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On the multiplicity function of ergodic group extensions. IT
by

JAKUB KWIATKOWSKI and MARIUSZ LEMANCZYK (Torun)

Abstract. For an arbitrary set A € NT containing 1, an ergodic automorphism T
whose set of essential values of the multiplicity function is equal to A is constructed. If
A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-
dimensional torus.

1. Introduction. Let T : (X,B,p) — (X, B,s) be an antomorphism
of a standard Borel space. It induces a unitary operator Uq : LAHX, p) —
LYX,p), Urf = fT. Define Z(f) = span{fT* : k € 7}, f € L3(X, p). By
the spectral measure o¢ of f we mean the unique Borel measure on the circle
T given by

Gi(n) = f Zhdog(z), mneZ.
T

A number m € Nt U {oo} (N* = {1,2,...}) is said to belong to the set
of essential values FE(T) of T if there exist fi,...,fm € L?(X,u) with
Z(fi) L Z(f;), ¢ # j, such that op,,...,0p, are all equivalent and for
no element f € L*(X,p) for which Z(f) L Z(f1) ©...® Z{fm), o7 is
equivalent to oz, . The greatest element of E(T') is called the mazimal spectral
multiplicity of T and will be denoted by msm(7'). Among spectral measures
there is one, say oy, such that o, < oy for all ¢ € L*(X, p); call it the
mazimal spectral type of T'. For more spectral theory of unitary operators
on separable Hilbert spaces see [19]. '

Our goal is to describe what kind of subsets 4 C N* can be realized as
E(T) for some ergadic T'. Although no restrictions to reach an arbitrary sub-
set: of NT are likely to exist, constructions to obtain a concrete set as E(T)
are guite complicated. Before the paper of Oseledec [18], the only known val-
ues for F(T) were: {1}, {oo}, {1, 0c} {the latter in the case of quasi-discrete
gpectrum automorphisms [1]). Oseledec constructed an ergodic T with

2 <msm(T) < 30.
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208 J. Kwiatkowski and M. Lemanczyk

As shown by Vershik, for Gaussian automorphisms either E(T) = {1}
or E(T) is infinite (see [4], part IIT). It follows from Katck—~Stepin theory
of cyclic approximation that a “typical” automorphism T (with respect to
the weak topology of automorphisms) of (X, B, ) has E(T) = {1} ([12])
with the maximal spectral type being singular. Other generic results, like
describing B(T x T) for “typical” T, are studied in [11]. More information
about the history of the spectral multiplicity in ergodic theory can be found
in [21]. A real progress has been made by Robinson [21], where for givenn €
N*, an ergodic (even weakly mixing) automorphism T with msm(T) = n (in
fact B(T) = {1,n}) has been constructed. Fxtending the result of Mathew
and Nadkarni [18], in [2] and [15] ergodic automorphisms with E(T) =
{1,2n}, n = 1, have heen found, where furthermore 2n corresponds to the
multiplicity of the Lebesgue component (Robinson’s examples have singular
spectra); Banach’s famous problem of finding an exrgodic T with E(T) = {1}
and Lebesgue spectral type is still open.

Let A C N satisfy

(1) le A,

Extending the main result from [21], in [22], given a finite A satisfying
(1), an ergodic T for which A = E(T) has been constructed. The paper
[8] is devoted to extending this result to arbitrary (not necessarily finite)
subsets of N satisfying (1). In [3], Robinson’s result from [22] is reproved,
though this time with T being additionally an analytic diffeomorphism on
a finite-dimensional torus.

In this note, based on the methods from [8] and (3], by some algebraic
perturbation of the main idea from [8], we will prove the following

THEOREM 1. Given o set A C Nt with 1 € A, there exists an ergodic T
such that E(T) = A. Moreover, T' can be constructed to be weakly miring.
If A is edditionally finite then T can be constructed as an analytic diffeo-
morphism on o finite-dimensional torus.

m,n € A = lem{m,n) € A.

Yor other recent papers where the multiplicity problem is treated, sce
(51, [6], [7], [13], [14], [17], [20].

The authors would like to thank Jan Kwiatkowski for some valuable
_discussions. :

2. Description of the method. The properties announced in Theo-
rem 1 will, in fact, be properties of a cocycle. We briefly recall the method
from [8].

Let T : (X, B,u) — (X, B, p) be an ergodic automorphism. Assume that
G is a compact metric abelian group with Haar measure m. Any measurable
map p : X — G s called a coeyele; in fact, the cocycle generated by 1 is

icm
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given by
plz)p(Te)...o(T" 12), n>0,
(2) M (e) = < 1, n=0,
(T z)...p(T 27, n<0.
The cocycle ¢ gives rise to an automorphism
Tp: (X x G ~ (X x G f), Ty(z9)=Tz,0(z)g),

called a group ezstension of T, where i stands for the product measure px m.
Clearly,

LHX % G, i) = P Ly
xe@

where L, = {f @ x : f € L*(X,)}. The spaces L, are closed and T,-
invariant; moreover, Ur, : L, — L, is unitarily equivalent to

VfF,T,X : LQ(X’FL)—’LZ(XHU)’ VQD,T,X(f)=X‘P' IT.
The maximal spectral type of V, 1, will be denoted by g, (note that if
x = 1 then V,, 7, is unitarily equivalent to Ur).
Let v : G — G be a continuous group automorphism and let ' G- G
denote its dual, ¥(x) = xow. If x € G then its U-trajectory is the set

{x:50x), 9%(x), ...} Put

B(v) = {card({x, 900, #*(x), - -}) : x € G}.
In [8] the following theorem has been proved:

THEOREM 2. Given a continuous group automorphism v : G — G, there
exist an ergodic automorphism T : (X, B, ) — (X, B, ) end o cocycle @ :
X — G such that

(a) Vi1, has simple spectrum for each x € a,

(b} ifx,v € G are in the same D-trajectory then 0y and o are equivalent,

(c) if x,v € G are in different T-trajectories then g, and g, are mutually
singular,

(d) T, is ergodic.

If T, satisfies (a)-(d) above then obviously E(T,) = E(v). In [22], [8]
and (3], given a set A satisfying (1), some compact abelian metric group G
and its automorphism v with E(v) = A are constructed. However, as we
were recently informed by Professor B. Weiss, the sets E{v) always satisfy
(1). Therefore by Theorem 2 we can only reach sets satisfying (1) as sets of
essential values of the multiplicity function.

If H ¢ @ is a compact subgroup then it determines a natural factor T, g
of T, given by

Ty : (X x G/H, i) = (X x G/H,fn)s  Tprr(w,9H) = (T, ¢(z)gH),
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where py is the image of fi via the map (z,9) — (z,¢H). Define
H=amnH ={xeG:x(h)=1Tor each h € H}.
We have annH = H. Notice that (up to a natural identification)
(3) L*(X x G/H, ig) = P Ly
xEH
and Ly is now Ur, ,-invariant, Let H C @ be a (countable) subgroup. Set
E(v, H) = {card({x,0(x), B*(x),...} N M) : x € H},
THEOREM 3. (iven a continuous group autororphism u G G oand

a subgroup H C G, there exist an ergodic outormorphissn T (X, B, 1) —
(X, B, 1) and a cocyele  : X — @ such that Ty, is ergodic rmul

E(Tym) = B(v, M),
where H = ann H.

Proof. Take T and ¢ satisfying the assertion of Theorem 2. Notice that
the quotient action Ur, , on L, is exactly the action of Ur, on Ly; now,
by (3) and (a)-(d) of Theorem 2, the result directly follows.

The most difficult part of Theorem 1 will be proved if we show the
following

ALGEBRAIC LEMMA. Given a subset A C NT with 1 € A, there erist o
compact metric abelian group G, a continuous group gutomorphism v : ¢ —
G and a subgroup H C G such that

(4) (UsH) =4

Proof. We will show that on G=TxTx... wecan find v and H =
ann M satisfying (4). We have G = Z & Z @ ... Suppose that

A={l<n <ny<.. }cN+.

First, define sequences of natural numbcrsl < Zém . < iw <,
k—l 2,..., as follows:

=1, lg=2"_y, k=203,...,

W =001y p= Loo,ng, k=1,2,..,
Put

H={he&:h=(hi,hg..)h,=0forneN\ {9, a0
51+l?(w), ll+...+lk~1+35k T +ik~1+5m“-~}}-
Define 7: & — G to be the following permutation:

U((h‘l‘l tes 1.h-l1:}?'ll+1; v T_hh-l—lg: fee :@1+...+llk_.l+la ey hl-l+....+l;¢w.;_-|~hi: e ))

e
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= (i"l:ﬁ ’ hi, L] :hl1—17@1+t:2 ) hlj_-?—la LR hll-HgAla
e ~

: ’@1+v--+lkg1+lkv hl1+---+lk—1+1=' s hl1+v--+[k~1+1k”‘1’ .- )

Al

Notice that A C E(v,H) because card({0,7(0),...} N'H) = 1 and
card({h, #(h),...} N H) = ny f01 h € H defined by h
hn=0lornstly+.. 4+l —H

It remains to show that E(v, H) C A. Take h € H. Then only a finite
number of Ay, are different from zero. Let 1 € N be largest such that h; # 0.
’lhcrc exist kyp € Nfor whichi =18 + ...+ 1 + EU‘ (1< p<ng). Then

e (h) = h because I |l for i < k. Assume that there exists ¢ € N with
g<psuchthat for y =l +... + 11 + lé we have h; # 0. Now, if we
look at the “distance” between the nonzero values h;, h; in 3™ (R) (m € N),
we will always find either i — j or (I — 1) — (i — j). Moreover, whenever
" (h) € H, the nonzero values h;, h; will be at positions with indices in the

bt 10 = L

v
sat

L*‘z{31+"'+5kw1+lfa---,11+ o leer + I}

Thjs
However, the numberb l k 17(1 are chosen so that lm lz(,!;) = lg’f) - Zéi:)

and (lr--l)w(l;(Jl m ) 7& L’ lt(,f for {pm, 02} # {q1, @2} Thus ™ (h) € H
implies I |m, so ™(h) = h and hence

card({R,5(h),.. .} NH)=1 (€ A).

Agsume now that k; is the only nonzero value among the coordinates
with indices from Iy +. ..+t +1 to Iy +.. .4+ 1. No matter what the other
nonzero values of b are, we will show that T™ (k) € H iff h; (in ¥ (k) stands
at a position whose coordinate belongs to Lz. The necessity is obvious. The
“distances” (in {l1+...+l-1+1,...,li+...+i}) between the coordinates
from Ly, arve multiples of [y ;. Therefore l—q | m. Since iy {14 for s < k-1,

(F(R))n = hy  forn <L+, 4 o1,
whence 7 (h) € H. We have shown that in this case
card({h,T(h),.. .} NH) = card Ly = n;, € A

Remark, Notice that in the case of A fnite, the construction needed
for the proof of the Algebraic Lemma can be accomplished on a finite-
dimensional torus, and moreover for some N 2> l,vN =1Id.

Therefore, for A finite, there exist d > 1,2 : T¢ — T with «» = Id for
some N > 1 and ‘H < Z¢ such that

(5) A= E(v,H).

Now, the methods from [3] of producing analytic difeomorphisms of the
form T, (where T is a one-dimensional irrational rotation and ¢ : T — T%),
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ergodic with respect to Lebesgue measure and having E(T,) = E(v), can
be applied. Therefore, by (5),

BTy g)=E(v,H)=A
for H = annH.

3. Weakly mixing case. The method from [8] can be directly applied
only to " which is an ergodic rotation. Therefore, our constructions, though
ergodic, are not weakly mixing. We will now show that these can be adapted
to T admitting some fast cyclic approximation (hence weak mixing can be
achieved).

Let V' : H — H be an isometry on a separable Hilbert space. It is said
to be rigid if for some sequence (m;),

(VfeH) V™ff

The sequence (m;) is then called a rigidity time for V (in case V = Ugp
a rigidity time for T'). Based on an idea from [11], call V' a-weakly mizing
along a sequence (my) if

VfeH) (V™ f) —affl?

(o € C;0 < |a| £1). Notice that if (m,) is a rigidity time then V is 1-weakly
mixing along (m;). Moreover, if V is a-weakly mixing and |a| < 1 then V
has no eigenvalues (since eigenvalues of V' are of modulus 1). As shown in

(8],
(6) ifU;: H; — Hy i = 1,2, are unitary and a;-weakly mixing along a

common subsequence (m,) then the maximal spectral types of U are
mutually singular whenever oy # as.

We will need a criterion for a-weak mixing of unitary operators of the
form Vi, 1y, where T is rigid (compare with Proposition 5 of [8].

ProrosiTiON 1. If T': (X, B, 1) — (X, B, ) is ergodic, ¢ : X — G is a
cocycle and (my) o rigidity time for T then Vi, 7., is c-weakly mizing along
(my) whenever

[ x(e™) dp — a.
X

Moreover, if |al < 1, then Vo1, has no eigenvalues.

Proof. First, we show that if g = fT — f, f € L}(X,u) (i.e. if g is a
coboundary) then

(7) [ xet™)gdu— 0.
. -
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Indeed,
J X6 ™) T dpu f ™) f dp
X

= [ xe!™ (@)x(p(T™ o)) x(p @)/ (T2) dus()

X

- f plme)y +f 2)) f(Tx) dpu(2)

= [ xe ™) @)x(p(T™ )X (@@ f (T) du(z)
X

= [ xe!™)(T2)F(T) dp(z) ~ [ x(p'™ (2))f(2) dulc)
X

b
=[x T2 F(T2)[1 - x (T ™ ) ix(p(@))] dps(z).
X
Hence, by the Schwarz inequality

| fxso"“‘)gdﬂl Sl [ 1 =X Dxlo@l e — 0

since ()} is a rigidity time for 7'. Hence (7) is established.

Now, since T is ergodic, the coboundaries are dense in the space of zero
mean functions, so ebviously (7) is valid if g is replaced by any zero mean
function. Consequently, if g € L?(X, ») then

(8) [ x@™Ngdp— e [ gdp.
X X
Take an arbitrary f € L2(X, u); then
| [ 3™ @ @) T @ du - [ x(e™) (@) F(2) du
X

X

X

X
and directly by (8),

f x(™ (@) £ (@) dualz) — ol .

Recall that the disjointness criterion {6) for spectral measures is used to
construct cocycles for which g, and g, are mutually singular whenever x
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and -y are in different ¥-trajectories (for nontrivial x with lay| < 1 to assure
weak mixing of T, provided that T is weakly mixing).

On the other hand, to show that ox and g, are equivalent if they are in
the same ¥-trajectory one solves a functional equation

(9) w(Sz) fvp(z) = f(Tz)/f (=)
for some
(10) S (X,B,;L)——»{X,B,,u), ST =178,

and a measurable f: X — (. (Indeed, if we have S(z,g) = Srolz, g) =
(S, f(z)u(g)) then (9) and (10) are equivalent to saying that 8T, = T,8,
5 (X x G, ) — (X x G, [i); moreover, Uz(Ly) = Ly, for each x € G.)
Now, given G and a continuous group automorphism v : ¢ — G, we can
apply the whole machinery of [8] (for constructing appropriate cocycles)
to the del Junco-Rudolph rank-1, rigid, weakly mixing example (see [10]),
where the centralizer of T {in the sense of (10)) can be explicitly described.
We thus get weakly mixing cocycles ¢ : X — @G for which (9) can be solved
(with an appropriate S) and such that Vo, 1y ave ay-weakly mixing with

ay 7 ., whenever y and v are from different U-trajectories. This completes
the proof of Theorem 1.
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