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Weighted inequalities for monotone and concave functions
by

HANS HEINIG (Hamilton, Ont.) and
LECH MALTGRANDA (Luled)

Abstract. Charncterizations of weight functions are given for which integral inequali-
ties of monotone and concave lunctions are satisfied. The constants in these inequalities are
gharp and in the case of concave Munctions, constitute weighted forms of Favard-Berwald
inequalities on finite and infinite intervals, Related inequalities, some of Hardy type, are
also given,

1. Introduction. In 1939 L. Berwald [8] proved, via a generalization of
a mean value inequality of J. Favard [18], that if f is a non-negative concave
continuous function on [0, 1] () and 0 < p < ¢ < oc, then

(1.1) I£llg < o+ 1M?(g+ 19| £l

where the constant (p + 1)Y/?(g+ 1)7*/¢ is sharp. If p = 1 this is called
Favard’s inegquality. This inequality may be interpreted as the converse of
Halder's inequality and in the limiting case with g = 1, p — 0, it is a reverse
Jensen inequality

jf dw<~«exp(flnf )

where the constant ¢/2 is sharp.

Closely related to the Favard-Berwald inequality is an mequahty of
Gurilss [21], 1t asserts that the L'-norms of certain functions f, g are dom-
inated by the L'-norm of the product fg. More generally, one obtains
(cf. Barnes [4] with r = 1) the inequality
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(*) The interval of integration in Berwald's result is [a, b] instead of [0, 1] ThIS gener-
alization may be achieved in this paper with minor modifications.
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134 H. Heinig and L. Maligranda

I£llsllglle < Cll gl

for certain indices p, ¢ and 7.

The object of this paper is to introduce weight functions u, v, w in these
inequalities and provide conditions on the weights whic h are equivalent to
corresponding weighted forms of the Favard-Berwald inequality, Grisy’ in-
equality and the reverse Holder inequality. These and corresponding variants
are given both on finite and infinite intervals.

To prove these results, a number of auxilliary inequalities are requirec.
One, due to Calderdn—Scott [14], with special cases of earlier origin, is proved
here with a sharp constant. These inequalities are of the form

b b
(12 [ 1@ dsta) < [ sy dgte)

for 0 < v < 1 and f decreasing, g increasing as well as some other variants
(cf. Th. 2.1). One of the consequences of this inequality is that it permits an
easy proof of weight characterizations of Hardy type in the case 1 £ p < ¢
from the special case of p = ¢. Also using inequality {1.2), we can give
another proof of the imbeddings || f|lg,u < C||fllpe for 0 < f| and || f]|qu <
Cl|f{p. for 0 < f1, which were proved earlier by Sawyer [39], Stepanov [44]
and Heinig-Stepanov [24]. All these results are given in Section 2.
In Section 3, we study inequalities of the form

(1.3) I < ClT2fllpes

where 11,75 are the positive mtegral operators T;f(x fﬁ 3(, 0) F () dt,

ki(z,t) > 0,1=1,2, f > 0 monotone and C a sharp constant Some of these
results are essentiaily known (cf. [2}, [16], [24], [27], [33], [39], [42]-[44]) and in
the main we prove them with sharp constants. The results are then applied in
Sections 4 and 5 to obtain sharp weighted inequalities for concave functions,
weighted Favard-Berwald inequalities as well ag reverse Hélder inequalities.
As special cases we obtain results of Barnard and Wells [3], whose work
motivated this study.

All functions considered are assumed measurable and non-negative, We
shall write f1, respectively f| to mean that the function f is increaging =
non-decreasing, respectively decreasing = non-increasing. Por f | we define
F7HE) = inf{s: f(s) <t},infd = o0, and similarly for f1, f 1t} = inf{s :
F(8) > t}, inf ) = c0.

Locally integrable non-negative weight functions on (O,oo) are denoted
by u,v,w, and the conjugate index of p € (0, oo} is denoted by p’ = p/(p—1),
evenif 0 < p < 1, and similarly for ¢. We shallsay f € L8, p > 0,if || f|lp,0 =

(Jo~ 1 £ (@) |Pao(z) dm)lf ? < oo. Finally, ¥ g denotes the characteristic function
of the set E. Inequalities (such as in Theorem 2.1) are interpreted to mean
that if the right side is finite, so is the left, and the inequality holds.
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2. Integral inequalities. In this section we prove inequalities frequently
used in the sequel.

TuportM 2.1. Let —00 £ a < b < oo and f > 0 on {a,b) and g
continuous on (a,b).

(a) Suppose [| on {a,b) and g1 on (a,b) with lim,_, .+ g(z) = 0. Then
Jor any v € (0,1],

[ b
o) J reraste) < ( f sy dgtor)”

If 1 £y <o, the inequality in (2.1) is reversed.

(b) Suppose f1 on (a,b) and g] on (a,b) with lim, ;- g(x) = 0. Then
for any v € (0, 1],

b b 1/
(22) [ s@ di=geN < [ 17 d-gle)

If 1 € v < oo, the inequality in (2.2) 1 reversed.

We shall give two proofs of the theorem.

Proof 1. It suflices to prove the theorem when the integrals on the
right of (2.1) and (2.2) are finite, Suppose 0 < v < 1.

(a) Since

£() dg(z) = }-[f(w)”g(w)"]l”*"lf(m)" dg(a)")
[ff
== f sy dioyn)

integrating from a to b yields

i/\

o] @) dtatay)

]

[ #e)date) < (j*f(wd(gm"f) "I

<1

= ( f #tay dator) "
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(b) Also,
f(w)d{~g(m>}=$[f< o) T () d]—g(a)7]
b
< J ford- o@ri} T @y di-gle)

1/~
-2 f Fyd-gley}
T
and again integrating from o to b one obtains (2.2).

It is easily seen that inequalities in (2.1) and (2.2) are reversed if | <
¥ < 00.

Proof 2. Fort e (a,b), let

t t
0 =( [ 1@)dgi@))" ~ [ Flay diglz))

and

([ re g’ -

Then A and & are continuous and for 0 < v <1,

[
[ f@yd-gz).
i

Kt = o f F@)dg(®)) F0g'(E) ~ 1@ 0ty 0

S’Y[f(t) O ') = @9 () =0 ae.

Therefore h| on {a,b) and so h(b) < h(a) =

0, which proves (2.1). Similarly
with k(t).

Remark 2.2. (i) If f and g are as in Theorem 2.1, then

P(7) = ( f floy dig(e))"”, sesp. )= f e

[~g () ])1/7

are decreasing on (0, o).

(if) Tnequality (2.2) with a = 0, b = co and constant 1 /v on the right
side was proved by Calderén-Scott [14, Lemma 6.1).

; (i) ¥ g(x) =2 0< p<1,a=0and b= oo, then (2.1) takes the
orm

s e <o [ slopas)”
0
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for all 0 € f1, while g(2) = © — a yields

(ff a’w) <pf (z - a)P" L f(z)P de

for all 0 £ f|. The last inequality ha,s been obtained by various authors
{cf. Hardy-Littlewoud -Pélya [22, p. 100], Lorentz [28, p. 39], Stein-Weiss
[41, Th. 3.111], Maz'ya {31, Lemma 2.2], Bergh-Burenkov-Persson [7, Lem-
ma 2.1].

(iv) The special case of (2.1) when g(z) = z¥, p > 1, and f is positive
increasing on (0,0), b < co, hag the form

b i 4
Jr-ader s f f(bmm)lfi"dw)p: ( fb [ORG dm)p.
0 8} o]

This inequality with some additional constant Cp, € (1,2) was proved by
Garefa del Amo [20, Th, 5]. We can also write the above inequality in the

form
hff bwmf’“ldm<(ff ):

where p = 1 and f is a positive increasing functlon. This inequality was
proved by Bushell-Okrasifski [13] for natural p, and for any p > 1 quite
recently by Walter- Weckesser [45).

(v) If v = oo, the reversed inequalities (2.1) and (2.2) are meaningless;
however, one does have the following: If f and ¢ are as in Theorem 2.1(a),
then

b

sup f(alala) < [ fa)do(e).

n€(a,b) a
In fact,
T

sup flz)g(e) = sup f(z) [ dg(¥)

e {n,b) we(n,b) o

b
< sup ff ydg(t) = [ flw)dg(a).

z&{a,b) .

Similaxly, if f and g are as in Theorem 2.1(b) then

b
)< [ @) dl-g()]

The inequalities given in Theorem 2.1 may be applied in connection
with Hardy’s inequality, It is well known (cf. [36]) that the weighted Hardy

sup flz)g(z
@& (a,b)
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inequality

(2.3) ( }Ou(m) ( f f) d‘t)q da:) Ve < C’( }ou(m)f(w)i” dm) e
0 0

0

holds for all f > 0if and only iffor 1 < p < g < o0,

; "
Apqg(u,v -§1>1]3( fu :r)dm) (bf.u(m).w:ﬂ’ dm) L1 < 0,

andfor 0 < g < p, p>1,
Bp,q(u, v)

(T Foa) s s rtt ) <on
0

where 1/r = 1/q ~ 1/p. Moreover, if C' = Cpg(u,v) is the best constant
for which (2.3) holds, then Ay o(u,v) 7 Cp q(u,v), respectively, By ,(u, v) =~
Cyp qlu, v).

Writing Ay, = Ap and we(z) = u(z)(f;7° u(t) dt)*=1, 5 > 0, we obtain
from Theorem 2.1 the following:

PROPOSITION 2.3. (a) If 1 < p < q < oo, then Ayg{u,v) =
(p/Q)lprp(up/qa v) and Cpq(u,v) < (p/q) /pcp(”'p/q: ).
B)IfO0<qg<p<ooandp> 1, then

Ap(u,v) < (Q/p)l/’q(r/p,)UTBP:CI(UG/P?'U)
and Cp(u,v) < (0/9)Y9C, 4(ug/p, v).-

Proof. (a) First, for all £ > 0, we have

( fup/Q(m) dm)w( ft’v(m)l"”' dm)j/pJ
¢ 0

(- (Fooa) ) ot

&

~ @ Juwyan) (o as)"”,

0
which gives the equality.
Secondly, by Theorem 2.1(b) with v = p/q¢ < 1 and f replaced by

icm
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f{£)dt)" and g replaced by [ u(t) dt, we have

:r)( f f(t) dt) d;r:zf (If(t)dt)jd[—f u(s)ds}
0 0o

=
e.a}
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Faanny
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o
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=
—_
[——
<
.
-1

which means that Cyq(u,v) < (p/q)*/PCy(up/q,v).

(b) For any « > 0,

(2 4 (-Tuna)a)”
J oy w '/"I]Pu(m) -» d:a}m

X ( U

(s o
(g)w{ Uf [(Df u(s) ds)””( jv(t)“i“’d) /Q} (s }m
(g)w( f u(s)ds) " { af ( uf ) o Of s a)
()" Fenay?™{ ol frrra 2}

(g)w (% W( j u(s)ds) " ( of o)~ dt)u-wqf)(lm

()" ()" }O w(e)ds) ™" ( of ity i)
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which gives

1/q9 70N\ Hr
Bp,q(uq/p,v)2(2> (E) Ap(u,v).

aq T
Similarly, using Theorem 2.1(b) with v = ¢/p < 1 and [ replaced by
(fy F(£)dt)P, and g replaced by [ u(t)dt, we have

fu(m)(fwf(t)dt)pdm:f( ff(t)d-ﬂ)pd[ufu(a)ds}

0 gL w
< F(Jrway el ( Fuma)™]p"
0 0 b

ply iy

<0( [ vl@)f(2)" da),

0

< (p/q):v/q{ 7( f ) dt)quq/p(x) da:}
0 o

which means that Cp(u,v) < (p/q)l/qC’p_q(uq/p,v).

Remark 2.4. (i) Artola, Talenti, Tomasell and Muckenhoupt (cf. [32])
proved that Hardy’s inequality (2.3) with p = ¢ > 1 holds if and only if
Ap(u,v) < co. Then Bradley [10], Kokilashvili and Maz'ya [31] extended
this result to the case 1 < p < ¢. The case 1 < g < p was proved by Maz'ya
[31] and Sawyer [38], and the case 0 < ¢ < 1 < p by Stunamon [40] (see
also [38]). For more information we refer to [36]. Qur Proposition 2.3(a)
shows that if the Hardy inequality (2.3) is proved in the index range p =
g 2 1, then it holds for 1 < p < g < oo. In fact, if A, ,4(u,v) < oo, then
by Proposition 2.3(a), Cp 4{u,v} < (p/q)l/f’C‘.p(up/q,v) & Ap(Up/q,v) < 00.
The best relationship between the constants Gy q(u,v) and A, ,(u,v) when
1 <p <g< oo was found by Manakov [30].

(ii) Using Theorem 2.1(a) one obtains the same implications for the dual
Hardy operator- fmw FE) di.

If, for 0 < p < oo and for a weight function v, we define the Lorentz
space Ap(v) as the space generated by the quasi-norm

1ty = ( ff*(@?)p”(“‘)dm)”"’,
0]

where f* denotes the decreasing rearrangement of f, then the imbedding
Ap(v) T Ay(u) is equivalent to a corresponding weighted integral inequality
for decreasing functions. Such results are due to Sawyer [39] and Stepanov
[44]. Heinig and Stepanov [24, Th. 2.1(1)] proved a sirnilar result for increas-

ing functions, Theorem 2.1 may also be applied in a natural way in the proof
of these results. '
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PROPOSITION 2.5, Let 0 < p € g < o0,
(a) The inequality

(2.4) ( ”f w(w) fx)? d:z:)l/q < O’( T?)(:{:)f(;c)?J dm)lfp
0 0

holds for oll 0 < f| if and only 4f
(2.5) ( j w(x) n‘lm)w < G( j v(z) dm) e vt > 0.
0 0
(Y The inequality
(2.6) ( T u(w) f ()" de) i D j'ov{w) f@)” dx)”p
0

0
holds for all O < f1 if and only if

(2.7 ( fu(:r.)dm) Vi < D( j?v(a:) dw) e

14 [

Proof. (a) That (2.4) implies (2.5) follows on taking f(z) = xj0,4(2);
t>0,in (2.4).

(2.5)=+(2.4). It suffices to prove this implication for those functions f
for which supp f = (0, ¥] € (0,0¢) and [;~ v(z) f(z)F dz < oo. Then stan-
dard limiting arguments give the result. If supp f = (0, N] C (0,00) and
fom v(z)f(x)? dr < oo, then integration by parts, assumption (2.4}, Theo-
rem 2.1(b) with v = p/q and again integration by parts yield

Vi > (0.

r

{ [uwstarasy” = { [ siora] Juwa)”

0 0

<o [ fomatd-tap) = [ o)f@ri
0 1]

Q

(b) The necessity follows at once with f(2) = X[t,00) (%), t > 0.



142 H. Heinig and L. Maligranda

Conversely, similarly to (a) we can assume that supp /' = [§, oc) C (0, 00)
and fo z)f(z)? de < oco. Using integration by parts, assumption (2.6),
Theorem 2 1( ) with v = p/q and again integration by parts we obtain

{ T (e} (e)"de} - {- f fa)d| T u(t) dﬁ]} "
° a

0 'FT[J" w(t) cgiJ L q]}i’/q

0
and inequality (2.6) is proved.

3. Sharp weighted inequalities for monotone functions. We now
prove weighted inequalities of the form

”Tlqu.u < O“TEfllp,v:

where 17 and T3 are positive integral operators on monotone functions.
These estimates are essential in proving the weighted Berwald-Favard in-
equalities given in the sequel. First we need the following known lemma (cf.
Neugebauer [34, Lemmas 2.1, 4.2] and Carro~Soria [15, Th. 2. 1))

LeMMA 3.1. Let k > 0 be locally integrable on (0, 00) and 0 < r < cc.

(a) If 0K | on {0,00), then
f f(@)k(z)dz = r j‘oy"”“l( f k(z) dm) dy.
0 D 0

(b) If 0< 1 on [0,a), 0 < a < oo, then
fia) o
ff(m @az=r [y [ kz)ds)ay
(cyIf 0< cpj, on {0, 0}, then

0 )
f [ f k(=) dm] jﬂo[f“’ PR (- )}k(m)dw.
0 o

0 oy

Fr )
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Proof. (a) By the Fuhini theorem

}Uj'(:r:)"'ic(m) de =r 7'0 y“‘"l( f k(z) dm) dy
o 0 {w:f(z)>y}

F )

( f )dm)dy,

where the last equality follows since f is decreasing.
(b} Tn a similar way

Fa)

f‘f r)da = r [‘ yr--].( f

0 {z€0,0):f{2) >y}

k(z) d:c) dy

(¢) Interchanging the order of integration we have
f [ J ha)de|e) dy=[ | [ olv) ay]k(z) da.

0 el
The following equality is geometrically obvious (cf. O'Neil [35, p. 130] with
r=1)
a”

f e MY dt = 2T (1) +
0 o3

w(y)" d
)

Applying thesc equalities together with [ ~'(t"/")dt = [J ¢
we obtain the proof of (c).

w8

“Hs)d(s")

The proof of part (b) of Theorem 8.2 is taken from [16]. We. repeat it
here, with an emphasis on the constant which in our case plays an important
role.

THROREM 3.2, Suppose ki (x,1) and ky(x,t) are two non-negative kernels.
(0) Let 0 <p<1<q. Then

(3.1} ( ‘T 4 fc)[ fkl(w,'l'«')f(t)
0 0
_O’( }ov [f kz(m t dt] dﬂG) M
0

0

dt| ! ) Ha
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folds for all 0 < f| on [0,00) if and only if

(3.2) (j‘ou(m){ fa ki{z,t) df]qdm)l/q
0 0

((:fov [f (m,t) df] d:ﬂ).l/p

holds for all a > 0.
(b) Let 0 <p<1andp <q. Then
(> &)

33 (f u(m)[ [ tua, t)f(t)d-] :1;) ( f
0 0
holds for all 0 < f| on [0, 00) if and only if

(3.4) (fu(a:)[ [ it ] dz)"
0

0

holds for all o > 0.
(¢) Let 1 < p < q. Then

35 ( fu(m)f(t)qdm)”q <

0

1/p

flx)¥ (f:L)

C’( Ofn v(x) d:n) e

C( ;fov(m){ fkg(’”=t)f(i') dt}pd:r) i

holds for all 0 < f| on 10,00) if and only if

(3.6) (fu d:c) M <o(fv(m)[ f kg(m,t)dt]pdm)l/p
holds for all o > 0. U O

Proof. The necessity parts of (a), (b} and (c) follow on taking f (¢) =
X[0,a) (£), & > O fixed.

(a) To prove sufficiency we apply Lemma 3. i(a) (with r = 1), Minko-
wski's inequality twice and (3.2) to obtain

( I ol e £ at]" da) e
0 0

o0 Y

={Juo [I( Uf kl (2,1)dt) dy] dm}lf"

0

- (y)

- 7 (fof kl(m,t)dt)dqu,qu“ J

0
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e I M)
1/
{f[fu (f kimf)d{;) da} qdy}
%G 00 I ) 1/p
g(;{j U (f Iczxt)dt) dm] dy}
0 0 ]

7 )
- c‘:{ I( fy ey, 1) dr) derl/p ) m’

I g %)

5(;'{ [ H( J kz(w,t)dt)p“l/mdm}w

8}

00 oo My

xCY{ ffu(:r)[ f(

4] [ 0

»-c*(j [fA (,6)f dt] dm)”‘".

The last equality follows from Lemma 3.1{a) with r = 1.
() By Lemma 3.1(a) (with r = 1),

( }Gu(“r)( j? kl(-’ll,ﬂ)f(t) dt)qdm)l/q
| | s f7Ny)

- { Ofu(m)[ J(f menaa]a)™

Agsume first that ¢ < 1. Since the innermost integral is a decreasing function
of 37, Theorem 2.1{a) applies with v = g (cf. Remark 2.2) so that the last
integral is less than or equal to
% -1 ( /
{q f [ j pi '( f ki (e, f)dL) dy} ciar}
a
)

= {qf;t/""l[fu(a:)( f kl(m,t)dt)qdm] dy}l/q
o 0

0

)k:g(:c, t) dt) dy]p dw}”p

< (”{f] }0 Yo (f}cmv(a:) dm) o dy}l/q,
0 0

where the last inequality follows from (3.4). Since p/q < 1 we apply again
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Theorem 2.1(a) with v = p/q to see that the last expression is not larger
than

cfp [ (  veran) )" = [ rermca)”
0 0 0

Here the equality follows again from Lemma 3.1(a).
If ¢ > 1, let ¢ = f% Then by Lemma 3.1(a),

[ miwof@d= [ ke g
0 0

97 )

10}0 1/q- l(f

now shows that

ki (xz, t)(il,) dy.

oD

Minkowski’s inequality and (3.4) no

( }Ou(m)( f}cl(az,t)f(t)dt)qdm)l/fl
0
= {Tu {fyl/fr" ( f( )kl(zc t)dt) dy] dm} o

yt- 1( j(J ki(z,t) dt) dy”

1

e}
[t}

l/q 1|:

_ l“
q

C__)S

IA

!
g

dy
g,

u(z) (g}(y)kl(m,t) d‘l;)q dw] v dy

4]

°’—-v8 =3 o
L.ﬁg

Wy |
W O

-1,

{w) ,
< = f yt/a=l ( fy v(z) dm)lfﬁ dy.

But p £ 1, so again Theorem 2.1(&) with v = p applies and hence the last
expression is not larger than

—~l

{ fyp/qw ( f (:z:)cl:c) dy}up

{ }og VP tay( 1) dm}l/p = C’{ Tf(w)pv(w) dm}l/p.
0 0
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(c) Let g = f9. Then by Lemma 3.1(a),

[ rore

Theorem 2.1(a) with v = p/g < 1 and (3.6) show that this is not larger than

A (1)

ou = (T (T

0

u() dm) dy] p/q.

gt ()

p fge 1 [
TEANE

0

i
u(m)dm)j Idy

AR

<ot f [ [ ket dt) viz) de] dy

u 0
— T P pla=1 - P
= f L’ fy (f kg'rt}dt) dy}v(m)dm C fA(:r ) dx
and again by Theorern 2.1(a) with = 1/p < 1 we have
g™ ()

2) z% f p/q-—i(‘f kg(m,t)dt)pdy
N 0

na g™ty

=[(J

0 0

kala, e diy?/?)

PR £}

<[ ([ meya)am]

0 0

“-'._..“|:f —yl/«l 1( f kzm t)dt)dt] .
0
Thus from the above and Lemma 3.1(a),

% g 97 )

f Lyta=t f ko(z, 1) dt dy] v(z) de
b lfI

=]

J ot 1aka(a,) ) v(a) da
i :
0

F(tVka(z, 1) dt]pv(w)dm.

This proves the theorem.
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The next assertions for increasing functions on [0, @) will be proved by
gimilar arguments.

THEOREM 3.3. Suppose k1{x,t) and ka(x,t) are two non-negative kernels.
(a) Let 0 < p <1< g Then

Q 21 /
60 ([ u@] [ w0 )" dz) "
0 0
< D( j 'u(m)[ j ko, ) F(2) dt
0 0
holds for all 0 € f1 on [0,a), 0 < a < o, if and only 4f

(3.8) (fu(x)[ fkl(m,t)dt]qdm)”q
0 o

SD( fav(a:)[ fa kg(m,t)dt]pdx)llp

T da:) v

holds for all & € (0,a).
(b) Let 0 < p<1landp<gq. Then

(3.9) (f [fklsct

holds for ell 0 < f7 on [0,

dt] dz ) e o D( j

a), 0 < a < oo, if and only if

( fa“(m)[ fa kl(ﬂ:,t)dt]qdm)l/q < D( j- o(z) dm)”p

holds for all o € (0,a).
(c) Let 1 <p < q. Then

(3.11) (fu qd:c) e SD( fv(x)[ fa kz(m,t)f(t)dt]pdm)l/p
0 0

olds for oll 0 < fT on [0,a), 0 < a < oo, if and only 1f

(s s o( o] J s oal )
[+3 0 .

holds for all o € (0,a).

Proof. The necessity parts of {(a), (b) and (c} follow on taking f(t) =
X[a,e) (1), @ > 0 fixed.

Sufficiency. (a) The proof is similar to that of Theorem 3.2(a), we need
only use Lemma 3.1(h) twice (with » = 1):

v(z) flz)? dm)l/p

(3.10)

(3.12)
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{fu {fk x, 0 f dt} c[g;}llq
{
1] Fla) <

“{ J '“("’")[ J ( J kil t) dt) dyrdm}l/q, i=1,2.
¢ L )
(b) Similarly, by Lemma 3.1(b) (with r = 13,

O

{ [ o] [ i ] aa) "
b 0

={Jut [J}( fkn(wat)dt)dy}qd:c}”q.
0 O )

Assume again, first, that ¢ < 1. Since the inner integral is a decreasing
function of y we may apply Lemma 2.1(a) with v = ¢ so the last term is not
larger than

a Jla) @

{ qu ([ mtar) dx}l/q
)
Fla} a

={o [ v [ uta)( f k(e t)dt) da] dy}lm
0

0 I
fla)

< D{qf yq-—l[ f U(m)de/pdy}l/q,

U I

where the last inequality follows from (3.10). But since p/q < 1 we apply

Theorem 2.1(a) with v == p/q to see that the last expression is not larger
than

.f"(ft-) o

f){;w j ! [ j

0 RS
Ifg>1,let g= f9 Then by Lemma 3.1(h),

'u(u:)dm} dy} w[)(ff Yo m)dm)llp.
0

fklx*.t)ff)dt f.’c]a:t (£)M9 dt

(o) a
ij L/H( fkl(m,t)dt)dy.

0 M )

=
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By Minkowski’s inequality and (3.10),

{fau(:c)[ f kl(m,t)f(t)dtrdm}lfq
0 1]

gla) I3

:1{ fau [f yl/e- 1( f k’1(:c,t)dt) d:yrdm}l/q
T ¢ 97 W)

S},{ T)ylfq—llsz{m)( f kl(ﬂ?,ﬂdt)q dﬂ:]l/q d:u}
T 0 ¢ w)

S.ng?ylfq—l( j v{z) da:) dy
T a )

But since p < 1, Theorem 2.1 applies again and hence by Lemma 3.1(b) the
last term is not larger than

v(z) dm) dy} v

43

oz o

)

= D( Ufa g(z)?/%(x) dm) v = D( j Flz)Pu(x) d’L) Hr

(¢} The proof is similar to that of Theorem 3.2(c) and therefore omitted.

Remark 3.4. Theorems 3.2(b) and 3.3(b) were proved in a different
way by Stepanov [43], Myasnikov-Persson~-Stepanov [33] and, in the case
of 0 < p € g €1, by Lai [27]. Our method of proof is taken from the
paper by Carro-Soria [15] and Lai [27]. Theorem 3.2(c) was also proved by
Myasnikov-Persson-Stepanov [33] and Lai [27].

The choice of ki(m,t) = x[04(t) and ky(z,t) =

X[z.a)(t), in Theorem
3.2(b}, respectively Theorem 3.3(b), gives

COROLLARY 3.5. Let O <p <l ondp < q.
(a) The inequality

( fu(a:)( f £) dt)qdm)”q < G( Tf(:c)%(:r:) dm)”p
0 0 0
holds for all 0 < f| if and only +f for every a > Q,

( f (z)(min{z, a})qdm) M < G( f'u(m) dm)l/p,
0

0

icm
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{(b) For a < oo, the inequalily

( f () ( [ £t )"de) " < f foPela)da) "

holds for ali 0< f1 'af and only if for every @ € (0,a),

£
. /g 1
( f u(w)(min{a wm,awcn})qdw) < D( fv(m) d.m) /p.
M) o
Rewmark 3.6, If p == ¢ > | and 4 = v, then the result corresponding to
Corollary 3.5(a) was proved by Neugebauer [34, Th. 2.2].

In the case when both the integral operators are equal and of the form
jo t) dt, Thoeorem 3.2(a) extends to the range p = ¢ > 1.

THEOREM 3.7, If either 0 <p <1< g<ocorl $p=gq< oo, then

(3.13) (fmu(m)(ff(/,-)d-z;)“"czm)”’gc(fu(x)(ff(t)dt)”dx)w
0 0 4]

0

holde for all 0 < f| if and only if
w o0 1

(3.14) (j ~u,(a:)(min{:1:,u})"’dw) (fu z)(min{z, a})? cl:c) &
8] (]

holds for every a > 0.

Proof. If 0 < p < 1 < ¢, then the proof follows immediately from
Theorem 3.2(a) by taking RL(m t) = ka(2,1) = X[o,q2 (%).
If1 < p=gq, then (8.14) with o = (y) means
o] o0
J ule)min{z, oy)})P dz < C° [ viz)(min{z, ¢(y)})* de.
0 0
Tutegrating from 0 to oo with respect to y and using Lemma 3.1(a) and (c),
we obtain

o0 o

S (e (oinge, o))" de ) dy

0 1
s ply) 0

mf {f w(wa? da - p(y)" fu( )dm] dy
0 ! w(y)

29 @

mf o (ule) e da |~f [f w“’l(s)d(sp)—w”tp“l(w)]u(m) di

~f[ ]+

d(s? )] o(2) dez.
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Similarly for the expression with weight v we obtain from (3.14),

f[f‘ﬂl d{sp)]( dI<CT’}O[I¢la s”]vx}dm

0

Takmg e s) = s7LTf) Pt we have [ o7l(s)d(s?) =

fo t) dt)? and so

Jﬂfmm%mmsmf[ffﬂj ) do.
0 0

Remark 3.8. The same result with a different constant in the range
0<p<g<ccandqg> 1 was proved by Stepanov [43, Th. 8.3].

4. Bharp weighted inequalities for concave functions. Consider
the Green kernel

_fz(l-t) 0Lzt
(4.1) K(m’t)_{t{lum) f0<t<e<l,
Then the function
1
0 .

where g ranges over all non-negative functions in 1[0, 1], constitute a dense
subset of non-negative concave functions on [0,1] (cf. [3], [5]). This fact is
used in the proof of the following theorem:

THEOREM 4.1. Suppose either 0 < p <1 <qorl1<p<q. Then

1
1/p

(4.3) ( i) f(:c)qdm)l/ ‘< c( fl (@) f(cc):"dm)
0 0

holds for any concave function f >0 on [0,1] if and only if

X _
{(4.4) (fu(w}K(m,a)qd:c)lm SC’( j' v(w)K(w,a)pd:ﬂ)]/p
0

0
holds for all & € (0,1), where K(z,a) = min{z,a} min{l ~ z, 1 — a}.

Proof. The necessity follows at once on taking f®) = K{z,0), a €
(0,1) fixed, in (4.3). To prove sufficiency in the case of 0 < p<l<y,
it suffices to prove (4.3) for those functions f having representation (4.2)
and then standard limiting arguments give the general result. We may also
assume that the left side of (4,3) is finite on taking first a suitable dense
subset. This restriction again can be removed by limiting procedures.
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Assuming this, we use Holder’s inequality, (4.4) and Minkowski’s inequal-
ity to obtain

ff‘“

[F115,

[mei }d

K(r, tu(z) f(z)T" dm] dt

1 \

1 ]
< [ o] f Kot } T ]/th
{) } 0
1
<c f g(l;)[ f K(m,t)%(m)dm] pdtﬁfﬂﬁﬁi"
1] 4]

¢ H f Kz, )P m)d:r“ ’”f|g,—ul
)
1

—_

» Yo
1K (@, 0 u(@) g d) (L7450

¢ j(fhwmmWwUﬂ)m)nm”

0

==C‘( {)f flaYo(e)de

o
<o,
o

) 1Al = Il 155

6uf}" ciency in the case L < p < g I‘or p = 0 let the dlfferenual operator
on C*(0,1) be given by

(o (e - o)
ol 2y + (- D)2 - 1y

and consider the Radon-concave functions of order p, R, = ij (cf. [17], [37)),
i.e. the closure in the topology of locally uniform convergence on (0, 1) of

dp = {f € C?[0,1]: ~Lylf]1 2 0, £(0) = f(1) =0}
For every continnous function g: [0,1} -~ R the boundary value problem

Llfl =g, FO)=fQ1)=0,

Lip [y] ==

Ei

]

+p(l-ply



154 H, Heinig and L. Maligranda

has a solution
1

Fa) = [ Gplz,1)g(t)

0
where
1 [ gpg=r fo<e<i<l,
Gpla,t) = {(1-m)p(1~«t) 0 if0<t<a<l.

Our result now follows from the following two facts (ef. also [17] and [37]):

1.IEL <p<q, (44) holds and f € Ry, then

( fl 2)YPu(x a’;c)m < f] r)v(z) dz.
o 0
In fact (and similarly to the above),
1 1
1 e = [ #@ @] f Gyla,t)g(t) dt] e
0 0

9(6)| f Go(@.£)1(2)"" () da] at

<

1

g(t)[ f qGq(z, t)u(z) dm]p th ||f||§f§,;l

0

il

Fie OL‘ﬁa—d DL'_ﬁI—‘

Sl T

1 L rlq o/ D

=3 g(t)t—p(lut)mp[ f K (z,t)%u(x) dw} dt[\f”;jg,ul
Lop | :

<20 [ oo~ )| [ Ka,tyPu(e) da) e f12027)
0 0

() ds] at || 2027)

1 1
f [DIGT’ a/pu
1 1
=cr [ [ [ Gyla
0 0

1
=% [ flz)v()dz | f9E7"
0

dt]v(m) da | £112/2)

q/pu

g(t {IG (z,8)9Pu(z) dm]p/q[j'f )4/ Puz) ]l”p/th
0
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2.Ifpz 1land f € Ry, Le. fis apositive concave function on [0,1], then
fr g Ry It is enongh to prove that if y € Qy (ie. " < 0 and y(0) = y(1)
= {0), then y” € ;. Since
Lply?) = a(1l = wp(p — NyP 72y + 47~ 1"
A+ (p = 1)(2z = Upy?~ 'y + p(L — ply?
= (p = Dy" " Lyfy] + plp - Ly?*(ay’ — )[(1 ~ 2}y’ + )

and zy'(x) — = [y (8 dL L0, (1-a2)y (2) + ylo ) = f:(t— Dy (t) dt
>0 it follows thdt L,, Y] < 0 and so ¥ € Q.

Remark 4.2, (i) Theorem 4.1 in the case p = 1 wag also proved by
Maligranda-Pecari¢ -Persson {29, Th. 3], In the case 0 < p < 1 < ¢, The-
orem. 4.1 is still true for all functions which have representation (4.2) with
the non-negative kernel K'(z, t). In particular, if

_[1 ifo<t<z<,
K(“””“{o if0<z<t<l,

then f(x fo t) di is increasing on [0, 1], Similarly, if
iy J 0 0Lt <,
K, t) {1 fo<z<t<l,
then f(x j g(t) dt is decreasing on [0,1]. Therefore Theorem 4.1 also

gives the proof o{ Pmposition 2.5 but only in the indexrange 0 < p < 1 < gq.
(i) Heither 0 < p <1 <gorl<p<qand ulz) =v(z) =1, then

)= | [1[ (z,6)7ds] /q{ f K(m,t)?dm}_w
3] 0

«-—[f‘ (1-—t‘1da"+ft‘11~:c)qdm}/
i
X [j aP(1—10)F da ~I-ff;”(1~a:)?’ dac}
0 ‘
= (p++ DMP(g+1)7Y°,

which is the quotient, i.e. the constant €' of (4.4), and hence Theorem 4.1
gives the Favard-Berwald inequality || f|l; < (0+1)YP(g+1)~1/7|| f||, for any
positive concave function f on [0, 1], Berwald [8] proved this inequality in
the full range 0 < p < ¢. lu particular, if g = 1 then || £l < $(p+1)Y2(|f],,
0<p< 1 A p — 0 this ineqnality becomes the reverse Jensen mequallty
given in the introduction,

-1l/p
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(iii) If w(z) = w(z) = 2%, & > 0 and p = 1 in Theorem 4.1, then the
fimetion

1

o= [ o] "'/ |

4

Kz, D)z™ dm]

f;(H_l 1/q
[(1 — t)qm + f (l e IU "w“ dm]
= {1 . t)ta'H 1 - tcx»{-I B 1 - ine+2
a+2 a+1 -2

can be shown to be decreasing on (0,1). Hence h(t) < h(0) and therefore
the constant of (4.3) is

1 ;
(@+)@+2)( [ -—:c)qu"dm)l/q -

0

(a+1){e+2)B(g+1,a + 1)1,

B being the Beta function. This is a result of Barnard-Wells (3, Th. 1].

We can apply Corollary 3.5 and Theorem 3.7 to prove Favard-Berwald
inequalities for increasing and decreasing concave functions, Note that if
0 < f is concave on [0, 00) then f is necessarily increasing.

Remark 4.3. (i) From Thecrem 3.7 it follows at once that if ejther
O<p<gorl<p=gq<og,then

£ Nlg < CllFllpv

holds for any concave increasing function f on [0,00) if and only if (3.14)
holds for all & > 0.

() If1 = p < g < oo, then it follows from Corollary 3.5 and Theo-
rem 2.1(a) that

1 1
(fum)f(wqd:c) f z)f(z)d
0 0
holds for any concave decreasing function f=>0o0n[0,1] if and only if
] . 1/q 1
( f w(z)[min(l ~z,1 - a)jqdm) <D f v{z)min(l -~ 2,1 - a)dz
0 0

is satisfied for ala e (0 1}.

We conclude this sectmn with three examples
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ExAaMpLE 4.4. If 0 £ f is concave increasing on [0,1], then by Re-
mark 4.3(1) with p = 1, ¢ = 2 and u(z) = v(z) = 2%, @ > 0, we obtain

« g /2 a+2
(4.5) (ff‘* dz) " < ff:r,clm.
0
The constant (e -+ 2)/y/ex -+ 3 is best possible, as may be seen on taking
flz) == in (4.5).
ExampLr 4.5, 11 0 € f 18 concave on [0, 00), then for { > 0,

(4.6) ( j? fz””""”‘f(:n)q (i:r:) 1iq

Q

fee)
< ¢ l/qu—}—ll/“’fe"”f dz, 1<q<co.
0

The constant $1~1/4(g 4 1)'/4 is best possible, as may be seen on taking

fz) == in (4.6).
In order to obtain the constant in (4.6) it clearly suffices to take £ = L.
By Remark 4.3(1) with p = 1, we must show that

sup { ( E,T &% min(x, o)) d.m) Mq/ f e™ min(z, o) dw}

()

= sup { ( f' ez du + a‘fe“")lfq/(l - e“”‘)} = I'(g+1)%9.

a0

But if h{a) = ([ e~"a¥dz 4+ o%e™®)/(1 — ¢™*)%, then h is increasing on
(0, 00) since

Wiw) = (1- )"t {gat1e™

[23
e (1 - em o)l [ Jematdot mqﬁ—a]} >0,
5

. 0O g Al -
and the above supremum equals Hinge.se b(e}/4 = ( Jo e "a¥ d) /1 =
Dlg+u)te.

ExaMPLE 4.6, If 0 < f is concave on [0, 00), then

wn | }oe-w"’f(m)q dm)”q
0

1/a
< 21~1/<1p(ﬂ1_j'_}.) _ 1< g< o0,

5 e J(z) da,

Sty
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and the constant 2!71/¢1"((¢ 4 1)/2)'/¢ is sharp, as may be secu on taking
f(z) =z in (4.7).
Again by Remark 4.3(i) we only need to show that

o0

' T o—at g ta —2* ) d
21118 (6[:3 [min{z, a)] dm) /D e rmn(ac,a)c:r}

o 2 fev] 2 l/q
= sup{(fe““’ 2¥de 4+ ot fe"'” dx)
a0 0 @

(2

x ( f e rdr+ o jfce'“:g da:)—l} = 2'1“]/"1’(%1)

0
For that it suffices to show that

o o0 & o8] . q
kia) = ( f e 59 d + o f e d:c)/( f e rdr + o f e da:')
0 o 0 o

is an increasing function on (0, 00), for then the above supremum is
s g ; W a +1
. /g _ -2 g -zt . al=1/ q
al_lﬂlok(a) q—(éfe Tz d:c) /Ofe zde =2 ql”(-—-g )

But

ifq

1/g

k(o) = q( fa e rdz +a }Oe"mz dm)mq“l( j\oe"wz c.ia:)
0 @ o

[ (23
2 2
X {oﬂ‘l f e " a:d:cmf e " m"dm] >0
0 0
and hence the function % is increasing as required.

5. Weighted reverse Holder inequalities. Closely related to the
Favard-Berwald inequality is Griiss’ inequality [21] {see also [23]). It asserts
that the L'-norms of f and g are dominated by the Ll-norm of the product
fg, where f, g are from some class of functions. This inequality together
with Favard’s gives a reverse Holder inequality (cf. 3], [4], [6], [9], [26]).

We now discuss weighted versions of Griiss’ inequality and also give
weight characterizations for which such inequalities hold.

In our first result we assume 0 < w € LY(I), where J C R is an interval,
and we let P be the class of positive measurable functions on J.

THEOREM 5.1. (a) If || fll2,m < Cal|fllLw for any f € P, then
(5.1) Cillfliliglie < | fgliw  for any f,9€ P,
where OF = 2/w(I) ~ CF and w(l) = [, w(z)dz.

icm
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(®) If | £l € Coll fll10 for every r > 1 and f € P, then
(5.2} Coal Flloaellglans < NFgll1w
Jorl<pg<oo, f,g€P and O} = C5/(C,C,).

Proof. (a) Let || f|

I -+ gl

10 = ||9ll1,w = 1. Then
b = 171500 + 20 F gl + 1112
< CRIFIZ w0 + 21 £ ol + C2lgli2 o = 2C2 + 20| 4lls .

On the other hand, Hdlder’s inequality shows that

2=11F+glhw <UF 4 gllzwro(D)'2,

s0 that

. 4
Lw = [If + 913, —2C5 > —— — 203,

2 f9l o)

and hence

2
el > (————- _ c%) T,

w(l)

(b) The proof follows immediately from (a) and the assumption.

For concave functions the constants given in Theorem 5.1 are not; always
sharp. We illustrate this fact by examples given next,

ExaMpLE 5.2 () Let P = {f = 0: f is concave on [0,1]}. If w(z) = =,
o > 0, then Remark 4.2(iii) shows that the constant C, equals (a+1)(a+2)
x B(r+ 1, + 1)1/", where B ig the Beta function. Since we have Oy =
[2(c + 1) (e + 2)/(a + 3)]*/2, it follows that CF = 2(ar+1)/(a + 3) and

Cyo=2[la+ 1)+ 2%+ 3] Blp+1,a+1)"*Blg+ Lo + 1)"42.

In particular, €%, = (o + 2)~! but it is known that the best constant
is {(@+ 1)/[2(c + 8)]}'/2 (cf. Barnard-Wells [3]). If & = 0 the constant
Cpq = 2(p+ 1)HP(q 4 1)"/¥ i sharp (cf. Barnes [4]).

(D) IEP = {f 2 0: f is concave on [0,00)} and w(z) = €=, then
Example 4.6 shows thet O, = 2-1/"{((r + 1)/2)%/". Hence we have C¥ =
(4 = mn=12 > 0 and

) . -1 ~-1/p + 1 -1/q
Cr o= (4= w)w*lfzzlfp"*-l/q“zr(f-%m> r (12——) :

To obtain sharp constants in inequality (5.2) for a specific class of func-
tions, say concave functions, we require properties of these functions which
are not as general as those of P,
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THEOREM 5.3. Suppose f,g ore non-negative concave functions on [0,1]
and 0 <7< 1<p, g<oo. Ifu, vand w are weight functions on [0, 1], then

1

63 ([ u(a:)f(m)wx)””( fv(x)g(m)q dw)l/‘f
0 0

= O( fl w()[f{x)g(x)]” dm)l/T

0
holds if and only if
[f K(z, £)Pul(z) da] 1/‘”[[” K (x,8)%v(z) dr]'/e o
fo (K (2, ) K (2, 8)]"w(z) dec} /™

(54) C= sup
9,t€(0,1)

where

_J=(-y} fO0se<y<l,
Kz, )—{ (1-z) F0<y<z<L

Proof. Necessity. Substitute f(z) = K(z,t) and g(z) = K(z, s), where
st € (0,1) are arbitrary, into (5.3). Then the necessity follows.

Sufficiency. As noted earlier, it suffices to prove (5.3) if f and g have the
representation

1 1
=fK(:c,t)f1(t) dt, g(:c):fK(m,s)gl(s) ds,
D 0

where f1, g1 are some non-negative functions in L'[0,1]. Applying Minko-
wski’s inequality twice and (5.3) one obtains

1flpullgl g,
1

= [fu(:c)(fffw t)f1(t dt) dw}llp
Q 0

[j:v (fKa: s)gl(s)ds)qdw]lm
0

0

1 " 1
o] fK(:n,t)pu( yaa| Tt [ g
0 Q

0

(3)[ j K(m,s)%(m)dm]l/q ds

A

Il
S
S,

fi(t {f K{z, 1Y u(z) ] [jfi’ (z, 8)%( w)dm} /qudt
0

IA

11 1 1jr
¢ [ [ ng {f (K (2, ) K (z s)rw(m)dm} ds dt
g 0 0
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11
J){ff.fl(t)gl(S)I{(.ﬁ,t)I((lE,S)Clsdt:],rd(l’:}l/"'

1 I 1

:(f{ J 'w(;::)[ ffi(L)K(:r l:)dt} [[ g;(s)[x’(:&:,s)ds]r}

0 { 4]

ir

= Cll gl

Remark b4, (1) The method of proof of Theorem 5.3 with the Creen
function K'{z,y) is usually called the Bellman or Bellman-Weinberger
method. Bellman proved such a result in the case of wu = v = w = 1,
r=1land 1/p+1/q =1 (el [5], [6], [3], [26], [37], [46], [47]). This method
was also used earlier by ]3iickner [11] who proved the case u = v = w, r = 1
and p =g = 2,

(ii) Computations of the supremum (5.4) or (5.8) are often quite tedious.
If u{z) = v(z) = w(z) = 1 in Theorem 5.3, then the supremum over 0 <
s<t<lof

1
H(s,t) = ( f K(m,t)?’dm)l/”
0
1

1
x(bf'h(:n,s)fdx) /(f Kz, 0)K

0

i B 1_3)1" k1

= (s 1)=1/r 1y (A —s)7s™
(p-+1)""P(g+1) (1-3) 1

i e ~1/r
(1 —gmt?
SRS e

&

(o s)) d) "

is not easy to compute (cf. [3], [6], [25], [37], [46] and [47]).
(iif) If f and g are non-negative concave increasing functions on [0,a),
0 < a £ oo, then the result corresponding to Theorem 5.3 is the following:
fOo<r<l<p g< o0, then
H Vo, @ /g
(5.5) ( f w(w) f(x)? dm) ( f v(z)glz)d dm)

0 0

< 0( [ w@l@ete) )"

& —a

holds if and only if

- K (z, t)Pu(e) dz) P f) Kz, s %(m)dm]l/q
5.6) == o Kz, 0 ) <o,
B8) D= s A e s <%
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where
r f0<eg<y<a,
K(z,y) = {y ifo<y<z<a.
Finally, if for p,q > 1 and o > 0, Hy 5 o denotes the best constant H in
the reverse Holder inequality

1 i/p 1 1/‘!{ 1 ‘ .
a( [ plaracda) ([ gla)iada) " < [ fe)gla)a” da,
¢ 0 0

f, g concave positive functions on [0, 1], then the known results are the fol-
lowing:

Hyap=1/2 (Frank-Pick [19]),
Hi10=2/3 (Griiss [21)),
Hp g0 = %(p+ DMP(' + 1)YP (Bellman [6]),
Hoo = g(p+1)M7(a+ 1)1 (Bornes [4]),
+1
Hypo = "2'(%??) (Barnard-Wells [3]),
Hp,p’,a = min{Va (p)a Va (p’), Wae (p)}/[(a o 2)(& -+ 3)1 (Wannghen [47}),

where
Va(p) = (F' + 1+ &) B(p+ 1,0+ 1)7V/7,
Wa(p) = 2/[l@+ DB(p+ L a+ 1Y B +1,a+1)"/7].

Also if H, , is the corresponding constant for increasing concave functions
f,g on [0,1], then

Hiy0=+3/2 (Kraft, Biickner [11]}
and

Hy o= win {F(p+1)"/7, 1 (g+1)V9, $(p+1)1/P(g+1)1/1}  (Petschke [37)).

Other results may also be obtained from Remark 5.4{iii); in particular, we

get
HE = V(o + 1)(a + 3)
Tade T ot 2 '
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