

Contents of Volume 116, Number 3

group extensions. II	00= 04
J. MOLONEY and X. WENG, A fixed point theorem for demicontinuous pseudo-	
contractions in Hilbert space	217 - 223
B. A. GODUNOV and P. P. ZABREĬKO, Geometric characteristics for convergence	
and asymptotics of successive approximations of equations with smooth	
operators	225 - 238
G. GRILLO, On Dirichlet-Schrödinger operators with strong potentials	239 - 254
D. CRUZ-URIBE, SFO, C. J. NEUGEBAUER and V. OLESEN, The one-sided min-	
imal operator and the one-sided reverse Hölder inequality	255-270
G. SCHLUCHTERMANN, Weak Cauchy sequences in $L_{\infty}(\mu, X)$	271~281
R. HARTE and W. Y. LEE, An index formula for chains	283-294
A. R. Pruss, A remark on non-existence of an algebra norm for the algebra	
of continuous functions on a topological space admitting an unbounded	
continuous function	295-297
M. J. MEYER, Some algebras without submultiplicative norms or positive func-	200 201
tionals	200~305
T. BANAKH, Sur la caractérisation topologique des compacts à l'aide des demi-	#00 OUZ
treillis des pseudométriques continues	303-310
* * * * * * * * * * * * * * * * * * * *	ついつーつてん

STUDIA MATHEMATICA

Executive Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śuiadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-293997

Correspondence concerning subscription, exchange and back numbers should be addressed to

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES Publications Department

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-293997

© Copyright by Instytut Matematyczny PAN, Warszawa 1995

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute
Printed and bound by

Instrument & Instrument

PRINTED IN POLAND

ISSN 0039-3223

STUDIA MATHEMATICA 116 (3) (1995)

On the multiplicity function of ergodic group extensions. II

by

JAKUB KWIATKOWSKI and MARIUSZ LEMAŃCZYK (Toruń)

Abstract. For an arbitrary set $A \subseteq \mathbb{N}^+$ containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.

1. Introduction. Let $T:(X,\mathcal{B},\mu)\to (X,\mathcal{B},\mu)$ be an automorphism of a standard Borel space. It induces a unitary operator $U_T:L^2(X,\mu)\to L^2(X,\mu),\, U_Tf=fT.$ Define $Z(f)=\mathrm{span}\{fT^k:k\in\mathbb{Z}\},\,f\in L^2(X,\mu).$ By the spectral measure σ_f of f we mean the unique Borel measure on the circle \mathbb{T} given by

$$\widehat{\sigma}_f(n) = \int\limits_{\mathbb{T}} z^n d\sigma_f(z), \quad n \in \mathbb{Z}.$$

A number $m \in \mathbb{N}^+ \cup \{\infty\}$ ($\mathbb{N}^+ = \{1, 2, \ldots\}$) is said to belong to the set of essential values E(T) of T if there exist $f_1, \ldots, f_m \in L^2(X, \mu)$ with $Z(f_i) \perp Z(f_j)$, $i \neq j$, such that $\sigma_{f_1}, \ldots, \sigma_{f_m}$ are all equivalent and for no element $f \in L^2(X, \mu)$ for which $Z(f) \perp Z(f_1) \oplus \ldots \oplus Z(f_m)$, σ_f is equivalent to σ_{f_1} . The greatest element of E(T) is called the maximal spectral multiplicity of T and will be denoted by $\operatorname{msm}(T)$. Among spectral measures there is one, say σ_f , such that $\sigma_g \ll \sigma_f$ for all $g \in L^2(X, \mu)$; call it the maximal spectral type of T. For more spectral theory of unitary operators on separable Hilbert spaces see [19].

Our goal is to describe what kind of subsets $A \subset \mathbb{N}^+$ can be realized as E(T) for some ergodic T. Although no restrictions to reach an arbitrary subset of \mathbb{N}^+ are likely to exist, constructions to obtain a concrete set as E(T) are quite complicated. Before the paper of Oseledec [18], the only known values for E(T) were: $\{1\}, \{\infty\}, \{1, \infty\}$ (the latter in the case of quasi-discrete spectrum automorphisms [1]). Oseledec constructed an ergodic T with

$$2 \le msm(T) < 30.$$

[OO7]

¹⁹⁹¹ Mathematics Subject Classification: Primary 28D05.

Multiplicity function of ergodic group extensions

As shown by Vershik, for Gaussian automorphisms either $E(T)=\{1\}$ or E(T) is infinite (see [4], part III). It follows from Katok–Stepin theory of cyclic approximation that a "typical" automorphism T (with respect to the weak topology of automorphisms) of (X,\mathcal{B},μ) has $E(T)=\{1\}$ ([12]) with the maximal spectral type being singular. Other generic results, like describing $E(T\times T)$ for "typical" T, are studied in [11]. More information about the history of the spectral multiplicity in ergodic theory can be found in [21]. A real progress has been made by Robinson [21], where for given $n\in\mathbb{N}^+$, an ergodic (even weakly mixing) automorphism T with $\mathrm{msm}(T)=n$ (in fact $E(T)=\{1,n\}$) has been constructed. Extending the result of Mathew and Nadkarni [16], in [2] and [15] ergodic automorphisms with $E(T)=\{1,2n\},\ n\geq 1$, have been found, where furthermore 2n corresponds to the multiplicity of the Lebesgue component (Robinson's examples have singular spectra); Banach's famous problem of finding an ergodic T with $E(T)=\{1\}$ and Lebesgue spectral type is still open.

Let $A \subseteq \mathbb{N}^+$ satisfy

(1)
$$1 \in A, \quad m, n \in A \Rightarrow lcm(m, n) \in A.$$

Extending the main result from [21], in [22], given a finite A satisfying (1), an ergodic T for which A = E(T) has been constructed. The paper [8] is devoted to extending this result to arbitrary (not necessarily finite) subsets of \mathbb{N}^+ satisfying (1). In [3], Robinson's result from [22] is reproved, though this time with T being additionally an analytic diffeomorphism on a finite-dimensional torus.

In this note, based on the methods from [8] and [3], by some algebraic perturbation of the main idea from [8], we will prove the following

THEOREM 1. Given a set $A \subseteq \mathbb{N}^+$ with $1 \in A$, there exists an ergodic T such that E(T) = A. Moreover, T can be constructed to be weakly mixing. If A is additionally finite then T can be constructed as an analytic diffeomorphism on a finite-dimensional torus.

For other recent papers where the multiplicity problem is treated, see [5], [6], [7], [13], [14], [17], [20].

The authors would like to thank Jan Kwiatkowski for some valuable discussions.

2. Description of the method. The properties announced in Theorem 1 will, in fact, be properties of a cocycle. We briefly recall the method from [8].

Let $T:(X,\mathcal{B},\mu)\to (X,\mathcal{B},\mu)$ be an ergodic automorphism. Assume that G is a compact metric abelian group with Haar measure m. Any measurable map $\varphi:X\to G$ is called a *cocycle*; in fact, the cocycle generated by φ is

given by $(\varphi(x)\varphi(Tx) \dots \varphi$

(2)
$$\varphi^{(n)}(x) = \begin{cases} \varphi(x)\varphi(Tx)\dots\varphi(T^{n-1}x), & n > 0, \\ 1, & n = 0, \\ (\varphi(T^nx)\dots\varphi(T^{-1}x))^{-1}, & n < 0. \end{cases}$$

The cocycle φ gives rise to an automorphism

$$T_{\varphi}: (X \times G, \widetilde{\mu}) \to (X \times G, \widetilde{\mu}), \quad T_{\varphi}(x, g) = (Tx, \varphi(x)g),$$

called a group extension of T, where $\widetilde{\mu}$ stands for the product measure $\mu \times m$. Clearly,

$$L^2(X\times G,\widetilde{\mu})=\bigoplus_{\chi\in\widehat{G}}L_\chi,$$

where $L_{\chi} = \{ f \otimes \chi : f \in L^2(X, \mu) \}$. The spaces L_{χ} are closed and T_{φ} -invariant; moreover, $U_{T_{\varphi}} : L_{\chi} \to L_{\chi}$ is unitarily equivalent to

$$V_{\varphi,T,\chi}: L^2(X,\mu) \to L^2(X,\mu), \quad V_{\varphi,T,\chi}(f) = \chi \varphi \cdot fT.$$

The maximal spectral type of $V_{\varphi,T,\chi}$ will be denoted by ϱ_{χ} (note that if $\chi \equiv 1$ then $V_{\varphi,T,\chi}$ is unitarily equivalent to U_T).

Let $v: G \to G$ be a continuous group automorphism and let $\widehat{v}: \widehat{G} \to \widehat{G}$ denote its dual, $\widehat{v}(\chi) = \chi \circ v$. If $\chi \in \widehat{G}$ then its \widehat{v} -trajectory is the set $\{\chi, \widehat{v}(\chi), \widehat{v}^2(\chi), \ldots\}$. Put

$$E(v) = \{\operatorname{card}(\{\chi, \widehat{v}(\chi), \widehat{v}^2(\chi), \ldots\}) : \chi \in \widehat{G}\}.$$

In [8] the following theorem has been proved:

THEOREM 2. Given a continuous group automorphism $v: G \to G$, there exist an ergodic automorphism $T: (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ and a cocycle $\varphi: X \to G$ such that

- (a) $V_{\varphi,T,\chi}$ has simple spectrum for each $\chi \in \widehat{G}$,
- (b) if $\chi, \gamma \in \widehat{G}$ are in the same \widehat{v} -trajectory then ϱ_{χ} and ϱ_{γ} are equivalent,
- (c) if $\chi, \gamma \in \widehat{G}$ are in different \widehat{v} -trajectories then ϱ_{χ} and ϱ_{γ} are mutually singular,
 - (d) T_{φ} is ergodic.

If T_{φ} satisfies (a)-(d) above then obviously $E(T_{\varphi}) = E(v)$. In [22], [8] and [3], given a set A satisfying (1), some compact abelian metric group G and its automorphism v with E(v) = A are constructed. However, as we were recently informed by Professor B. Weiss, the sets E(v) always satisfy (1). Therefore by Theorem 2 we can only reach sets satisfying (1) as sets of essential values of the multiplicity function.

If $H \subset G$ is a compact subgroup then it determines a natural factor $T_{\varphi,H}$ of T_{φ} given by

$$T_{\varphi,H}: (X \times G/H, \widetilde{\mu}_H) \to (X \times G/H, \widetilde{\mu}_H), \quad T_{\varphi,H}(x, gH) = (Tx, \varphi(x)gH),$$

where $\widetilde{\mu}_H$ is the image of $\widetilde{\mu}$ via the map $(x,g) \to (x,gH)$. Define

$$\mathcal{H} = \operatorname{ann} H = \{ \chi \in \widehat{G} : \chi(h) = 1 \text{ for each } h \in H \}.$$

We have ann $\mathcal{H} = H$. Notice that (up to a natural identification)

(3)
$$L^{2}(X \times G/H, \widetilde{\mu}_{H}) = \bigoplus_{\chi \in \mathcal{H}} L_{\chi}$$

and L_{χ} is now $U_{T_{\varphi,H}}$ -invariant. Let $\mathcal{H} \subset \widehat{G}$ be a (countable) subgroup. Set

$$E(v,\mathcal{H}) = \{\operatorname{card}(\{\chi,\widehat{v}(\chi),\widehat{v}^2(\chi),\ldots\} \cap \mathcal{H}) : \chi \in \mathcal{H}\}.$$

THEOREM 3. Given a continuous group automorphism $v: G \to G$ and a subgroup $\mathcal{H} \subset \widehat{G}$, there exist an ergodic automorphism $T: (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ and a cocycle $\varphi: X \to G$ such that T_{ω} is ergodic and

$$E(T_{\varphi,H}) = E(v,\mathcal{H}),$$

where $H = \operatorname{ann} \mathcal{H}$.

Proof. Take T and φ satisfying the assertion of Theorem 2. Notice that the quotient action $U_{T_{\varphi,H}}$ on L_{χ} is exactly the action of $U_{T_{\varphi}}$ on L_{χ} ; now, by (3) and (a)–(d) of Theorem 2, the result directly follows.

The most difficult part of Theorem 1 will be proved if we show the following

ALGEBRAIC LEMMA. Given a subset $A\subseteq \mathbb{N}^+$ with $1\in A$, there exist a compact metric abelian group G, a continuous group automorphism $v:G\to G$ and a subgroup $\mathcal{H}\subset \widehat{G}$ such that

$$(4) E(v, \mathcal{H}) = A.$$

Proof. We will show that on $G = \mathbb{T} \times \mathbb{T} \times \dots$ we can find v and $H = \operatorname{ann} \mathcal{H}$ satisfying (4). We have $\widehat{G} = \mathbb{Z} \oplus \mathbb{Z} \oplus \dots$ Suppose that

$$A = \{1 < n_1 < n_2 < \ldots\} \subset \mathbb{N}^+$$

First, define sequences of natural numbers $l_1^{(k)} < l_2^{(k)} < \ldots < l_{n_k}^{(k)} < l_k$, $k = 1, 2, \ldots$, as follows:

$$l_0 = 1, \quad l_k = 2^{n_k} l_{k-1}, \quad k = 2, 3, \dots,$$

 $l_p^{(k)} = 2^{p-1} l_{k-1}, \quad p = 1, \dots, n_k, \ k = 1, 2, \dots$

Put

$$\mathcal{H} = \{ h \in \widehat{G} : h = (h_1, h_2, \dots), h_n = 0 \text{ for } n \in \mathbb{N} \setminus \{l_1^{(1)}, \dots, l_{n_1}^{(1)}, l_1 + l_1^{(2)}, \dots, l_1 + l_{n_2}^{(2)}, \dots, l_1 + \dots + l_{k-1} + l_1^{(k)}, \dots, l_1 + \dots + l_{k-1} + l_{n_k}^{(k)}, \dots \} \}.$$

Define $\widehat{v}:\widehat{G} \to \widehat{G}$ to be the following permutation:

$$\widehat{v}((\underbrace{h_1,\ldots,h_{l_1}},\underbrace{h_{l_1+1},\ldots,h_{l_1+l_2}},\ldots,\underbrace{h_{l_1+\ldots+l_{k-1}+1}},\ldots,h_{l_1+\ldots+l_{k-1}+l_k},\ldots))$$

 $=(\underbrace{h_{l_1},h_1,\ldots,h_{l_1-1}}_{\ldots,\underbrace{h_{l_1+\ldots+l_{k-1}+l_k}}},\underbrace{h_{l_1+l_2},h_{l_1+1},\ldots,h_{l_1+l_2-1}}_{l_{l_1+\ldots+l_{k-1}+l_k}},\underbrace{h_{l_1+\ldots+l_{k-1}+1},\ldots,h_{l_1+\ldots+l_{k-1}+l_k-1}}_{l_{l_1+\ldots+l_{k-1}+l_k}},\ldots).$

Notice that $A \subset E(v,\mathcal{H})$ because $\operatorname{card}(\{0,\widehat{v}(0),\ldots\} \cap \mathcal{H}) = 1$ and $\operatorname{card}(\{h,\widehat{v}(h),\ldots\} \cap \mathcal{H}) = n_k$ for $h \in \mathcal{H}$ defined by $h_{l_1+\ldots+l_{k-1}+l_1^{(k)}} = 1$, $h_n = 0$ for $n \neq l_1 + \ldots + l_{k-1} + l_1^{(k)}$.

It remains to show that $E(v,\mathcal{H})\subset A$. Take $h\in\mathcal{H}$. Then only a finite number of h_n are different from zero. Let $i\in\mathbb{N}$ be largest such that $h_i\neq 0$. There exist $k,p\in\mathbb{N}$ for which $i=l_1+\ldots+l_{k-1}+l_p^{(k)}$ $(1\leq p\leq n_k)$. Then $\widehat{v}^{l_k}(h)=h$ because $l_i\mid l_k$ for $i\leq k$. Assume that there exists $q\in\mathbb{N}$ with q< p such that for $j=l_1+\ldots+l_{k-1}+l_q^{(k)}$ we have $h_j\neq 0$. Now, if we look at the "distance" between the nonzero values h_i,h_j in $\widehat{v}^m(h)$ $(m\in\mathbb{N})$, we will always find either i-j or $(l_k-1)-(i-j)$. Moreover, whenever $\widehat{v}^m(h)\in\mathcal{H}$, the nonzero values h_i,h_j will be at positions with indices in the set

$$L_k = \{l_1 + \ldots + l_{k-1} + l_1^k, \ldots, l_1 + \ldots + l_{k-1} + l_{n_k}^{(k)}\}.$$

However, the numbers $l_1^{(k)}, \ldots, l_{n_k}^{(k)}$ are chosen so that $l_{p_1}^{(k)} - l_{p_2}^{(k)} \neq l_{q_1}^{(k)} - l_{q_2}^{(k)}$ and $(l_k-1)-(l_{p_1}^{(k)}-l_{p_2}^{(k)}) \neq l_{q_1}^{(k)}-l_{q_2}^{(k)}$ for $\{p_1, p_2\} \neq \{q_1, q_2\}$. Thus $\widehat{v}^m(h) \in \mathcal{H}$ implies $l_k \mid m$, so $\widehat{v}^m(h) = h$ and hence

$$\operatorname{card}(\{h, \widehat{v}(h), \ldots\} \cap \mathcal{H}) = 1 \quad (\in A).$$

Assume now that h_i is the only nonzero value among the coordinates with indices from $l_1+\ldots+l_{k-1}+1$ to $l_1+\ldots+l_k$. No matter what the other nonzero values of h are, we will show that $\widehat{v}^m(h)\in\mathcal{H}$ iff h_i (in $\widehat{v}^m(h)$) stands at a position whose coordinate belongs to L_k . The necessity is obvious. The "distances" (in $\{l_1+\ldots+l_{k-1}+1,\ldots,l_1+\ldots+l_k\}$) between the coordinates from L_k are multiples of l_{k-1} . Therefore $l_{k-1}\mid m$. Since $l_s\mid l_{k-1}$ for $s\leq k-1$,

$$(\widehat{v}^m(h))_n = h_n$$
 for $n \leq l_1 + \ldots + l_{k-1}$,

whence $\widehat{v}^m(h) \in \mathcal{H}$. We have shown that in this case

$$\operatorname{card}(\{h,\widehat{v}(h),\ldots\}\cap\mathcal{H})=\operatorname{card} L_k=n_k\in A.$$

Remark. Notice that in the case of A finite, the construction needed for the proof of the Algebraic Lemma can be accomplished on a finite-dimensional torus, and moreover for some $N \geq 1, v^N = \text{Id}$.

Therefore, for A finite, there exist $d \geq 1, v : \mathbb{T}^d \to \mathbb{T}^d$ with $v^N = \text{Id}$ for some $N \geq 1$ and $\mathcal{H} \subset \mathbb{Z}^d$ such that

$$(5) A = E(v, \mathcal{H}).$$

Now, the methods from [3] of producing analytic diffeomorphisms of the form T_{φ} (where T is a one-dimensional irrational rotation and $\varphi: \mathbb{T} \to \mathbb{T}^d$),

Multiplicity function of ergodic group extensions

ergodic with respect to Lebesgue measure and having $E(T_{\varphi}) = E(v)$, can be applied. Therefore, by (5),

$$E(T_{\omega,H}) = E(v,\mathcal{H}) = A,$$

for $H = \operatorname{ann} \mathcal{H}$.

3. Weakly mixing case. The method from [8] can be directly applied only to T which is an ergodic rotation. Therefore, our constructions, though ergodic, are not weakly mixing. We will now show that these can be adapted to T admitting some fast cyclic approximation (hence weak mixing can be achieved).

Let $V: H \to H$ be an isometry on a separable Hilbert space. It is said to be rigid if for some sequence (m_t) ,

$$(\forall f \in H) \quad V^{m_t} f \to f.$$

The sequence (m_t) is then called a rigidity time for V (in case $V = U_T$ a rigidity time for T). Based on an idea from [11], call V α -weakly mixing along a sequence (m_t) if

$$(\forall f \in H) \quad (V^{m_t} f, f) \to \alpha ||f||^2$$

 $(\alpha \in \mathbb{C}; 0 \le |\alpha| \le 1)$. Notice that if (m_t) is a rigidity time then V is 1-weakly mixing along (m_t) . Moreover, if V is α -weakly mixing and $|\alpha| < 1$ then V has no eigenvalues (since eigenvalues of V are of modulus 1). As shown in [8],

(6) if $U_i: H_i \to H_i$, i = 1, 2, are unitary and α_i -weakly mixing along a common subsequence (m_t) then the maximal spectral types of U_i are mutually singular whenever $\alpha_1 \neq \alpha_2$.

We will need a criterion for α -weak mixing of unitary operators of the form $V_{\varphi,T,\chi}$, where T is rigid (compare with Proposition 5 of [8].

PROPOSITION 1. If $T:(X,\mathcal{B},\mu)\to (X,\mathcal{B},\mu)$ is ergodic, $\varphi:X\to G$ is a cocycle and (m_t) a rigidity time for T then $V_{\varphi,T,\chi}$ is α -weakly mixing along (m_t) whenever

$$\int\limits_X \chi(\varphi^{(m_t)}) \, d\mu \to \alpha.$$

Moreover, if $|\alpha| < 1$, then $V_{\varphi,T,\chi}$ has no eigenvalues.

Proof. First, we show that if g = fT - f, $f \in L^2(X, \mu)$ (i.e. if g is a coboundary) then

(7)
$$\int_{\mathbf{Y}} \chi(\varphi^{(m_t)}) g \, d\mu \to 0.$$

Indeed,

$$\int_{X} \chi(\varphi^{(m_{t})}) fT d\mu - \int_{X} \chi(\varphi^{(m_{t})}) f d\mu$$

$$= \int_{X} \chi\varphi^{(m_{t})}(x) \chi(\varphi(T^{m_{t}}x)) \overline{\chi(\varphi(x))} f(Tx) d\mu(x)$$

$$- \int_{X} \chi(\varphi^{(m_{t})}(x)) f(x) d\mu(x) + \int_{X} \chi(\varphi^{(m_{t})}(x)) f(Tx) d\mu(x)$$

$$- \int_{X} \chi\varphi^{(m_{t})}(x) \chi(\varphi(T^{m_{t}}x)) \overline{\chi(\varphi(x))} f(Tx) d\mu(x)$$

$$= \int_{X} \chi\varphi^{(m_{t})}(Tx) f(Tx) d\mu(x) - \int_{X} \chi(\varphi^{(m_{t})}(x)) f(x) d\mu(x)$$

$$- \int_{X} \chi\varphi^{(m_{t})}(Tx) f(Tx) d\mu(x) - \int_{X} \chi(\varphi^{(m_{t})}(x)) f(x) d\mu(x)$$

$$- \int_{X} \chi\varphi^{(m_{t})}(Tx) f(Tx) [1 - \chi(\varphi(T^{m_{t}}x)) \overline{\chi(\varphi(x))}] d\mu(x).$$

Hence, by the Schwarz inequality

$$\left| \int\limits_X \chi \varphi^{(m_t)} g \, d\mu \right|^2 \le \|f\|_{L^2}^2 \int\limits_X |1 - \chi(\varphi(T^{m_t} x)) \overline{\chi(\varphi(x))}|^2 \, d\mu \to 0$$

since (m_t) is a rigidity time for T. Hence (7) is established.

Now, since T is ergodic, the coboundaries are dense in the space of zero mean functions, so obviously (7) is valid if g is replaced by any zero mean function. Consequently, if $g \in L^2(X, \mu)$ then

(8)
$$\int_{Y} \chi(\varphi^{(m_t)}) g \, d\mu \to \alpha \int_{Y} g \, d\mu.$$

Take an arbitrary $f \in L^2(X, \mu)$; then

$$\left| \int_{X} \chi \varphi^{(m_{t})}(x) f(T^{m_{t}}x) |\overline{f(x)} d\mu - \int_{X} \chi (\varphi^{(m_{t})}(x)) |f(x)|^{2} d\mu \right|$$

$$= \left| \int_{X} \chi \varphi^{(m_{t})} \overline{f}(fT^{m_{t}} - f) d\mu \right| \leq ||f||_{L^{2}} \left(\int_{X} |fT^{m_{t}} - f|^{2} d\mu \right)^{1/2} \to 0$$

and directly by (8),

$$\int\limits_X \chi(\varphi^{(m_t)}(x))|f(x)|^2 d\mu(x) \to \alpha ||f||^2.$$

Recall that the disjointness criterion (6) for spectral measures is used to construct cocycles for which ϱ_{χ} and ϱ_{γ} are mutually singular whenever χ

and γ are in different \widehat{v} -trajectories (for nontrivial χ with $|\alpha_{\chi}| < 1$ to assure weak mixing of T_{φ} provided that T is weakly mixing).

On the other hand, to show that ϱ_{χ} and ϱ_{γ} are equivalent if they are in the same \widehat{v} -trajectory one solves a functional equation

(9)
$$\varphi(Sx)/v\varphi(x) = f(Tx)/f(x)$$

for some

(10)
$$S: (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu), \quad ST = TS,$$

and a measurable $f: X \to G$. (Indeed, if we have $\widetilde{S}(x,g) = S_{f,v}(x,g) = (Sx, f(x)v(g))$ then (9) and (10) are equivalent to saying that $\widetilde{S}T_{\varphi} = T_{\varphi}\widetilde{S}$, $\widetilde{S}: (X \times G, \widetilde{\mu}) \to (X \times G, \widetilde{\mu})$; moreover, $U_{\widetilde{S}}(L_{\chi}) = L_{\widehat{v}\chi}$ for each $\chi \in \widehat{G}$.)

Now, given G and a continuous group automorphism $v:G\to G$, we can apply the whole machinery of [8] (for constructing appropriate cocycles) to the del Junco-Rudolph rank-1, rigid, weakly mixing example (see [10]), where the centralizer of T (in the sense of (10)) can be explicitly described. We thus get weakly mixing cocycles $\varphi:X\to G$ for which (9) can be solved (with an appropriate S) and such that $V_{\varphi,T,\chi}$ are α_χ -weakly mixing with $\alpha_\chi\neq\alpha_\gamma$ whenever χ and γ are from different \widehat{v} -trajectories. This completes the proof of Theorem 1.

References

- [1] L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk SSSR 26 (1962), 513-550 (in Russian).
- [2] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian).
- F. Blanchard and M. Lemańczyk, Measure preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294.
- [4] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1981.
- [5] S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity, Studia Math. 102 (1992), 121-144.
- [6] S. Ferenczi, J. Kwiatkowski and C. Mauduit, Density theorem for (multiplicity, rank) pairs, J. Anal. Math., to appear.
- [7] G. R. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Amer. Math. Soc. 93 (1985), 303-306.
- [8] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992), 157-174.
- [9] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, ibid. 96 (1990), 219-230.
- [10] A. del Junco and D. Rudolph, Simple rigid rank-1, Ergodic Theory Dynam. Systems 7 (1987), 229-247.
- [11] A. B. Katok, Constructions in ergodic theory, preprint,

- [12] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (5) (1967), 81-106 (in Russian); English transl.: Russian Math. Surveys 15 (1967), 1-22.
- [13] J. King, Joining-rank and the structure of finite rank mixing transformations, J. Anal. Math. 51 (1988), 182-227.
- [14] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33.
- [15] M. Lemańczyk, Toeplitz Z2-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43.
- [16] J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406.
- [17] M. K. Mentzen, Some examples of automorphisms with rank r and simple spectrum, Bull. Polish Acad. Sci. 35 (1987), 417-424.
- [18] V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR 168 (1966), 776-779 (in Russian).
- [19] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, 1981.
- [20] M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, Lecture Notes in Math. 1294, Springer 1987.
- [21] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314.
- [22] —, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75–88.
- [23] —, Spectral multiplicity for non-abelian Morse sequences, in: Lecture Notes in Math. 1342, Springer, 1988, 645-652.

DEPARTMENT OF MATHEMATICS AND INFORMATICS NICHOLAS COPERNICUS UNIVERSITY CHOPINA 12/18 87-100 TORUŃ, POLAND

Received April 25, 1994
Revised version March 31, 1995

(3270)