sup | f(z)| exp{—H,{Z) — L(Z) + |2|/n) < 0o forsome n e N.
2eC

By Krasi¢kov-Ternovski [6], Thro. 4.4, for each & > 0 the set zi- Clz] is dense
in (- A(C)) N Az, 4. (From [6], Thm. 4.4(1), it follows that the rational
functions which are constructed in [6], Thm. 4.4, are in fact polynomials
in the present situation.) Since C[z] ¢ AY, also fi - AY is dense in (f -
AC)) N Ap,r for all 2 > 0. Thus - AY is dense in (F- A(C)) N Ay, =
(B - A(C)) N proj,_.q An,+1. Since T), is surjective, by duality theory, the
subspace fi- AY is closed in A%, ;. Thus the assertion follows.

NoTATION., We consider the Fréchet space
2 . 2 N 2 = L2
Ly = {f € Lae@) | Iflle i= ([ £GP exp(~2Ha() dN(z)) < o0
CN

for all z > 0}.

By L.%f(o,l)’ we denote the corresponding Fréchet space of all §-closed (0, 1)-
forms with coefficients in L%. If 2 ¢ C¥ is open, we consider the Fréchet
space

Wa(CN,2) == {f € L, (CV) | f € L}, Bf € L}y, and f|2 € A(2)}

endowed with the norms (||f|2 + [|8f||2)*/2, z > 0. By the mean value
property of analytic functions, we have A%, = WE(CV,CV). Finally, we
define W5 = W& (TN, 0).
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1.7. LEMMA. The continuous linear map
B:WI%I"_}L%{(O‘]_)a fHB_fa

18 surjective (with kernel AY). Moreover, for every g & L1y 2> 0, and
g > 1 thereis f € W§ with 8f = g and ,

J £ exp(~2Hs = 210g(1 + |22)) dA < ¢ [ 9P exp(~2,) dA.
CN EN
Proof. Asin Meise and Taylor [13], Prop. 2.1, we apply Hérmander [3],
4.4.2, together with the Mittag-Leffler Lemma {which can be applied in

view of Remark 1.2). The quantitative remark holds by the proof of the
Mittag-Leffler Lemma.

We will apply the following slight extension of a result of Langenbruch [8].
To avoid technical definitions, we state it only for the situation which will
be considered in this paper.

1.8. PROPOSITION. Let £2 C CV be open and assume that for each
a € CV\Q there is o plurisubharmonic function u, on CN with ug(a) = 0
satisfying the following condition: For eachy > 0 there are z > 0 and C' > 0
with

q(2) £ C+ Hy(2) — Hp(@) forallzeCV, o ¢ CV\%.

Then there is a continuous linear projection P : WZ(CN,2) ~ AY =
WE(CN, M), |

Proof. If for each o € CV there is a plurisubharmonic function U, OD
TV with ug{a) > 0 and such that for each y > 0therearez >0 and C > 0
with

ug(z) < C+ Hy(%) — Hy(d) forall z,a € CV,

then by Langenbruch [8], Thm. 1.3 and Remark 1.11 (applied with r(z) =
1, z € €M), there would be a continuous linear projection P : W& ==
WE (TN, 1) ~ AY,. If we put formally u, := 0 for all a € (2, then the proof
shows that onr assertion is true. (Note that in the proof in [8], Thm. 1.3,
the absence of the upper bounds for u, for a € 2 does not affect the results
of [8], Lemma 1.5, on the projections Tk, k= N,...,1, which are defined
for all compactly supported (0, k)-forms f with coefficients in L2 _(CN) such
that 0f is & (0, &+ 1)-form with coefficients in L2 _(CV). Since 8|2 = 0 for
all f & A(R2), o small straightforward modification of the proof in [8] gives
the desired estimate for P = my : Wy (CN, 2) — A%,

Wo(f) = f - Z T?’TLO(W]..(hTP’LE.f))S

meN
where we use the notation of [8].)
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2. Solution operators. From Hérmander (2], Lemma 3.2, we recall the
following;:

2.1. LEMMA. For ¢ € CY andr > 0, let g, P be analytic in U((, 4r) such
that g/ P is also analytic in U((,4r). Then
9(Q)/PQ)| < sup lg(w)| sup |Plw)l/( sup [P(w)])®
|¢ —w|<dr |¢—w|<dr | | <
NoTATION. If F is an entire function, we put V(F) = {z € C¥ | F(z)
= 0}. Its tangent cone at infinity is defined by

Voo F):={ta |t 20, a = jl-lfilo aj/la;l

for some sequence (a;)jen in V(F) with jlinalo la;! = oo}

We note that dist(a, Voo (F)) = ola]) as a € V(F) tends to infinity. This
agsertion is void (as is Vo (F)) if V(F') is bounded.

2.2. LEMMA, Let K C CN be conves and compact and let p € A(K)
be slowly decreasing on Voo(fi). Then there is a locally bounded function
r: CY — (1, 00[ with r(z) = of|z|) as z — co and such that for each e > 0
there is B > 0 with the following property: Whenever z € CV and |2| > R
satisfies Ulz,r(2)) N V(@) # 0, then there is w € Ulz, (1 + g)r(z)) with
|E(w)| > exp(L(@) — e|w|). Put

r'(z) 1= sup{|z — w| + 2r(w) | w € C¥, |z —w| <r(2) +r(w)}, zeCV.

Then 2r <7/ and r'(2) = o(|2|) as |z| = co. IfU(z,r(2)) N U(w,r(w)) # 0,
then also Ulw,2r(w)) C Uz, r'(2)).

Proof Put A = SN Vy(f). By Definition 1.5, for each j € N there is
R; > 0 such that for each z € Vio(fi) with |z| > R; there is w € U(z, |2|/j)
with |fE{w)| > exp(L(W) — |w|/j). We may assume that R; > 4, R > R;
and that V(Z)\U(R;) C (A4 U(1/j)) for all j € N,

We put r(z) := |z|/7 if By < |z| < Rj1 for some j € N, and r(z) =1
if |z| < Rj. Direct computation shows that the functions r and ' have the
desired properties.

2.3, Auziliary spaces. Let K C CV be convex and corapact and let p €
A{K) be slowly decreasing on Vi (7). For each open set 2 € CV, let A%(12)
be the Hilbert space of all square integrable functions in A(£2). Let I(£2) be
its closed subspace I(£2) = (ii- A(2)) N A*(£2). We put Ep, = A%(2)/1(2)
and for 2 € E{2),

1/2
= inf = inf 2 .
ol = g1 = 2, K0
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We Cl‘lhthOSG 7! :‘CN — [1,00[ according to 2.2, and set ¥ := 16r'. For each
z € €V, we write £2(2) := U(z,7(2)). We consider the Fréchet space

A%+L(m
= {2 = U + HUDseer € [] Fo
zeCN

fa) — faw) € I(2(z) N N{w)) whenever 2(2) N 2w) 0},

lizfy < oo forall y>0,

where
elly = sup |zl exp(—H, (3) — L(z
|||y ZEGclN| (=) az) exp(—H, (2) — L(3)).
‘We note that Eae =01 2(z)n V() = 0.

2.4. PROPOSITION. Let K C CN be conver and compact and let p €
A(K)" be slowly decreasing on Vo (Ji) such that {ﬁ-A(CN))ﬂA%+L =A%,
Then the linear map

LI ~ ~
0 Ay (B AY) = A% (B),  olf+i-AY) = (F12(2) +1(2(2))) sec,

is an 1somorphism of Fréchet spaces. To be more precise, for all 0 < Y2 < Y1,
there is C > 0 with

(8) llo(f + - Aoy S CIIF + - Ay lly, for all f € AY
—_ Y . +L,
(0) le™ @)y, < Cllzly, for all z €AY, 1 (D).

Proof. Asin [20], we roughly follow the proof of Meise and Taylor [14],
Thm. 12. By direct computation, we see that the map ¢ is well defined and
continuous in such a way that (a) holds. We are going to prove that g is
surjective and that ¢~! is continuous and satisfies (b).

Let 2 = (20(z))ecov € A, 2 (R). We fix 0 < 93 < 12 < v1. For each
z€ CN let £, € A*(£2(2)) be unique with Fa+1(02(z)) = 2¢,) and minimal
norm, i.e. with :

|fal2 = feiwfi]fm |Fl2 = | a0yl -
Since © € A%, ; (7), for all ¥ > 0 we obtain
|fala < [lzlly exp(Hy(2) + L(7)), =zeCV.
Since |f.[? iy subharmonic, for all 2 & CV we get
(1) £ £ (volan (UG, F(2)/2)) Y3 fala i ¢ € Uz, 7(2)/2).

By the definition of A%, (B), for all z,w € CN with 2(2)N2{w) # 0, there
I8 hyw € A(2(2) N 2(w)) with

Je = fu=Than on 2{z) N 2(w).

r Now, foE each 2 € CV, we put 2'(z) 1= U(z,r(2)) € U(z,7(2)/20). If
2'(z) NV (i) # B, we denote by f. the restriction of f, to £2/(z). If 2'(z)n
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V(i) = 0, weput fL :=00n {2'(2). Forall z,uw € CN with 2/ (2)N2 (w) @
we define analytic functions k), ,, on 2'(2) N 2'(w) by the restriction of , ,
to £2'(z) N ' (w) if 2'(2) and £2'(w) do intersect V(ji). Otherwise we pw
by w i= (fs — 1) /15 These functions trivially satisfy

(2) fL— fl=0h,,, onf(z)02 w).

Let z,w € CN with £2/(2) N 2 {w) # 0. For all z € CV and { € () w

set ro(z) == (9/80)7(2) > 0 and get (since 2r £ ' = 7/16)
Ulz,2r(2)) C Uz, #(2)/16) C U{(,r¢()),
U(C. 4re(2)) < Uz, 7(2)/2)-
If £2'{z) and 2'(w) do not intersect V({i), then A/, = 0, by (2) and th
definition of f. and f/,. In the other case we may assume that 2'(2)NV (i) 7
. We put r; = min{re(2),7¢(w)}. By Lemma 2.2, for all ¢ € £2/(2) N £ (w
we obtain
U(‘z7 QT(Z)) - U(Z,T’(Z)) A U('w,'r’(w)) - U(C:'TQ')
and
U(¢,4re) C U(2,7(2)/2) 0 U(w,7(w)/2).
Thus by Lemmas 2.1 and 2.2, and by (1), for all 0 <y’ <y thereis C1 > |
not depending on z such that for all z,w € C and ¢ € (=) N 2'(w),
Ih'::,w(C” = (£ {0) = fL(N/BO] £ Gy Nl GXPH'!J(E)'

We are going to find a, € A{(2'(2)), z € CV, having appropriate bound
such that A, = @, — ay on £2'(z) N 2'(w) for all z,w € CV.

As in [20] we choose a sequence (2;);en in CV such that U(z;,7(z;)/40)
7 €N, is a cover of CV and such that 2'(2;), j € N, is locally finite in th
following sense: each » € CV has a neighborhood which meets at most {z
sets £2'(z;) and logl(z) = O(log(1 + |2|)) as |z| ~ oo, Thus there iy Cp >
and there are functions ¢; € D(2'(%;)), j €N, with -, ¢ = 1,0 ¢; £ 1
and |0¢;(2)] < Col(z) for all z € CV and j € N. For each z € CV we defin

e im S (61, )1 (2).
j=1
Since the sum is locally finite, h, is in C>(2'(2)). By (2), for all z,w € C’
we have
he = ho =Y i, = hyy  on 2 (z) N0 (w)
JEN
and in particular,

Bh, =8hy on 2(z) N2 {(w).

icm
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Thus we can. define v € Cony (CV) by u|2(2) := Bh, for all z € CV . Since
{2 (z;)) jen is locally finite in the sense described above, for all 0 < y' <y
there is Cs > 0 not depending on z with

(O] < Callelly exp B, (), (e,

These bounds imply L*-estimates, i.e. for all 0 < Yy < y there are Cy > 0
not depending on z with

J () exp(=2(H, @) dAQ) < Calla]%.
C'N
Since Ou|2'(z) == §Bh, = 0 for each z € CV, we get by Lemma 1.7 some
g € Wi (even g € C*°(CN)) with 8g = u. Moreover, we may assume that
this g is chosen in such a way that

S 1900 exp(—2(Hy, (©) + 2105(1 + [¢1%))) dA(Q)

CN
<2 [ u(Q) P exp(~2(H,,())) dA(Q),
CN
Then a, 1= h,—g|f2'(z) isin A(£2(2)) for each z ¢ CV, and for all z,w € CN
we have
G = ay = hl,,  on £2'(z) N Q' (w)
and thus
JL=fas = £, = fiaw  on 2(z) N2 (w).
Hence there is a unique f € A(CY) with f = f! - fia, on 2'(z) for all
z & CN. Since f satisfies appropriate L2-estimates on 2’ (2) and since | ]2
is subharmonic on 2'(z), z € CV, the function f belongs to A 41, and
moreover there is Cs > 0 not depending on = with
[f(2)| < Csllz|,, exp(H,, (2) + L()), =zeCV.
Thus ﬁor each z & AF}H:P (7) and all 0 < y3 < y1, we have constructed some
fe& A,y with o(f -7+ 4%) = & and
If + B~ A% llyn € Csllzlys.

This proves the assertion.

2.5. COROLLARY. Let yu be as in Proposition 2.4, If 8 : Wg — L?‘I(D,l)
has a continuous linear right inverse or if for each o € Vio(fi) there is o

plurisubharmonic function u, on CN such that for each y > 0 there are
>0 and O >0 with

U(a) 20 and ue(z) £ C - Hy(Z) — Hp(@) for all 2 € CV,a € Viol(fi),
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then there is a continuous linear right inverse for the quotient map AY, L=
Al ir/ (- Af).

Proof, We first note that in the hypothesis we may replace Vi, (i) by
V {i): If V(7i) is bounded, we may choose u, := Oforalla € V(7i). Otherwise
for each a € V(ji} we choose some o’ € Voo () with |a— a'| = dist(a, Vo (2)
and define u,(z) i= vy (2 — a +a') for z € CV.

To prove the existence of a right inverse for A%, — A%, (@), f ~
(F192(2) + I(2(2)))secw, we linearize the proof of the surjectivity of thi
map in the proof of Proposition 2.4. This mecans that we will show that w
can find preimages f € A?I_l_ pofae A%;_l_ . (B) with bounds as in 2.4, bu
which depend on z in a linear way. To this end we only have to linearize the
two choices which have been made in the proof of 2.4.

The first choice. For z € CV, let P, be the orthogonal projection o
A%(02(z)) onto I{12(z)). Then

R, : Bgy) — AQ(Q('Z))» Rz(mﬂ(z)) = fr — Py(fz), where f, € L0(z)s
is a continuous linear right inverse for the quotient map A?(§2(2)} — Eg(,
and with an operator norm which does not exceed 1. In fact, in 2.4 we hav
chosen f, = R,(zq(z)). Thus this choice has already been made in a linea
way.

The second choice. In 2.4 for a given z € A}y (i), a B-closed (0, 1)-forn
uwe Ly (0,1) has heen constructed (which depends on @ in a linear way). Pu

0=\ J2),

where the union is taken over all z € CV for which £2/(2) and {2’ (z;)
2'(2;) N 2(z) # 0} do not intersect V(). By (2) and the definition of f
and f;,j, we conclude that Gk, = 0 for all such 2.

Let a € CV\2 but a ¢ V{(#i). Since {2'(a) is not contained in {2, 2'(a)
V(f) # B or there is j € N with £2'(z;) N 2{a) # 0 and 2'(2;) N V() # {
Hence there is o’ € 2'(a) N V(R) or o' € 2'(z;) N V{}). We put ua(z) =
ta (2 — a+ @) for all z € CV. Then by the properties of the function r, th
hypothesis of Proposition 1.8 is satisfied. Thus by Proposition 1.8, there i
a continuous projection

P:WECN, 2) — A},
Now if g is in W} with 8g = u, by the definition of u and £ it follows tha
g € WE(CN,2). If we put § := g — P(g), then § has the same properties a
g (maybe with a larger constant Cs and a smaller norm index ys which d
not depend on z}, but in addition it depends on w in a linear way.

2.6. LEMMA. Assume that for each PP € A%\{0}, the multiplication of
erator Mp : AY — AY, Mp(f) = P . f, admits o continuous linear le
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inverse. If int G = 0, there is b € § with H(B) = H(—b) = 0. In this case
put 8" == {ib}. Otherwise set ' := S. Then there is a family (%a)acr(sy) of
plurisubharmonic functions on CV such that the fellowing holds: For each
y >0 there is © > O such that forall 2¢ CN and o € (s,

0<uulo} and ua(2) < Hy(2) — H,(a@).

Proof. We proceed ag in [20], Lemma 2.5. We first consider the case
where int G # 0. For « > 0, we fix Gy = (1 + 2)int @. Let (a;);en be a
dense gequence in §' = §. We fix j € N and choose a hyperplane a,J: +W;in
R*¥ which supports the convex set {z € CV | H\(Z) < Hi(@;)} ina;. By the
choice of (Gy)umo, the same hyperplane also supports {z e CV | Hy(2) <
Hg(@;)} in a; for all £ > 0. The maximal C-linear subspace L; := iW;n T/T;‘;
of the R-linear space W; has real dimension 2N ~2, hence complex dimension
N —1, and has the property

zei;l—i;-.n,r Hy(Z) = Hy(d;) foralle > 0.
We choose a C-linear functional [; : €V — C with kerl; = L. Then for each
J € N, we choose a sequence (Am,j)men of positive numbers with A1 ; >
2Am,i; m € N, such that the products
oo
Pi(z) = [J (1= 4(2)/(\mzay),  zeCV, jeN,
==l

and

oo
P)=]]Fi(), zecCV,
Jj=1
define elements of A (see Levin [11], Chap. I, Secs. 3 and 4). We fix j € N
again. We have

V(P;) = U {(Am,jaj =+ Ly).
meN

~ According to Proposition 2.4, we identify AY/(P; - AY) and A% (F;).
Since Pj(z +w) = Py(z) for all w & L; and since Apaij = 2Amg, m € N,
we may assume that the function v/ of Lemma 2.2 is chosen in such a way
that each ball 2(2) = U/(z, 16r'(2)), € CV, meets at most one hyperplane
Am.i@j + Lj, m € N. By the hypothesis, the multiplication operator Mp :
AY — AY bas a continuous linear left inverse @ A%y — AN Let Mp :
A% — AY be the operator of multiplication by Pl Tlien jraq Pit- Then
Qi =QoM p; 18 a continuous linear left inverse of Mp, : A?;I,~+'A_(},-, and it
induces a continuous linear right inverse R, : AY(Py) = AY/(Pj-AY) — AY
for the quotient map. Now for each m & N, let fm.j € A% (P;) be given by
Frn.51€2(2) = 1 modulo I{£2(2)) if Q(2)N(Amja;+L;) # 0, and frm ;|82(2) = 0
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modulo I(£2(2)) otherwise, z € CV. Then t, j := log |R; (fm,;)| is plurisub-
harmonic on C¥ with ty,; = 0 on Amja; + L;. Let

oq(y) = sup{z >0 | P 1@y <o} ¥y >0,
be the characteristic of continuity of . By Proposition 2.4, for all y > 0
and all 0 < z < 2’ < og(y), there are C,C" > 0 such that for all m & N,

Se‘i&_ (tm,j(z) — Hy(%)) = log By (Frni )y < ¢’ + log ”f'm,j lla

< O sup  (=Hy () = C — A 1 Ha ().
2EAm P T LJ
We substitute z = Am jw. For the upper semicontinuous regularization u,
of LM 8UP,, o A, (Am,g+) We geb 0 < u;(a;) and

uj(w) < Hy (@) — He (@), we .

We fix a € §" = §. We choose a subsequence (a,, Jren converging to ¢ and
denote by u, the upper semicontinuous regularization of limsup,., .. uj,.
Then by the Hartogs Lemma, we have
0 <ugla) and wg(w) < Hy(W) — Hy(d), weCV.
Finally, for each @ € I"(5')\{0} we put
o (w) = |afta ) (w/|6]), weCV,
and the proof is finished in the case where int G # .

In the other cage, if a € &' we distinguish the cases H(@) = 0 and
H(@) > 0. We will prove a little bit more than necessary.

Put 5 :={ib | be §,H(b) = H(~b) = H(ib) = 0} and Gy := G+ U(z).
Then for each ¢ > 0 and each a € S}, we have H,(3) = z|z| for all z in
a neighborhood of a. Now the previous proof produces plurisubharmonic
functions (uq)aergs:) with the desired properties.

Let £ > 0. Put Sy == {ib | b & S, H(E) = H(~b) = 0 and H(ib) > ¢}
and let G, be the interior of the convex hull of (1 + 2)G U U (). Since
Hy(z) = max{(1 + z)H(z),2|2!}, 2 € CV, for sufficiently small 0 <z < zo
we have Hy(Z) = (1 + 2)H(Z) for all z in some neighborhood of 4. Now

after small changes, the previous proof produces plurisubharmonic i'unctwm
(Ua)ae r(sy) with the desired propertics,

From [21] we recall the following notation:
NoTaTIoN. We define
vg(2) = supu(z), zeCV,
U

where the supremum is taken over all plurisubharmonic functions u with
v < H such that u < loglz| + O(1) as z — 0. By [21], this function is
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plurisubharmonic, does not exceed H, and satisfies vy < log|z] + O(1) as
z — 0 (here we allow a plurisubharmonic function to be = —cc). By [21],
there is a unique upper semicontinuous function Cp : § — [0, 0o[ such that

Pgi={zeC" |vy(z)= H(2)}={ a|a€ES, 1/Cx(a) < A < o0}

2.7.Remark. If ( is not pluripolar, i.e. if the C-linear span of G equals
C¥, by [21] we have

H(z) = limévy(2/8) = sup bvp (2/68), =z¢& CN\{O}.
610 650

The limit is uniform on closed subsets of CV\{0}.

2.8. LEMMa. For N = 1 let I'y C C be the support of AH, 1.e. H i3
harmonic precisely on C\I'g. If u < H ts subharmonic on C and u(0) < 0,
then {z € C | u(z) = H(2)} C I'y.

Proof. Assume that there is z € C\I'y with u(z) = H(z). Then u — H
is a nonpositive subharmonic function on C\I'y which vanishes at z. Hence
it vanishes on the component of C\I'y which containg z. This contradicts
u(0) < 0 = H{0) gince u is upper semicontinuous.

2.9. LEMMA. Assume that G s not pluripolar. Let A C 8 be closed. The
following are equivalent:

(1) Thereds 6 > 0 with Cy{a) 2 6 for all a € A.

(i) For each (some) y > 0 there is € > O such that uy. = H on A,
where u, - is the largest plurisubharmonic function on CN with w,. < H
and with u, . < H, —e.

(ili) There is a plurisubharmonic function on CV withu < H, u(0) < ¢
and u=H on A.

(iv) For each a € I'(A) there is o plurisubharmonic function 1, on CY
such that for each y > 0 there are x > 0 and C' > 0 such that for all z € CN
and a € I'(4),

ug(a) =0 and uy(z) < C 4+ Hy(z) ~ Hm(a),
If G is pluripolar, we have (1)=(il)&{iii)e(iv).

Proof. (i)=-(ii}. Let ¥ > 0. By the hypothesis, there is § > 0 such
that vy (a/8) = H(a/é) for all a € A. Define u = Svg(-/6). Then u is
plurisubharmonic, © € H and, since u is upper semicontinuous and «(0) =
—oo < 0, we can choose £ > 0 so small that w < Hy —e. Thus uy. > u=H
on A.

(ii)=>(i). Assume that {ii) holds for some y > 0 and & > 0. Since uye <
Hy, — g, we may choose 0 < r < 1 with uy(2) < H(z) — /2 for all |z| =r.
According to Remark 2.7, we may choose § > 0 so small that fvg(2/6) >
H(z) ~ ¢/2 for all |z| = r. We define u = vy (-/6) on Blr) and u :=
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max{vz{-/6), Uy} elsewhere. Then u is plurisubharmonic on CV withu <
H and u < 6log|a|+0(1) as z — 0. Thus v = u(6-)/6. Sin.c'el u(z) > Uy e (2)
if |z| = 1, we obtain H(a') 2 va(a') 2 uye(6a’)/6 = H{a')if 6a’ € A. Then
Svg(a/6) = H(a) for all o € A, Hence Cpyla) 2 6 foralia € A.

(ii)=>(iii). Put v = uy for some y > 0 and £ > 0 chosen according
to (ii).

(ifi)=>(iv). For each a € I'(A)\{0} we put

' ug = u(+/lal)|a — H{a).

Then w, is plurisubharmonic and ug{e) = u(a/|al)|a] - H{a) = 0. Let y > 0
be arbitrary. Since u < H and u(0) < 0, there is £ > 0 with u £ H) —e. We
choose & > 0 with Hy(z) < H(z) -+ /2| for all z € CV. Then

ua(2) < Hy(2)~ela|—H(a) < Hy(z)—Hy(a) for allz € €V, a € I'(A)\{0}.

(iv)=>(ii). Replacing u, by the upper semicontinuous regularization of
M 8Py .y o0 A tpe (A}, We may assume C = 0 in (iv). Hence for each y > 0
there are & > 0 and ¢ > 0 with

e + H(a) < Hy — (Hyla) — H(@) S Hy ~elal £ Hy, aeT{A).

Thus for each a € A we have u, -+ H(a) < H, ua(a) + H(a) = H(a), and
for each y > 0 there is & > 0 with u, + H{o) < H, —¢. This gives vy, = H
on A.

2.10. THEOREM. For each convex compact set G C CN containing the
origin in its relative interior, the following are equivalent:

(i) Each differentiol operator P(D) : A(G) — A(G), P € AN{0},
admits a solution operator.

(i) Thereis 6§ > 0 with Oy > & on S, i.e. vy = H oulside o compact
neighborhood of the origin (i.e. in @ “neighborhood of infirity”).

(iil) There is a plurisubharmonic function u on CV withw < H, u(0) <0
and with w = H in o neighborhood of infinity.

(iv) There is a family (ug)secw of plurisubharmonic functions on cN
such that the following holds: For each y > O there is a > 0 such that for all
2,0 & CV,

0 < us(a) and ue(z) < Hy(Z) — H ().
(v) The continuous operator 8: Wi — Lk o |, has a continuous linear
right inverse (see Lemma 1.7).

Fach of these equivalent conditions implies thai the interior of (7 18 non-
votd.

Proof. First we prove that (i) and (iv) each imply that int ¢ is nonvoid.
Assume that (i) holds and that int G = 0. Then there is b € S with H(b) =
H(=b) = 0. We put a := ib, By Lemma 2.6, there is & plurisubharmonic
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function u on CV with u({a) > 0 and such that for all y > 0 there is z > 0
with .

(3) u(z) € Hy(%) ~ H(&) forallzeCV.
The function H : C — R.., { = H(Ch), is the support function of a compact

convex subset of C. Since H (-1) = H (1) == 0, this set is contained in 4R.
Hence H is harmonic in the upper (and lower) halfplane. For % : ¢ — u(¢b),
we deduce from (3) that & < A and (i) = H(i). By Lemma 2.8, this is a
contradiction to #(0) < —H,(a) < 0.

If (iv) holds, by the reasoning of Lemma 2.9(iv)=>(ii), we may assume
that ¢ = 0. Hence as above we get a contradiction if we assume that int G
=1{.

(1)=>(iv). Since int & 5 0, (iv) follows from Lemma 2.6,

(iv)=(v). By Langenbruch [8], Thm. 1.3 and Rem. 1.11, there is a con-
tinuous linear projection P: W — AY,. Hence by Lemma 1.7, a continuous
linear right inverse R : L%I(m) —~ Wh for 8: Wi — L%:F(O,l) is given by

R(g) == f — P{f) whenever f € W& with 8f = g.

(v)=+(1): Corollary 2.5.
(tv)=>(ii). Since the interior of G is nonvoid, this holds by Lemma, 2.9.
(ii)=>(lii)=(iv): Lemma 2.9.

In the case of one complex variable we get a complete result for a given
single convolution operator: '

2.11. TuroreM. For N = 1, let G, K C C be compact and convez.
Let G contain the origin in its relative interior. If p € A(K) defines o
surjective convolution operator Ty, : A(G + K) — A(Q), then the following
are equivalent {see Proposition 1.5): S

(1) Ty, : A(G + K) — A(G) admits a solution operator.
(if) There is § > 0 with Cyr(@) 2 6 for alla € A= SNV (i)

Proof {i)=-(ii). Following an idea of Korobeiik and Melikhov (5],
we make a reduction to the case of a differential operator (see also [17],
Lemma 8). We choose a canonical product P € A°\{0} with Voo(P) =
Voo (1) and such that g := Ji/P is an entire function. ¢ has the same
indicator as 7 (see Levin [11], III, Thm. 3). By the hypothesis and by
Duality 1.4, the multiplication operator My : Ay — AY *% has 'a con*
tinuous linear left inverse L. Hence the operator LM, : Ay = 'A% is
a continucus linear left inverse for Mp : A, ~ AY%. As in the proof of
Lemma 2.6 (with 87 := SN V. (P)), we obtain subharmonic functions ue
on C, a € Voo (P) = Vi (fi), such that for each y > 0 there is # > 0.with

ug(a) 2 0 and ug(z) € Hy(Z) ~ Ho(@) forallz€C, a € V().
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By Lemma 2.9, applied with 4 := {@ | a € S'}, we get (ii) in the case
where G is not polar. If G is polar, i.e. if G = {0}, then H = 0 is harmonic.
The reasoning at the beginning of the proof of Theorem 2.10 shows that the
assumption Vio(H) # 0 leads to a contradiction. Thus Vo (f) = § and (ii)
holds trivially.

(if)=>(i}. We first consider the case G = {0}. In this case vy = —oco and
thus Cg = 0. Hence (i) implies that Voo(f) = f), i.o. V(&) consists of at
most finitely many points. By Hadamard’s factorization theorem, there are
w e C and a nonzero polynomial P with fi(z) = P{2)e*", z & C. Since T, :
A(E) — A({0}), Tu(f) = P(D) (- +w), is surjective, we obtain K = {w}.
This shows that 7 is slowly decreasing. Thus (i) holds by Corollary 2.5 (see
Proposition 1.5(a)).

Now let G be nonpolar. By Proposition 1.5(b), Ji is slowly decreasing
on the support I'g of AH. By Lemma 2.8, we have I'(Py) C I'g. By the
hypothesis, Vao(fi) C I'(Pg). Hence 7 is slowly decreasing on Ve (). By
Proposition 1.5(c), also (- A(C)) N A%, =7 - A}

Furthermore, by the hypothesis and by Lemma 2.9, there are subhar-
monic functions u, on C, a € Ve (f), such that for each y > 0 thereis ¢ > 0
with

ug{a) >0 and u,(2) € Hy(Z) — Ho(@) forallzeC, ae Vo(B).

Thus all the hypotheses of Corollary 2.5 are satisfied. Hence T}, admits a
solution operator.

2.12. COROLLARY. For N = 1 let K C C be convex and compact ant
pe AKY.

(a) If G = {0}, the only convolution operators T, : A(K) — A({0},
which admit o solution operator are those for which K = {w} and Ji(z) =
P(2)e*®, z € C, for some w € € and some nonzero polynomial P. (The
result for K = {0} is essentially contained in Meise and Taylor [13].)

(b) Let G = [a,b] € R be a nontrivial compact interval, and suppos:
the convolution operator T, : A(G + K) — A(G) is surjective. Then T,
A(G + K) — A(G) admits a solution operator if and only if Voo(fl) C Ré
(The result for K == {0} is also contained in Langenbruch [9].)

(c) If G is a compact convex polygon, let A C 8 be the (finite) set of oute
normals to the faces of G. If the convolution operator Ty, : A(G+K) — A(G
is surjective, then it admits a solution operator if and only if Vee(B) €
Uses R+

Proof. (a) follows from 2.11. (c) implies (b).
(¢) By Theorem 2.11, we only have to prove I'(Py) = Uyes R+8- B;
Lemma 2.8, the inclusion “C” holds. The other inclusion holds by Lemma 2.!
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and for instance by [19], Lemma 2.9 (which also works in the present situa-
tion).

Remark. We recall that until now no characterization of the surjective
convolution operators T}, : A([-1,1] + K) — A([~1,1]) is known,

An immediate consequence of Theorem 2.11 is the following.

2.13. THEoREM. For N = 1, the statements of Theorem 2.10 are also
equivalent to

(vi) Bach surjective convolution eperator T, 1 A(G+K) — A(G) admits
o solution operator.

NOTATION AND REMARK. If G is not pluripolar, there is a largest
plurisubharmonic function gg : CV — Ry with g = 0 on G and such
that ge(z) — log(1 + |2|) is bounded on C¥, namely

gc(z) =supu(z), =&CV,
U

where the supremum is teken over all plurisubharmonic function 4 on CV
with u < 0 on G and such that u(z) — log(1 + |2|) is bounded above on TV,
The function gg is called the pluricomplez Green function of G with pole
at infinity (see Klimek [4] and {21}). Let H; denote the support function of
the (convex) level set Gy = {z € CV | g(2) < z}, > 0. It is shown in [21]
that a lower bound for Cy|A is equivalent to a lower bound for a certain
quantity Dg|4 which measures the rate of approximation of G by the level
sets Gz, & > 0, in the directions of 4, namely

Defa) = E?&M e, a€s.

In [21} we prove that there is § > 0 with 6C'y < Dg £ Cyg. This gives:

2.14. THEOREM. If N = 1 and G is not polar (i.e. #G >'1), the asser-
tions of Theorern 2.10 are also equivalent to :

(vii) For cach (some) biholomerphic mapping .1 {z € C| |2| > 1} —
C\G with 1(00) = o0, there is § > 0 such that |¢'(2)| = 6 for ail 2] > 1.
(viii) There is 6 > 0 such that G + 62U(1) C Gy for allz > 0.

Proof. By [21], the assertions (viii) and Proposition 1.9(ii) are equiva-
lent. An application of the Koebe distortion theorem as in [16], Lemma 3.4,
shows that (viii) and (vii) are equivalent (Korobeiik and Melikhov [5],
Thm. 4.3). o

Remark. If u € A(K)' for some compact and convex set K ¢ CV, in

the present paper we considered for each convex compact set G C C¥ the
convolution operator T, : A(G + K) — A(G). Let 0-€ intG. It has been
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proved by Krivosheev [7} (see also [18], Thm. 3.9) that Ty, : A(G + K) -
A(G) is surjective if and only if T}, : A{int G 4+ K) — A(int G) is surjective

It is an obvious question whether there is a solution operator A(G) —
A(G+XK) if and only if there is a solution operator A{int ¢¢) — A(int G+ K
We do not know the answer in general. If NV = 1, in many “concrete
situations the answer is yes, because well known theorems of function theor:
give at the same time the same answer for both cases, i.e., for G and int G
In particular, all examples which have been given in [16] for domains int ¢
are in an obvious way also examples for compact sets Gl
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