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The one-sided minimal operator and the one-sided
reverse Holder inequality

by

DAVID CRUZ-URIBE, SFO, €. J. NEUGEBAUER
and V. QOLESEN (West Lafayette, Ind.)

Abstract. We introduce the one-sided minimal operator, mTf, which is analogous
to the one-sided maximal operator, We determine the weight classes which govern its
two-weight, strong and weak-type norm inequalities, and show that these two classes are
the same, Then in the ons-weight case we nse this class to introduce a new one-sided
reverse Holder inequality which has several applications to one-sided (A;,“) weightas,

1. Introduction. In our papers [1] and [2] we introduced a new opera-
tor, the minimal operator, so named since it is analogous to the Hardy-
Littlewood maximal operator, Given a measurable function J, define the
minimal function of f, mf, by

ww:wﬁgmm

where the infimum is taken over all cubes I with sides parallel to the co-
ordinate axes which contain @. In [1] we used the minima) operator to study
the structure of functions which satisfy the reverse Holder inequality; in
[2] we considered the weighted norm inequalities which hold for the min-
imal operator, and applied this to the problem of differentiability of the
integral.

The maximal operator, as originally defined by Hardy and Littlewood,
was a one-sided maximal operator on R (see [4]). The weighted norm inequal-
ities for the one-sided maximal operator were first considered by Sawyer [10]
and then by Martin-Reyes and others [5]-[8]. In light of this we define &
one-sided minimal operator.

1991 Mathematics Subject Classification: Primary 42B25,
Key words and phrases: one-sided (Ap) weights, reverse Holder inequality, minimal
function.
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DEFINITION 1.1. If f is a measurable function on R, then define the
(forward) one-sided minimal function, m* f, by
Tt

m*fle) = b 5 [ |f]dy.

‘We define the backward one-sided minimal function m™ f similarly.

In this paper we examine the weighted norm inequalities for the one-sided
minimal operator. All of our results are similar to those which hold for the
minimal operator, but the proofs are generally more difficult. The material
is organized as follows:

Section 2 contains two preliminary results which are used repeatedly in
later sections.

In Section 3 we show that for p > 0, the weak~type norm inequality

ul{z : m*flz) <1/t}) < o f W

holds if and only if the pair of weights (u,v) satisfies the (W,") condition:
there exists a constant C such that, given any interval I = [a,b],

P+l
f ude < C f 1+l gy
II | |I\

where [~ = [a,c] is such that 2|17 | = |I|.
In Section 4 we show that for p > 0, the strong-type norm inequality

L al 2 4
| o0 e

holds if and only if the pair of weights (u,v) satisfies the (W.F)* condition:
there exists a constant ¢ such that, given any interval I,

U
e g << O o
If mt(o /) T /

where ¢ = v1/(p+1),

In Section 5 we show that the two classes (W) and (Wi)* are the
same. This is a striking difference between the one-sided minimal operator
and the one-sided maximal operator, since for the maximal operator the
corresponding classes are not equal [8].

In Section 6 we consider the special case when uw = v. 'We begin by
defining a one-sided reverse Hélder tnequality: a weight w is in (RH]),
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s > 1, if there exists a constant C such that, for every interval I = [a,}],

1 R 1/s
(ﬁr‘[w dm) |I| fwda:

where again I~ = [a, ¢] is such that 2|T~| = |I|. We show that this condition
is equivalent to a “weak” reverse Hélder condition defined by Martin-Reyes,
Pick and de la Torre {7]. They showed that their inequality characterized
the class (AL), which is the union of the (A]) classes. The latter classes
of weights control the one-weight, weighted norm inequalities for the one-
sided maximal operator. Using this characterization we show that in the
one-weight case, each (W) class, p > 0, is equal to (A}). Further, by
using the one-sided reverse Holder condition we give new proofs of several
properties of (A7) weights, and thereby simplify the proof of the one-weight
strong-type norm inequality for the one-sided maximal operator. Doing so
answers a question posed by Martin-Reyes [5].

2. Notation and preliminary results. Throughout this paper all
notation is standard or will be defined as necessary. All weight functions
are assumed to be locally integrable, Given an interval I and a non-negative
function v, let |I| denote the length of I, and define v(I) = J;vdz and
I(v) = v(I)/|I]. Finally, given p > 1, ¢’ = p/(p — 1) denotes the conjugate
exponent of p, and the letter C' denotes a positive constant whose value may
be different at each appearance.

The next result is a technical lemma due to Muckenhoupt [9]. For con-
venience we repeat its short proof,

LeMMA 2.1. Given a function o and an interval I, let {I,} be a collec-
tion of intervals contained in I such that, for each o, f; odz < N|I|. If

J = Uy Ta, then [, odz < 2N|J|. A similar result holds if we reverse the
inequalities and reploce 2N by N/2 in the conclusion.

Proof. We prove only the first half of the result; the second is proved
in almost exactly the same way. Fix £ > 0 and let § > 0 be such that
Jpodz < & whenever |E| < 6. Then there exists a finite subcollection
I, I, of the I.’s such that

|Jn~\UI,u[>|J|u5
k=1

and no point js contained in more than two of the I}’s. Then
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fadﬂ:: fadsc+fcrdm

J AW In

n ”
<e+Y [ode<e+ Ny |L|<e+2N]J].
k=1 T, k=1

Since ¢ is arbitrary we are done. m

In later sections we are going to need the following decomposition of
finite intervals. It is similar to the Whitney decomposition of open sets in R.

DEFINITION 2.2. Given a finite interval I = [a,b] we form the pilus-
minus decomposition of I as follows: let 2y = a, and for & > 0 define
zr = (b+zp—1)/2. Then for k > 1, define the intervals Jy, = [zy—1, Zrt1],
Jo = [Zr_1, 24} and J = [zg, 2rs1)-

It is immediate from this definition that for all k, [J; | = 2|J;7|, that I
is the union of the J;’s, and that the J3's have finite overlap.

3. Weak-type norm inequalities. For completeness, we repeat the
definition of the (W,F) condition.

DerINITION 3.1. The pair of non-negative weights (u,v) satisfies the
(WF) condition, p > 0, if there exists a constant C such that, given any
interval I = [a,b],

1 fuda:<0 1 fvl/(p+1)d$ i
17 ~ A ’
i~ 1

where I~ = [a, ¢] is such that 2[I7| = |I].
In order to prove the weak-type inequality, we first need to show that
the (WQ“ ) condition is actually equivalent to a seemingly stronger condition.
LEmMMA 3.2. Given p > 0, a pair of weights (u,v) is in (W]ﬂ" if and ondy
if there exists a constant C such that, given A, 0 < A < 1, and given any
interval I = [a,b] and the subinterval I™ = [a,c] with |I7|/|1| = A,

1 C 1 prl
= < |
W g f s o o)

where g = pt/(P+1)

Proof If A = 1/2 this is the (W) condition. Therefore it will suffice
to prove that the (W) condition implies this condition. If A < 1/2 this
is immediate. Therefore we may assume that 1/2 < A < 1. Fix A and let
n > 1 be the least integer such that A < (2™ — 1)/2". Now fix the intervals
I and I™ as above. Form the plus-runus decomposition of I described in
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Definition 2.2. Then I~ is contained in the union of Iy '8, 1 <k < n By
the (W,") condition,

p 1 p+1
udz < ClJy || 0~

Juass (53 If"d‘“) |
&

Therefore,

4 n
}f udmﬁ? f1nd:c50|[|;2p(k%”(~% fcrd:c)pH

=l ‘, I

p+1
f"@‘“"”?(% farc:l,r) :
I

Since by our choice of n, 287" > 1 — X, we are done. u

<

In passing, note that the same proof shows that if the pair {(u, v) satisfies
inequality (1) for some ratio A then (u,v) is in (W)

TuporeM 3.3. For p > 0, the pair of weights (u,v) satisfies the (W)
condition if and only if there exists a constant € such that the weak-type
tneguality

o v
wlfor s m* = .
ul{e:mt (o) <1/8) < 2 Rf ik
holds for oll f such that 1/f is in IP(u).

Proof. Suppose first that the weak-type inequality holds. Fix an interval
I'and let f = ¢/, where ¢ = v1/PT1) Partition I into adjacent intervals
I and I* of equal length, I~ to the left of 7. Then for any z € I,

1
T < — ..
m f(&)_ !I"‘} ffadz‘

Let 1/t equal the right-hand side, Then

w(I7) S ul{w: mTfla) < 1/t))

(—' C A\ W C Pl

sy (S oe) (3 =i [ o)™
r I I

Since €' is independont of 1, (u,v) is in (W),

Conversely, suppose that (u,v) is in (W7). We will first consider the
special case where f i stuch that 1/f has compact support. Fix ¢ > 0 and
let By = {z : m¥f{x) < 1/t}. Since m* f is upper semicontinuous, B, is
open and so is the union of disjoint open intervals I, 7 > 1. Since 1/f
has compact support, each of the J;’s is bounded. Fix § and form the plus-
minus decomposition of I; described in Definition 2.2. We now claim that
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for each k,
1
(2) —— [ |fldz < 8/t.
|Jé ]Jk

If this is true then by Lemma 3.2,
_ C u(J) C ol -p
MIj}:Zu(Jk)SE%.&(}f})P < ‘E;?U(Jk) ( f |f\dm) .

k Jis

By Hélder’s inequality,

o
[ ode= | g WP da
Jr

Jic
1/(p+1) /(p+1)
(e (Jne)
Ji Ik

Therefore, c
C v 7
u(l});g EE‘EE: ‘f T}TE dr S;EB ‘r T}ﬁ;’dﬁ,
ko Jg I;
the last inequality holding since the Ji’s have finite overlap. If we take the
sum over all § we get the desired inequality.
It therefore remains to show that (2) holds. To do this we will first show

that
b

[ 1fldz <2/t

Tp—1

(3) bfl—“

Ti—1

To see this, note that if = is in (zz—1,b) then z is in By, so there exists a
point y such that

L
< 1/¢.
- f |flde <1/
If y > b then, since b is not in B, it is easy to see that the same inequality
holds if we replace y by b. Therefore, we may suppose that y < b. But if
this is frue for every such x, then by Lemma 2.1, we have inequality (3).
Inequality (2) now follows at once since b — @x—y = 2|J; | = 4|JF|.

To complete the proof we now consider an arbitrary f. Define the se-
quence of functions fr, = f/x{ nn. Then the weak-type inequality holds
for each f,. Now the sequence {f,} decreases to f. Further, the sequence
{m* f.} is also decreasing and m™ f < limm* f,,. To see that equality holds,
fix  in R and € » 0. Then there exists an interval I = [z,y] such that for
all n sufficiently large,

m* f(z) 2 I(fl) — 2 = m* fufa) — =
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Therefore, by the monotone convergence theorem, the weak-type inequality
holds for f and we are done.

4. Strong-type norm inequalities. We begin by restating the (Wr*
condition.

DErFINITION 4.1. The pair of non-negative weights (u,v) satisfies the

(W) condition, p > 0, if there exists a constant C such that, given any
interval I,

u
!Wcﬂng}]‘adm,

where ¢ = ¢/ p+1)

The next proof follows that of the strong-type inequality for the one-sided

maximal operator given by Martin-Reyes, Ortega Salvador and de la Torre
in [6].

'THEOREM 4.2. For p > 0, the pair of weights (u,v) satisfies the (W
condition if and only if there exists a constant C such that the strong-type
inequality

u v
e dr < C | ——4d
,;f (1) Rf T
holds for all f such that 1/f is in IP(v).

Proof The (W;)* condition follows immediately from the strong-type
inequality if we fix an interval I and let f = ¢/x7, where o = p1/®+1),

To prove the converse, suppose that (u,) is in (Wi,j")*. It will suffice to
prove the strong-type inequality for v everywhere positive; for if (u,v) is in
(WF)* then so is (u,v +¢), € > 0, and the strong-type inequality would
follow for (u,v) by letting ¢ tend to zerc. Further, by an argument identical
to that at the end of the proof of Theorem 3.3, we may assume that f is
such that 1/f has compact support.

Fix a function f and, for each k in Z, define

Op = {&:m™ fz) < 1/2%}.
Each set O is open, so O = U,J. Iik, where the I;;’s are disjoint open
intervals. Since 1/f has compact support, the I,;'s are uniformly bounded

in length. Then by the proof of inequality (3) in Theorem 3.3, each interval
i = (age, byi) has the property that if z is in I,y then

bin
[ 1fldy < 2754,

a

bj;e"-:l?
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For each 7 and k, define
Ejp={x: mtf(z) = Q_k_l} NJyg.
The sefs F;, are pairwise disjoint and
UEJ"“ ={z: 2% <mtf(z) <27} = E}.
J

Therefore
u

i
e | mme

J By

by —-p
S4PZZ f(bjkl—mffdy) uwdz.
ki B

&*

To estimate the last term, let X = Z x Z x R and let w be the measure
defined on X by v x v x m, where v is the counting measure and m is
Lesbegue measure. Now define the function ¢ on X by

1 by —p
0008, = s, ehut) (1 [ rdy)
ik
and define the operators S and T on L*(o) by
3k d
Sh{j, k,z) = Jrody Thij, k, ) =

I hor dy

and 0 otherwise. Note that by Hélder’s inequality, we have Shij, k,z) <€
T(h="Y(j,k, )"~ for any-r > 1. Suppose that T is a bounded operator
from I*(0) to L?(X, ¢dw). Then if we let r = 1+ 2/p, the last term of the
above inequality is bounded by

47 [ S(Ifl/aV¢do <48 [ T(o™~Y/|f]" )26 du
X X

ifz e Ej;c,

. oF Y
< 4PC f WUdm:ﬁL”C’ f de,
which is the desired inequality. It therefore remains to show that T is
bounded. To do this we will apply the Marcinkiewicz interpolation. But
T is clearly bounded on L*, so we need only show that T is weak (1,1,
that is, T satisfies

[ édw< % f he da.
{|ThI>A}

icm
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To prove this, let A;x(A) = {z : Th(j, k, £) > A} N Eji. and let s;;,(A) =
inf A;x(A). If we define

JJ’# = Jj‘k(A) = [Sjk(A), bgk)!
then Jj and Ji,, are either disjoint or one is contained in the other. Fur-
thermore, by the definition of s;,(A),
1
(4) %a(ij)Jf ha > A,
ik

Let {J;} be the maximal elements of the family {/jx}. These maximal el-
ements exigt since sup (I jk] < o0 and so the intervals J5r have uniformly
bounded lengths. Obviously, inequality (4) holds for each J,. Further, by
their maximality, the J;’s are disjoint. Therefore

1 by

[ (o)

{ITh]>2} &

=3 ) f ( . 1_9: :fko-dy)_pudm

T T C ) Agar) SO0
U
< — Az < CY ol
; J“f m*(o/xs)P ; )
c c
SXEZ!hadeXﬂ{hadx.

(The second inequality is the (W;F)* condition.) Thus T is weak (1,1) and
the proof is complete. w

5. The equivalence of the (W) and (W;)* conditions. In this
section we show that the two classes (W;F) and (W;")* are the same. The
proof requires two lemmas.

LemMa 5.1, Suppose (u,v) is in (W;F). Then there exists o constant C
such that, given an interval I = [a, b,

i
| e dze < Cor (I~ UIT),
J wrery de S 0o I

where I7 = {a,¢] and I'" = [¢,d] are such that 2]]~| = |I| and 2|I*| = |I~|.
Proof. For each ¢ > 0 define the set
Ey={z el :mT(o/x1)(z) < 1/t}.
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Then

mt(o/xr)?

where r is a constant to be chosen below. Denote the first integral on the
right-hand side by « and the second by J. Then we immediately have the
estimate o < u(I7)rP. To estimate J, note that the set F; is open, and
50 it is the union of disjoint intervals I;. Fix j and form the plus-minus
decomposition of I; described in Definition 2.2, Then

= .__dm:pftp-lu(a)dtmf+f,
1] 0 r

=2 _ > o(JIN\E o2 Ji| C
) =) 0 Yol (TEH) < 0% B < .
B 3 k=1 k=1

The first inequality follows from the (W,") condition and Lemma 3.2, the
second from inequality {2) of Theorem 3.3, and the third since the Ji's
have finite overlap. Therefore, if we sum over all § we see that uw(E,) <
C| Byl /tP*T! < C|I~|/#PTL. Hence
g S
r
Let
PP = a(I” UI+);
u(I7)
then by the (W) condition (and Lemma 3.2),
ClI"|
Z——
= a(I-UIt)
If we combine these with the above estimates we get the desired inequality. m
LEMMA 5.2. Fizp > 0 and let (u,v) be in (W;7). Then if {K;} is a
sequence of mested intervals such that K; 1 C K; for olli 2 0, and |K;
tends to zero os 1 tends to infinity, then
U
lim e e (i =
i Kf G T
Proof. Since the K,’s are nested, m™(o/xx,) < m™{o/xx,,,), and
since || tends to zero, 1L/m™(¢/xk,) tends to zero almost everywhere in
Ky. From Lemma 5.1 we see that u/m™(c/xk,)? is integrable on Ky (let
I~ = Ky), so by the dominated convergence theorem,

X U _
Jim K{ o e =0

The conclusion follows at once. m -
THEOREM 5.3. The pair (u,v) 1s in (W,7) if and only if it is in (W;H)*.

icm
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Proof. Clearly it will suffice to show that if (u,v) is in (W) then it
is in (W;)*. Fix an interval I and form the plus-minus decompogition of T
described in Definition 2.2. Additionally, let J % be the interval whose left
and right endpoiuts are the right endpoints of J 5 and I. Then we have the
estimate
U

——— <
}f m+(o-/XI)P d.’L‘_ f +\’f )
i
By Lemma 5.1, the first integral is bounded by Co(J1), where C is some
constant that depends only on (u,v). Since m* is calculated only using
forward averages, the second integral is equal to

@
— e — d1,

‘,[ mt{a/xs)P

' 1

Now J{ = J; U J}, s0 we may repeat this argument for this integral. Hence,

by induction we get for all n > 0 the estimate

u " u
e e — X Je) + [ ———— dz.
me*“(a/xf)" ,,;a( * J,f A CT

By Lemma 5.2 the last term tends to zero as n tends to infinity. Therefore,
since the Jy's have finite overlap, we have

dx < Oicr(Jk) < Co(D).
k=1

If wmt(a/xr)P

Hence (u,v) is in (W;)*. =

6. One-weight norm inequalities and the one-sided reverse
Holder inequality. In this section we consider the special case of weights
w such that (w,w) is in (W), We will show that such weights are related
to the (A7) weights, which control the weighted norm inequalities for the
one-sided maximal operator.

In [7], Martin-Reyes, Pick and de la Torre defined the class of weights
(42). -

DEPINITION 6.1. A function w is in (A7) if there exist positive constants
C and 6 such that, given two adjacent intervals I~ and I *, I™ to the left
of I, and given a measurable subset B of I*, we have

|£] w(E) )5
—_— & .
-yt~ ¢ w(l—)
This is not the obvious one-sided analogue of the (Ae) condition. Using
it, however, the anthors of [7] proved the following result. - e
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THEOREM 6.2. Given a weight w, the following are equivalent:
(1) w is in {AL).
(2) There ewists p, 1 < p < oo, such that w is in (A7),

(3) w satisfies a weak reverse Holder inequality: there exist constants ¢
and & such that for every interval I = [a, 1],

[w Pz <C [ wde- M(wx) ().
I I

(4) There exist constants C and § such that, given two adjacent intervals
I7 and I't, I to the left of I, and given a measurable subset E of I, we

have
5
E
_wlE) oY
w(l— U IT) ad
We want to replace the weak reverse Holder condition of Theorem 6.2
by the one-sided reverse Holder condition given above. For convenience we
repeat the definition.

DEFINITION 6.3. A weight w is in (RH), s > 1, if there exists a constant
C' such that, for every interval T = [a,b],

1 )1/3 c
— | w'dz <= | wds,
(74 m ]
where I~ = [a,¢] is such that 2|1~ | = |I|.

To prove Theorem 6.5 below we need a lemma which is a special case of
Lemma 3.2.

LeMMA 6.4. Given s > 1, a weight w is in (RHF) if and only if there
exists a constant C such that, given X\, 0 < A < 1, and gwen any interval
1= a,b] and the subinterval I™ = [a,c] with |I7|/|I| = \, we have

1 b C 1 .
—— s & by
(mff wis) s ST v

THEOREM 6.5. A function w satisfies the weak reverse Holder condition

(3) of Theorem 6.2 with constant § if and only if it is in (RHF;-&)-

Proof First suppose that w is in (RHf;ﬁ) for some 6. Fix an interval
I = [a,b] and form the plus-minus decomposition of I described in Defini-
tion 2.2. Additionally, let Ij be the interval whose left endpoint ig the left
endpoint of Ji and whose right endpoint is.the right endpoint of 1. Then

icm
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|y = 2|Jg|. Therefore, by the (RH{, ;) condition and Lemma 6.4,

fw'““‘idm:z fw”'ﬁdzchi fwdm(wl—[ fwd:c)ﬁ
y %

k=1 - k=1 Ty Jr
[ev] &
1
< —
H“Ckzl fwda:(lfkl fwdz)
e Iy

<G [wde-Mwxn)®) < C [ wde M{wy)(v.
Rzl gy I

Hence w satisfies condition (3) with constant §.

Conversely, suppose that w satisfies this weak reverse Hélder condition.
Again fix an interval I = [g,b] and partition it into adjacent intervals /+
and I of equal length, I~ to the lefs of I+, For each point ¥ in IT, let
Iy = [6,y] and define

M= yienflj_ M{wxr, )(y).

If M = 0 then w must be equal to zero a.e. on I 7, 8o there is nothing to
prove. Therefore we may assume that M > 0. For each point y there exists
an interval J, containing y and contained in I, such that M < 2J,(w). But
then by Lemima 2.1 we must have M < T (w). Now fix a point y such that
Mwxr,)(y) < 2M. Then by condition (3),

wa‘Sda:g fwl'*“‘sdmg(;’fwdm-(ﬂlff)é
i I, I

SC’}fwdas(ﬁ—‘ fwdm)é.

I

Hence w is in (RH [, ).

The relationship between the (W) classes and (AY) follows at once
from the next lemma, which extends a result of Stromberg and Wheeden
[11] to the one-sided case.

LEMMA 6.8. A weight w s in (RH) if and only if w® is in (AL).

Proof. Suppose first that w is in (RH;"). To prove that w* is in (A%,)
we will use another condition due to Martin-Reyes, Pick and de la Torre [7]
which is equivalent to the (AL ) condition. It will suffice to show that there
is a constant ' such that if I = [a,d] is any interval, and I~ = [a,b] and
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It =[c,d] are subintervals such that b < ¢ and [I~| = |IT| = |I{/4, then
1 1 \
o g dx — _ <C.
|I_|I‘[w dx exp(|I+II‘[ log w dm)_C

To see this, partition I into adjacent intervals J— and J* of equal length.
Then

1
L fwsd.:z:-exp (—»T f logw"sdw)
-1 d 1 4

1 : T °(e-1)
Cl— wdm) cex (—w-w ogw"™ a:)
(= J P

<
I
1 8 1 - a(p~—1)
<Ol —— wda:) (— we d:c)
(iJ_lj[ o

1 5 1 e s(p—1)
<Cl — wd:c) (—— w P da:) .
(1 S v) (71

The first inequality follows from the (RH) condition, the second from
Jensen’s inequality. By Theorem 6.5, w is in (A1}, so by Theorem 6.2 it is
in (A7) for some p > 1. Hence for the appropriate choice of p the last term
is uniformly bounded for all intervals I.

Now, conversely, suppose that w? is in (AL). Then w® is in (A]) for
some g > 1, so by Holder’s inequality, if I is any interval, then

— Lo Tt (a5 {1—g ) ya=1
[ () = L e

It (wst-e2)e-1

< I (w) I (=971t () < CT(w)s.

Hence w is in (RH). m

As an immediate consequence we get the following result.

THEOREM 6.7. For 0 < p < oo, the pair (w,w) is in (W) if and only if
w s in (AL).

We want to conclude this section by showing that the one-sided reverse
Holder inequality can be used to simplify the proofs of several theorems
about the structure of (A;) weights.

First, note that by Lemma 6.4 and a calculation identical to the one
which shows that if a weight w is in (RH,) it is in (Ao,), we can show that
if wisin (RH}) for some s > 1 then it satisfies condition (4) of Theorem
6.2. (See Garcfa-Cuerva and Rubio de Francia (3, p. 401] for details.) -
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Second, and more importantly, we can show that ifwis in (A} ) for some
p > 1, then there exists ¢ > 0 such that w is in (AY_.). This gives a proof of
this key result which only uses the structural properties of the (A1) weights
and does not use the weighted norm inequalities for the one—sideg maximal
operator. This answers a question posed by Martin-Reyes [5].

To prove this fact, first note that if w is in (A7) then it is also in (RH})
for all 5 > 1 which are sufficiently close to one. Then by Lemma 6.6, w?®
is in (AZ). Now parallel to the “positive” classes (AF), (AL) and (RHF)
are the “negative” clagses (A7), (A%) and (RH;), the definition of each
being the mirror image of the associated “positive” class. Identical proofs
show that the exact same relationships hold among them, and the positive
and negative classes are related by the fact that if w is in (A7) then wl~?

is in (A7 ). Hence for some s > 1 the same argument as above shows that
w =) s in (AZ). But Martin-Reyes, Pick and de la Torre [7] showed,
using only the structural properties of (A7) weights, that this implies that
w® is in (AF). Therefore, by Holder's inequality, w is in (A;"_E) for some
>0
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Weak Cauchy sequences in Lo, (g, X)
by

GEORG SCHLUCHTERMANN (Mimnchen)

Abstract. For a finite and positive measure space (2, Z, ) characterizations of weak
Cauchy sequences in Loo(u, X), the space of p-essentially bounded vector-valued functions
f 12— X, are presented. The fine distinction between Asplund and conditionally weakly
compact subsets of Lo (g, X) is discussed.

1. Introduction and preliminaries. In his celebrated paper [Ta,
Th. 1] M. Talagrand gave a parametric Rosenthal £1-dichotomy. With the
help of this result conditionally weakly compact subsets of Ly, X),1 <
p < 00, the space of Bochner integrable functions, can be characterized. A
characterization for p = co has not been found vet. The relatively weakly
compact subsets of Lo (1, X) were considered in special cases by K. T. An-
drews and J. J. Uhl [AU] and in general by the author [$3). A basic tool in
both papers is the celebrated factorization lemma of Davis, Figiel, Johnson
and Pelczyriski.

Here, in a modified version, this method will be applied to give a com-
plete (i.e. for all Banach spaces X)) characterization of conditionally weakly
compact subsets and weak Cauchy sequences of Lo (1, X). Tt is mainly based
on a result on parametrizing operators T 1 X — Ly (s, Y)* (sce the definition
below). In Section 3 a fine distinction between Asplund sets and condition-
ally weakly compact sets is sketched for Loo(i, X). In the survey article
of L. H. Riddle and J. J. Uhl [AU], this was given for arbitrary Banach
spaces by means of topology, vector measures and geometry. Here, this will
be illustrated in the particular situation of L (g, X).

First we fix some notations and definitions which are used in the paper.
X and Y denote Banach spaces; B(X) resp. §(X) is the unit ball resp. the
unit sphere of the Banach space X If not indicated otherwise, we consider
& positive and finite measure space, which will be denoted by (2, ¥, u).
Then L,(u, X) = L,(02,5, 4, X) for 1 < p < oo is the usual Bochner
space. Lieo(p, X*, X) is the set of equivalence classes of w*-measurable and
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