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Reproducing properties and LP-estimates for
Bergman projections in Siegel domains of type 11

by

DAVID BEXKOLLE and
ANATOLE TEMGOUA KAGOU (Yaounde)

Abstract. On homogeneous Sjegel domains of type II, we prove that under certain
conditions, the subspace of a weighted LP-space (0 < p < o) consisting of holomorphic
functions is reproduced by a weighted Bergman kernel. We also obiain some LP-estimates
for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-
Gindikin formula for the Bergman space A%

I. Introduction. Let D be an affine-homogeneous Siegel domain of
type Il Let dv denote the Lebesgue measure on D and let H(D) denote
the space of holomorphic functions in D. The Bergman projection P of D
is the orthogonal projection of L*(ID, dv) onto its subspace A?(D) consist-
ing of helomorphic functions. Moreover, P is the integral operator defined
on LD, dv) by the Bergman kernel B((,z) and for D, this kernel was
computed in [G].

Let £ be a real number. For p € (0,00), we set LP*(D) =
L?(D, B~#(z, z)dv(z)) and we define the weighted Bergman space AP#(D)
by A?*(D) = L»*(D)NH(D). There exists ey < 0 such that A%¢(D) = {0}
whenever £ < go; for € > gg, the corresponding weighted Bergman projection
P, is the orthogonal projection of L%¢(D) onto A*¢(D),

The first purpose of this paper is to generalize to the weighted Bergman
spaces A%¢(D) the Plancherel-Gindikin formula proved for A%(D) by
8. G. Gindikin [G] and by A. Kordnyi and E. M. Stein [KoS]. Our proof
is an extension of that of Kordnyl and Stein. More precisely, assume that
the Siegel domain D is associated with a homogeneous cone V C R" . > 3,
and with a V-Hermitian homogeneous form F : C™ x €™ — C”, and let
V* denote the conjugate cone of V. Thus, D is contained in C* x C™. For
£ > £, we prove that a function f € H(D) belongs to A%#(D) if and only if
there exists a function f : V* x C™ — C belonging to a weighted L2-space
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such that R
ey = [ emih2) Fu) dA
v

and the map f ~ f is an isometry. Here, { , ) denotes the inner product
with respect to which V* is the conjugate cone of V. This statement will be
made more precise and more general in Section II, where a useful estimate
for the Bergman kernel will be given as a corollary. J. Peetre [P] also proved a
Plancherel-Gindikin formula for more general weights; his proof is different
from ours.

Our second goal is to give conditions on real numbers r > gg and p €
(0,00) under which there exists € > g such that the weighted Bergman
projection P, reproduces functions in A" (D). We first deduce from the
Plancherel-Gindikin formula that P, is the integral operator defined on
L%*(D) by the kernel ¢, B**#((, z). Some of our reproducing formulae are
based upon the density of A?"(D) N A%¢(D) in AP"(D). These formulae
are an ingredient in the proof of the atomic decomposition theorem for
functions in AP"(D) [CR}. In a subsequent paper, we shall deal with the
atomic decomposition theorem for not necessarily symmetric Siegel domains
of type IL

Our last goal is to give sufficient conditions on p € [1,00) and real r and
& > gg under which P, is bounded on L (D}. Our results are far better
than those obtained by M. M. Dzhrbashyan and Karapetyan [DK] for the
tube over the cone of Hermitian positive definite matrices of order n. We also
give values of p and & for which P, is not bounded on L”* (D). Tn particular,
let us point out that for £ = r = 0, there are two intervals I} and Iy in [1,00)
where we are unable to conclude whether P is LP-bounded on LP(D) or not
for p € I; UT;. Our results extend to general Siegel domains of type II those
obtained in [B] and [BeBo] for the tube over the spherical cone of R™, n > 3.

The plan of this paper is as follows. In Section II, we recall some prelimi-
nary results about affine-homogeneous Siegel domains of type II and we give
precise statements of our results, In Section IIL, we prove the Plancherel-
Gindikin formula for A*#(D) (Theorem I1.2) and its useful corollary (Corol-
lary TE4), The reproducing formulae {Theorem I[.6) are proved in Sec-
tion IV, while weighted LP-estimates for welghted Bergman projections are
proved in Section V.

All the results stated below were first presented in [T]. In the sequel, as
usual, the same letter C' will denote constants that may be different from
each other.

IT. Statements of results. Let V C R™ n > 3, be an irreducible,
open, convex and homogeneous cone which contains no straight line, We
first recall the canonical decomposition of V' as stated in [G].
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NOTATIONS. (i) At the jthstep, § = 1,2, ..., the real line will be denoted
by R;;; at the kth step, k= 2,3,..., Ry will stand for the ny-dimensional
euclidean space,

(ii) Let I" C R be a convex homogeneous cone which contains no straight
line and let v be a homogeneous I'-bilinear symmetric form defined on
R™ x R". Recall that the associated real homogeneous Siegel domain P =
P(I', ) is defined by

P=P(I¢)={(yt) eR7 xR :y—p(tt) € I'}.
We shall denote by V(P) the homogeneous cone defined by
V(P) ={(yt,r) eR* xR" x R:7 > 0 and (ry,t) € P}.

In order to describe the canonical decomposition of the irreducible ho-
mogeneous cone V, we consider at the first step the cone V1) = (0, 00)
C Ry. At the second step, we associate with V(U and with a homoge-
neous V-bilinear symmetric form (2 defined on Rs, the real Siegel do-
main P®?) = P(V(l),(ptz)) contained in R1; X Rp and then the irreducible
cone V& = V(P(2)) C Ri1 x Ry X Raa. At the kth step, we associate
with the cone V*=1) and with a homogeneous V%~V .pilinear symmetric
form ¢*) defined on Ry, a real Siegel domain P = P(V(#—1) o))
Ri1 % Ry % Raa X ... X Rg—1 -1 X By, and then the irreducible cone VI*) ¢
Ri1 x By x Koo x ... % Rk_1,k_1 X Ry, x Rkk:-

It follows from the results of [G] that every homogeneous irreducible cone
containing no straight line can be decomposed in the form V = V& (up
to affine isomorphism). The required number of steps to obtain V in this
form is called the rank I of V, V = V¥, Hence this yields the following
decomposition of R™ that contains V:

1
(1) R®=Ry3 x Re X Rag X ... % Ri_1i1x By x Ry, 1+ Z'n.i = .
i==1

(k)

Furthermore, the projection ¢;;” of @(®) onto Ry; is a non-negative form.

(%)

Then ,;” is positive definite on a subspace R; of R, with dim Ry = np.
We have

k=1 k—1
(2) Ry = H Ry, andso ng = Z"’ik‘

i=] i=1

On the other hand, the projection <,08-°J of ©'*) onto Ry i<j<k<gl
is concentrated on Ry X Rjk.

We denote by G(V) the simply transitive group of affine automorphisms
of V described in [G]. With respect to its canonical decomposition, the

cone V can be described in the following quantitative manner: let = be in
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V and let z;, j = 2,...,1 (vesp. 24, i = 1,...,1) denote the projection
of « onte R; (vesp. Ri). Then there exists a unique transformation h &
G(V) such that (h(z)); = 0 for all j = 2,...,1. We set T = h(z). The !
functions x; defined for j = 1,...,0 by x;{z) = &;;, j = 1,...,1, define
the come V in the following sense: a point z € R™ belongs to V if and
only if x;(z) > 0, § = 1,...,1. More explicitly, set 20 = g then there
exists a unique transformatlon in G(V) which maps 2 into sV eV

satisfying mfl) = 0. A second automorphism maps 2 to z® satisfying

ml(i)l = mfz) = 0,..., and finally, the (I — 1)th automorphism assigns to
22 satisfying mguz) =... = x%"'"z) = 0 the point 2~ = F. Moreover,
the defining functions x; of V are given by

xi(z) = zu,

L (8 ¢, (=) {1=1)
{pjj ( %E'l', ) +
(Z)y=zi5— fory=1,1-1,...,1.
x;(x) id Z xi(@)

i=i+1
Since the decomposition (1) and (2) of R™ yields in a natural way the
following decomposition of C™:

!
(3) C” =[] Cu x Hcij;

i1 i<y

the functions x;, 7 = 1,...,{, can naturally be extended as rational func-
tions on C™.

Let ¢ € C'. We define the function (z)¢ by

14
(22 =[x (=), 2€C™ e=(a1,.... 00

i=1

Fori=1,...,] we set
mi= > ny; and di=—(1+(n;+mi)/2)

§>i

and d will denote the vector of R whose components are d;. Also, in the
sequel, e will denote the point of V whose components are ey = 1 for all
i=1,...,land e; =0forall j=2,...,L

Let us now recall the definition of the conjugate cone V* of V. Con-
sider the inner product { , } on R™ defined with respect to the canonical
decomposition of R™ by :

(@ y) Zwuym+22<p” (i, i)

sl j<i
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The conjugate.cone V* of V with respect to (, ) is defined by
V*={z €R":{z,y) > 0for all y € V ~ {0}}.
The adjoint group G*(V) of G(V) with respect to ( , } is a simply tran-

sitive group of affine autornorphisms of 'V*. The cone V* is an irreducible,

convex homogeneous cone of rank [ in R". We shall denote by x7} the deﬁmng
functions of V*. Moreover, we have the following:

ni = (V) = mip—ji,  1<i<j <l
”: = Myeipl, My = M—itls df =dj_jpy, 1<i<l

For ¢ € C!, we define p* by 0f = g1—it1, and we define the function (z)ﬁn

on C™ by
!
(@)% =115z, zecm
i=1

The Siegel domain of type IT associated with the cone V C R® and a

V-Hermitian, homogeneous form F : C™ x C™ — C” is defined by

, )GV}.

This domain is affine-homogeneous. Now, let F;; denote the projection of F
onto the complex plane C;; and let C; denote the complex subspace of C™
where Fy; is posmlve definite. Set q1 = dimgC; (the complex dimension);

then C™ = Hi 1 C; and m = 2;:1 ;- Hence, by (2) and (3), the space
C" x C™ containing D is decomposed as foliows:

cn XCM_HC” xH(C” xHC

Z<J

D =D(V,F) = {(z,u)E(C” xCm 2

We shall denote by ¢ the vector of N whose components are ¢;.

We first recall the following two expressions of the Bergman kernel of
D=D(V,F).

IL.1. ProrosiTioN [G]. The Bergman kernel B((¢,v),(z,u)) of D is
given by
C —% 2d—q
N )

= f exp (~ <)\, g_;z_i —F(v,u)>){)\):d"‘“q’ dA.

v

NoTaTioNs. For ¢ = (p1,...,0) € C!, the notation 1 + ¢ stands for
the vector (1 + g1,...,1+ o). Let o’ = (6};...,0}) € C'; we set o' =

okt

AR
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(010}, --.,010}). For two points (¢,v) and {z,4) in D C C* x C™, we let
b((¢,v), (z,u)) denote the kernel
2d—g
)

s(¢on )= (5

Notice that B = ch. Moreover, we let b2 and b**+¢ denote the expressions

s (2d-9)
s, (5,00) = (457 = P

and

C _3 2d—g-4-(2d—q)g
(g () = (57 - Pl

Let ¢ be a vector in RL. For p € (0,00), we set L¥*(D)
= LP(D,b %(z, 2)dv(z)) and define the weighted Bergman space AP*(D)
by AP#(D) = LP¢(D) N H(D). The “norm” of AP#(D) is the L?**-“norm”
[*]lp.s- The corresponding weighted Bergman projection Py is the orthogonal
projection of L2%(D) onto A%¢(D).
_In order to state the Plancherel-Gindikin formula for A2¢(D), let
L?(V* x C™ ¢) stand for the Hilbert space consisting of functions f :
V* x C™ — C such that

(i) for all compact subsets Ky and Xy of V* and C™ respectively, the
map w+— f(-,u) is holomorphic on Ko with values in L%(K;,¢), where

LA (Ky,c) = {9 K1 - C: f\g 200 ) < oo},

(ii) the quantity
I
) — o H (L/Q
=( [ ewl=20, P ) f 0 wP0E ddu(w)
v"ﬂ xcm‘
is finite and is the norm of f in L2(V* x C™,¢).
[1.2. THEOREM (Plancherel-Gindikin formula). Let € € R satisfy

n; - 2 .
l>m (z—l,...,l).

1} For all f € A%4(D), there ezists a function f € fz(V* x C™, g) such
that

(1) . ) i f(z: u) =

~

[ exp(i(r, 2) F0, u) dA

Ve
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with the estimate
(i) £z = el gy em

2) Conversely, for all Fe L2(V* x C™, g), there exzists f € A%%(D) such
that (i) and (ii) hold.

The condition on € is justified by the following consequence of the proof
of Theorem I1.2:

11.3. COROLLARY. Let ¢ € R! be such that there exists i € {1,...,1} for
which
g+ 2
P
2 50d - 9);
Then A%¢(D) = {0}.
From Theorem I1.2 and Proposition I1.1, we shall also deduce the fol-
lowing useful corollary:

I1.4. COROLLARY. Let a and ¢ be two vectors in R' and ({,v) a point
of D. Then the quantity

T PF (G 0), (2 )b~ ((2, ), (2 w)) do(z,u)
D

is finite if and only if
E> T2 2 P AP . . M—
"7 2(2d - g P 224 - g)

In that case, the following identity holds:
[ (¢, ), (7)) 67 ((2, 1), (2, w) o2, u) = caeb® (¢ 0), (¢50))-
D

foralli=1,...,L

Theorem I1.2 and its corollaries are proved in Section III.

Before stating our reproducing formulae, let us give the following de-
scription of P:

IL5. PROFPOSITION, The weighted Bergman projection Pg, where ¢ € R
sotisfies

1+ 2

_ 2(2d — q)
is equal to the integral operator defined on L?#(D) associated with the kernel
esb (¢, v), (2, ).

Our reproducing formulae read as follows:

T1.6. THEOREM. 1) Let r € R! and p € RL be such that r; 2 0 and

2= i(ier) g
n; ‘

g; >

1<p<
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Then for all £ € R satisfying
n+ 2 p—1
£ > : + —
202d—¢q); p P
when p > 1 (resp. for alle € R satisfyinge; > v (i=1,...,1) whenp =1),
the reproducing formuls P.f = f holds for all f ¢ AP"(D).
2) Let r € R and p € (0, 00) satisfy

(i=1,...,0)

1y + 2 -2(2d = @)i(l+m) .
, P L d < i=1,...,0).
Tm>2(2d'—'q)i at 0<p 4 ( H 7)
Then for all e € R satisfying
g + 2 ri+1
gy > : + i=1,...,1),
2(2d — q)s P ( )

the reproducing formula P.f = f holds for all f € APT(D).

In particular, for r = 0, we are able to prove that AP(D} has a repro-
ducing operator F; just when p € (0,pp) where

. {ni—2(2d—-q)z-}
po = min 4 =t L
i=1,.0.1 7
These reproducing formulae will be proved in Section IV.

Our last results are weighted LP-estimates (p € [1,00)) for the weighted
Bergman projections P;. We let P* denote the integral operator on L%(D)
associated with the positive kernel [b1+%(((,v), (z,u))].

IL7. THEOREM. 1) Let & and r in R! satisfy

n; +2 ng+ 2

7 d-gn ¢ 22d-q)
and
g .
UL S
& r>——2(2d—q).,; (4 )
Then P} is bounded on LY7"(D).
2) Let v and € in R! be such that
1 7o -2 .
> and > T2 =10,
g CrE) an n>2(2d—q)i (i=1,...,0)

Let p € (1, 00) satisfy
max (1, 2ng + 2 — 2(2d o q)q;’f'q;
i=,...,L ng +2—2(2d — g)e;
Then P} is bounded on LP" (D).

Of course, the L?"-boundedness of P¥ implies that of P.. We also prove
the following negative result for P..

2n; — 202d — q)yr;
<p< min ni+2 - 2(2d Q)m.
i1y, Ty
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IL8. THEOREM. Let ¢ € R! satisfy
gD =, ...
g Sd =g, (t=1,...,

and set

T
Pofe) = max, { 20d —gu(lte) T 1}'
Then P is not bounded on L™=(D) when p € [1, po(e)].
In particular, in view of Theorems I1.7 and IL8, for r = ¢ = 0, P is
bounded on L*(D) if p € (p1,p}) where
2n; + 2
i 2

and p| denotes the conjugate exponent of p;. On the other hand, P is not
bounded on L?(D) when p € [1,pg], with

3
S SR
Po { —2(2(1 pny Pi
and P is not well defined on L?(D) when p € (p}, co). There are two gaps,
p € (po,p1) and p € (p},p}), where we are unable to decide whether P

is bounded on LP(D) or not. Theorems I1.7 and IL.8 will be proved in Sec-
tion V.

Plzm&x{

IT1. Proof of Theorem IL.2 and its corollaries

Proof of Theorem I1.2. The proof relies heavily on ideas of [KoS).
In particular, we use the following lerama:

II1.1. LEMMA [KoS]. Let U be a subdomain of CVN. Let M be a measure
space and let f: U — L2(M) be holomorphic. Then for each z € U, one
can define f{z)(p) for almost all p € M s0 that

(i) for almost allp € M, the function z v+ f(2)(p) is holomorphic on U,
(ii) the map (z,p) — f(2)(p) 1s jointly measuradble on U x-M;

(iii) for each subdomain Uy whose closure is compact in‘U, there exists
w € L2(M) so that |f(2)(p)| € @(p) for all z € Uy and almost all p € M.

We first prove agsertion 2) of Theorem II.2. Let Fel? (V* xC™, ). By
Lemma II1.1, for almost all A € V* the function % + f(A,u) is an entire
function on C™. Then, by the Fubini theorem, for all v € C™, we get

(4) [ exp(~2(\, F(u, )| F O, ) A)E9H g & o,
A ' ’ '
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We can now define f on D by
o) = [ explilh,
v‘*
For this definition, let us prove that the integral on the right hand side
is absolutely convergent. By the Hlder inequality, for 2 = z - iy, we have

f exp(— (X, )10 w)l dA

v*

NI wdr  ((zu) € D).

< ([ expl=200, Fw,u) T wF )P ax)

v

(] expl=20hy - P70 )"
J

1/2

The first integral on the right converges by (4) while the second also
converges under the hypothesis ; > {(n; + 2)/(2(2d — ¢);) (i =1,...,1) by
virtue of the following proposition (assertion 2)):

HL.2. PROPOSITION [G]. A) Let z € C™ and g € C.

1) The integral [, exp(—(), 2)}{(A)4T4dX is absolutely convergent if and
only if Rez € V* and Reg; > m;/2 (i = 1,...,1). In this case, this integral
is equal to c{g)(2)7%

2) The integral f,. exp(—(X, 2))(AN)¢ T4 AN dis absolutely convergent if
and only if Rez € V and Repg; > ng/2 (1 = 1,...,1). In this case, this
integral is equal to c(g){z)"¢

B) Let F be a V-Hermitian homogeneous form on C™. Then for ol
AeVH

f exp(— (X F(u,u))) d'u(u) = C(A);q* .
Cm
Let us show next that f is holomorphic on D. It suffices to show that
for each compact subset K of D, there is a function 4 in L*(V*) such that
for all (z,u) € K,

(5) exp(— (A ))|F A u) S RO) (A eV,

Take K = Ky x Ka, where K; and K are compact subsets of C™ and C™
respectively (recall that D < C" xC™). Moreover, we can suppose that there
exists yo € V such that y ~yo € V for all y € InK; and yo — F(u,u) € V
for all u € Ka. It is well known that there exists a constant ¢ such that
for all A € V* and for all y lying in the compact set ImK; (note that
ImK; ~yo C V), we have (A, y —y0) > ¢|A|.
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Thus, if we set § = g/|yp|, then the left hand side of (5) is less than
exp(—(X, yo(1 + )| F(X, ).
Let fyD be the function defined on V* x C™ by

Jun () = exp(— (%, 30) F(A, ).
For almost all A € V*, the function f;o (A,-) is entire. In the sequel,
L2(V*,¢) will stand for the space L2(V*, (A){**9"¢"+%" 1)) We next prove
that fyu( ,u) € L2(V*, ). Since yy — F(u, u) € V for all u € K3, we obtain

1o o) Eave ey € f exp(=200 B, w))IF, w) PO+ ),
v
The integral on the right is finite by (4), because f LQ(V* x C™ ¢g). It
follows that fyn satisfies the hypotheses of Lemma III.1 with M =
(V= (A j{Rd=a)etd’ d)\) and U = C™. Then by assertion (iii) of this lemma,
using an open relatively compact neighbourhood of K, there exists g €
L2(V*,¢) such that | f, (A, u)} < g(A ) for all u € K5 and almost all A € V*.

Inequality (5) is of course satisfied by the function A(X) = g{A)
x exp(—(A, §yo}). By the Hélder inequality, we obtain

- PR I 1/2
Il cvey < lgllueevm,e (f exp(=200 508D (W5 ®49" = ax)
v
and the integral on the right converges by Proposition II1.2.2 because &; >
(ns +2)/(2(2d — q)i) (¢ = 1,...,1). This concludes the proof of identity (i).
Let us next prove estimate (ii). Write (i) as

fla+iyu)= [ exp(=(\1)f(Au) exp(i),z)) dA.
v+
By the classical Plancherel formula on R, we have

S @ +ig,u)Pde= [ exp(—2(0y))[FAu)l dr

15k v
and hence
(6) I1f15,e = fd)\ fdv WFA, w)|? exp(—2(2, F(u, )
ATATE o
X f exp(—2{\, 1))y — Flu, u)) "D qy
V+F‘('u.'u.)
= [ & [ 10wl el 200, F(x, )))
v :

v (A)*Zd— a)fet+d* do(w), :
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where the last equality follows from the application of Proposition IT1.2
to the integral with respect to y: the convergence of this integral requires
g > (n; +2)/(22d - ¢):) (i=1,...,1).

Now, let us prove assertion 1). Let f € A*$(D). Then by the Fubini
theorem, for all u € C™ and y € R” such that y — F(u,u) € V we have

) [ 15 +ig,u)P do < oo.

R‘Hd
For each y € 'V, define the function f, on R™ x {u € C™ : y - F(u,u) ¢ V}
by fy(z,u) = f(x + iy, u). Then by (7), the function @ — f,(z, u) admits a
Fourier transform A +— f,(A, ), i.e.

(8) Julz,u) = f exp(i(A, z)) (A, u) dr

]RTJ-
and f,(-, u) € LA(R™.
.. Let us prove that for all A € R™ and u € C™, the quantity
Fy(Au)/ exp(—(A, y)) does not depend on y € V - F(u, ). Let y and ¢’
be two points in V + F(y, u). Notice that since V is an open cone, there
exists r € N, 7 > 2, such that ry — 3 € V. Set ¢t = ry — ¢/'; then

ﬁ.y()\, u) = f exp{—i(A, 2)) f(z + iry,u) dz
#n

- feXp(—i(A,:c))f(x+@(t+y’)1u) da
B

S exp(=i(0, @) f(z + iy, u) exp(~ {2, 1)) da.
R™-fit
The analytigity of f on D and (7) now yield the equality ﬁy()\, u) =
exp(—(\, £}) fy (A u), which is equivalent to

(9) ﬁf‘?f()\’ ’U,) — ﬁf’ (A’ u)
exp(—(\ry))  exp(— (')
In particular, since ry —y € V, (9) also gives

(10) Inhw) )
exp(~(Ary) — exp(~(\y))’
Combining (9) and (10) then leads to the desired conclusion.

‘ We can now define f on R™ x C™ by J?()\, u) = exp((A, y))ﬁ,()\,u), where
¥ 1s an arbitrary point of V + F(u, u). Replacing in (8) gives

(i fau)= [ exp(i(r, 2))F() u) d.

R'ﬂ

il
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We next prove that f(X,u) is concentrated on V*, for all u &€ C™. By
a contradiction argument, assume that there exists an open subset N of
R™\ V* where f(-,u) is never zero. Then for all )y € N, there exist § > 0,
¥ € V and a neighbourhood N{Ag) of Ay contained in N such that for all
A € N(Xp), we have (A, y) < —§ < 0. By the classical Plancherel theorem,
we deduce from (11} that for all ¢ > 1, we have

[ e +ityu)Pde= [ exp(—2(7,t)|F(,u)[2dA
R™ R"
> exp(26) [ IFhu)fan
N(%o)
We let ¢ tend to 0o. Then the left hand side tends to 0. To see this, it is
enough to prove that for all uw € C™, f(-,u) € L2(R" +i(V +F(u, u))); since
/ € A*#(D), this follows by the Fubini theorem. Thus, the latter inequality

o~

implies that f(A,u) = 0 for almost all A\ € N(X). This contradicts the

o~

assumption that f(-,u) is never zero on N. Hence (11) becomes

Flou) = [ exp(i{h 2)F\w) d,
v‘
and this ends the proof of assertion 1). Thus Theorem I1.2 is entirely proved.

Proof of Corollary I13. Let ¢ € R! be arbitrary and let f €
A?%#(D). When we go back carefully to the proof of Theorem I1.2, we notice

that identity (11) bolds for f and the associated function f is concentrated
on V¥ x C™, Moreover, the first identity of (6) holds:

J 15z w)Po*((2,u), (2, w) dv(z, w)

D

= [\ [ dv()| A )] exp(=2(2, F(u, u)

v cm

x [ exp(—2(\, 1)) (y) "0 dy.
A\ o
Assume now that ¢ satisfies
' i + 2
R L L
= aRd— )
The integral over V is infinite for all A € V* by Proposition IIT.2.1. Since
f € A%*(D), we conclude that exp(—2(\, F(u,w)})|f(Au)[* = 0 for all
u € C™ and almost all A € V*, Hence f is identically zero and this implies
f=00onD. R : :

for some ¢ € {1,...,1}.
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Proof of Corollary Il.4. The two conditions
ng +2 n;

e and oy - 8 > —e———
(2d — q); —2(2d—¢);

£5 >
imply that

(L,;>( =1,...,l).

1 (z
2d ~ q);
Then, by Propositions IL.1 and I11.2.2, we obtain
(¢, v), (2,u))
=ca [ exp(—ilh, 7)) exp({X, i + 2 (u, ) ()7 A7+ g
vlﬂ

By Theorem 11.2, if we set ¢ = s+ it, we have

”b{l+a)/2(': (C: U))”%,E

=cae [ exp(—2(\t—F(v,v))) exp(~2(\, F(u —v,u — v)))
V*xC™

x (A);(2d—q)"‘(1+a—e)*+3d* dA d'U('l‘.b).

By Proposition IT1.2.B, the integral over C™ is equal to C(A);"’*. Hence
“b(1+a)/2('? (ga ’U)) ”%,5‘

= cae [ (-2t — F(v,u)))()~ 24— (e 44"y,
v
this integral converges by Proposition II1.2.2 because
oy~ > f(=2(2d—g);) (i=1,...,0)
and its value is ¢o 5*75({¢, v), (¢, v)).

IV. Proofs of Proposition II.5 and Theorem IL.6

Proof of Proposition IL5. It suffices to prove that the kernel
b((¢,v), (2,u)} is in A®#(D), is conjugate symmetric and reproduces
A%#(D). The first two properties are satisfied in view of the definition of
b'*+= (cf. notations adopted after Proposition I1.1) and Corollary I1.4.

Let us prove that this kernel reproduces A%£(D). Let f & A%¢(D); then
by Theorem II.2, there exists f € L2(V* x C™, ) such that

(12) flaw) = [ exp(i(\,2)F(\ w)d\  ((z,u) € D).

v*
On the other hand, since &; > (ns+2)/(2d — g); (i = 1,...,1), we have by
Propositions II.1 and IIL.2,
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B ((z,w), (¢, v))
=co [ exp(it) 2)) exp((A, —iC + 2P (u, v)))(N)7 O A+ gy
v .

Hence by Theorem II.2 (Plancherel-Gindikin formula), we get
(13) (f: b1+s(': (C% U)))2,€ = CE(}: (bl+E)A (': (C) ﬂ)))fz(v* xCm g)

= C¢ f exp((A,%C-FQF('U,U)))
v*

X (C { F(A, u) exp(—2(), F(u, v)))

x exp(—20\, Flu — v, u — v))) d'u(u)) A,
We use the following lemma:

IV.1. LEMMA. Let (4 be an entire function on C™ and let ¢ be a continu-
ous function with circular symmetry: p(u1e™, ..., ume™®) = p(u, ..., Um)
for all oy € R. Assume that the integral I = [, G(u)p(u)dv(u) converges
absolutely. Then I = G(0) fom ¢(u) dv(u).

By Lemina IV.1 (use the change of variables 4’ = v —v and take G(u/) =
F '+ v) exp(—2(X, F(w' + v,v))) and p(v') = exp(—2{}, F(+/,%/}})) and
by Proposition II1.2, the integral over C™ is equal to

ce [ em(iO)F ) dA= cef (G v),
V*
where the last equality is (12). This completes the proof of Proposition IL.5.
In the sequel, to simplify the notations, a point of D will be denoted by
z or ¢, instead of (z,u) or (¢, v), while je will stand for (ie,0). Also, we will
write z/n, ie/n, z +ie/n instead of (z/n,u//n), (ie/n,0) and (z +ie/n, u)
respectively (n € N).

Proof of Theorem IL6. We shall use the following density lemma:

IV.2. LEMMA. Let r € R satisfy r; 20 (i=1,...,1) end let p € [1,00).
Then for all e € R® such that
n;+2 .
I e F
(2d — g); ( )
the subspace AP7(D) N A>%(D) is dense in AP (D).

The proof of Lemma IV.2 is somewhat lengthy: we shall give it in an
appendix. It also uses the following lemmas: ‘ :

&y >

e TR e

B, B S V s 1 kage
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IV.3. LeMMA [R]. Let r € R and let p € (0,00). Then for oll f € H{D),
|f(2)P < B (2, 2)| £}, (2€D).

IV.4. LEMMA. Let 8 € R be such that §; > 0 (z =1,.
z and ¢ in D, we have

1), Then for all

(14) ¥ (z+C 2+ () <(z,2)
and
(15) b7 (¢, 2)] < b7(2,2).

Lemma IV.4 is an easy consequence of Proposition IIL.2.2.

1) Let us first prove assertion 1) of Theorem II.6. For { € D, consider
the linear functional ¢ on AP"(D) defined by

o(f) = F(O) —ee [ F5(8,2) F(2)675 (2, 2) du(2).
D

The integral on the right converges absolutely. For p € (1, o0), this follows
by the Holder inequality and Corollary 11.4 since
n+2 p-1 1w

£ > - + =
"T202-q p | p

and
n; — 2(2d ~ @) (1 +7;)
T '
For p =1, Lemma IV.4 implies

67(¢, )65 (2, 2)b" (2, 2) < BMH7(¢, 2)] < (¢, €)

when g5 —r; > 0and 14+7; > 0 (i = 1,...,1). The conclusion follows and
its proof also yields that ¢ is a bounded lmear functional on AP (D).
The functional ¢ is identically zero on AP"(D)1.A2€(D). Hence, by the

Hahn-Banach theorem and Lemma IV.2, ¢ is identically zero on AP (D).
This proves assertion 1),

(i=1,...,10).

2) Let us next prove assertion 2). Let f € AP"(D). For o € R! such that
a; 2 0 (i = 1,...,1), define the sequence f,(z) = b*(z/n,ie)f(z - ie/n),
n ¢ Nand z € D. Since the function 2 — f(z +ie/n) is bounded in D by
Lemmas IV.3 and V.4 since 1+ r; > 0, we deduce by Corollary I1.4, for oy
sufficiently large, that f, € A»¢(D). Then by Proposition I1.5, we have

(16) Fal§) =ce f b, z)fn(z)b-s(z, 2) dv(z).

On.the other hand, by Lemmas IV.3 and IV 4, since 1 + r; > 0 we get
|F(z+ de/m)fP B (z 4+ defn, 2 + ie/n)| Fii5 < b**7(z, Z)llfllp,r
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and [b%(z/n,ie)| < b*(ie,ie). Thus the function |b1+e((, 2)pA+m/P-¢(2 2)
dominates the integrand in (16) and it belongs to L'(D, dv(z)) by Corol-
lary I1.4, under our assumptions on ¢ and r. Hence by the dominated con-
vergence theorem, we obtain the equality

F2)=ce [ B(z,0) FO(C, ¢) du(Q)-
D

This proves Theorem I1.6,

V. Proof of Theorem IL.7. 1) Let f € L1"(D). Then by the Fubini
theorem, we obtain

S BZFOBTT,C) du(d)
D

<o [ (] BGART GO Dbl

D

where the last inequality follows from Corollary IL.4 since £; ~ r; >
ny/(—2(2d — q)i) and r; > (n; +2)/(2(2d — q);) (i=1,...,]).

2) By the Schur lemma [FRu], it suffices to prove the existence of a
positive function g on D and of two positive constants ¢y and ¢g such that

(i) for all ¢ € D,
J B, 217 @ (2 2) dv(a) < eag (),

where p' is the conjugate exponent of p, and
(ii) for all z € D,

J (G 2) g ()b
D

We take g(2) = #°(z, 2), with § € R\, By Corollary 114, estimates (1) and
(ii) hold if and only if

"(¢; Q) du(() < eag”(2)6°77(2, 2).

T ng + 2 — 2(2d — q);&4
L p-1)<é
—-2(2d - Q)i(p )<< ~2(2d — q); v

—1)
and

1 .
>m (Zwl,T..,l)

on the one hand, and on the other hand,
ni — 2(2d — @li(r — €);
—2(2d - g)

ni+2—2(2d— q)m;
< bp < y —
r ~2(2d - g)i

i

FERNRERE
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and
r; > b2 2 (1
F72(2d - )
A suitable exponent 8 exists when these conditions are compatible. A simple
calculation gives that this is the case when for alli =1,...,1,
ni(p - ].) <n;+2— 2(2d —_ q)m
and
Ty — 2(2d — q),;(?‘ — E)i < (m + 2 - 2(2d - q)isi)(p - 1)
This completes the proof of Theorem IL7. '
Remark. Quite recently, M. M. Dzhrbashyan and A. O. Karapetyan
[DX] also studied the L?7"-boundedness for weighted Bergman projections

P in the tube over the cone of Hermitian positive definite matrices of order
n for e; = ¢eg and r; =79 (1 =1,...,1). They proved a positive result when

n{2rg + 1) n(2rg + 1)
a’x{l’ o+l | P T
According to Theorem IL7, our sufficient condition is
% — j—
‘max {1, ) 1+4@r0 <p< min 24 .1—|-4n'ro ,
i=1,...,n dneg + 4 izl,,..,n -1

gg > —1/(4n) and ro > —1/(4n). More particularly, in the case g = ry = 0,
those two authors obtain no value of p for which the Bergman projection P
is bounded on L?(D). We prove that P has this property when

2n—1 2n -1
<p< .
n-1

Our method of proof is more efficient because we allow the exponent §

of the Schur test function g(z) = 5%(z,2) to be a vector instead of a real
number.

Proof of Theorem IL8. Notice that under our hypotheses, Py f is
well defined for all f € LP¢(D). Let B(ie) be a Buclidean ball centered at

ie whose closure is contained in D. Let f denote the function defined on D
by

Be(z,2) if z € Blée),
! (z):{o 3 1f§§D(<ega(ie).

Of course, f € L»¢(D). Moreover, by the mean value property, P f(¢) =
ecb!te((, de) for all ¢ € D, Hence,

”Paf”ix_i,c(p) = f |bl+_E(C= ie)|Pb7¢ (¢, ¢) du(().
D
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By Corollary I1.4, the integral on the right is infinite if p < pole). This
concludes the proof.

Remark. The same proof can be used to show that for each ¢ € R!
such that £; > (n; +2)/(2(2d — ¢);) (¢ = 1,...,1), P. is not bounded on
L' (D) when the conditions of Theorem IL7.1 are not satisfied, i.e. when
eith?r ri Sl}(ni +2)/(2(2d — g)i) or &; — r; < n;/(—2(2d — gq);) for some
ie{1,...,1).

Appendix

Proof of Lemma IV.2. Let f € AP"(D). Let a € R’ satisfy a; > 0
(i =1,...,1). Define the sequence {f,} of holomorphic functions on D by
Jn(2) = caf(z +ie/n)b*(z/n,ie), n € N, where ¢, is 2 complex number
such that limpoo cab™(2/n,ie) = 1. We are going to prove that if the
numbers oy are large enough, then f, € AP"(D) N A%%(D) for all n and
limg,eq an - f“p,r =1,

By Lemma IV.3 and inequality (14) of Lemma IV 4, since (1 + r;)/p
=0 (i=1,...,1), we get

|[f{z +ie/n)| < cpmb(“"r)/p(z +de/n, z + ie/n)|| filp.r
< cp B P i ie/n)| £ -

Then each function z — f(z + ie/n) is bounded on D and hence by Corol-
lary 114, f, € A%5(D) for all n if & and e satisfy
T4 n; + 2

P> il
=7 230d - q); 2(2d - q);
Moreover, f, € AP”"(D) because by Lemma IV 4 (inequality (15)), condition
a; >0 (i=1,...,I) implies

(17) |b%(2/n,ie}| < b*(se,ie)
on the cne hand, while on the other hand, the function z = f(z + ie/n)
belongs to AP"(D).

Let us next prove that (f,) converges to f in A?" (D). By the Minkowski
inequality and (17), we obtain || f, — fllp.» < I + Iz, where

1= ([ lead®(a/n,ie) = 1PLSPD (2, ) an(2)
D

20, — 1 — and &; > (i=1,...,0.

I = ([ 1#(e+iejn) ~ S (2,2 dolz))
D

The integral I; tends to zero by the Lebesgue dominated convergence the-
orem. Let us prove that I also tends to zero. :

s mp g i

2 i i

i
o
?js

H
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For 5 € N, denote by K, the compact set defined by K; = {2 € D :
d(z,8D) > 1/s, |2| < s}. Of course | J, K, = D and K, C K,y;. For all
8 € N, we have I3(s) < Is(s) + I4(s), where (with K = D \ K,)

1/p

Io(s) = ([ 1f(z+ie/n) = S (z, D) dvlz))
K,

/v
L(s) = ([ f(z+ie/n) - FIPH(z,2) dofz))

K;
Moreover, I4(s) < I5(s) + Is(s), where

i) = ( [ 1f@n @)
K

1/p
Is(s) = ( f [f(z+ie/n)Pb" (2, 2) dv(z))
K
Let n be an arbitrary positive number. Then there exists N € N such that
(18} Is(s) <n/3 foralls> N,

Fix s such that s > 2N. Since by estimate (14) of Lemma IV .4, we have
b7"(2,2) L b7 {z+defn,z +ie/n) (because r; 2 0 (i = 1,...,1)), it follows
that whenever {e/n| < min(1/s, s/2), then

. e . 1/p
19)  Io(s) < ([ 1F(z+ie/m)Pb" (s + ie/m, 5+ de/m) du(2) )
K
/e
< ( f | (2)[Pb™"(z, 2) dv(z)) <n/3,
o
where the last inequality follows from (18) because 5/2 > N,

Lastly, fix s such that s > 2N. Since f is uniformly continuous on K,
there exists § = 6(K,) > 0 such that | f(z +1ie/n) — f(2)| < n/(3(|K.).) /)
whenever |e/n| < 6. Here |K,|. stands for Ji, 07" (2, 2) dv(2). Hence,

(20) 13(8) < ?]/3
Combining (18)-(20) yields that Iz < n whenever n > §/|e/. This com-

pletes the proof of Lemma IV.2.
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