

STUDIA MATHEMATICA 115 (3) (1995)

Reproducing properties and L^p-estimates for Bergman projections in Siegel domains of type II

by

DAVID BÉKOLLÉ and ANATOLE TEMGOUA KAGOU (Yaounde)

Abstract. On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted \mathbf{L}^p -space $(0 consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some <math>\mathbf{L}^p$ -estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space \mathbf{A}^2 .

I. Introduction. Let **D** be an affine-homogeneous Siegel domain of type II. Let dv denote the Lebesgue measure on **D** and let $\mathbf{H}(\mathbf{D})$ denote the space of holomorphic functions in **D**. The Bergman projection P of **D** is the orthogonal projection of $\mathbf{L}^2(\mathbf{D}, dv)$ onto its subspace $\mathbf{A}^2(\mathbf{D})$ consisting of holomorphic functions. Moreover, P is the integral operator defined on $\mathbf{L}^2(\mathbf{D}, dv)$ by the Bergman kernel $B(\zeta, z)$ and for **D**, this kernel was computed in [G].

Let ε be a real number. For $p \in (0, \infty)$, we set $\mathbf{L}^{p,\varepsilon}(\mathbf{D}) = \mathbf{L}^p(\mathbf{D}, B^{-\varepsilon}(z, z) dv(z))$ and we define the weighted Bergman space $\mathbf{A}^{p,\varepsilon}(\mathbf{D})$ by $\mathbf{A}^{p,\varepsilon}(\mathbf{D}) = \mathbf{L}^{p,\varepsilon}(\mathbf{D}) \cap \mathbf{H}(\mathbf{D})$. There exists $\varepsilon_0 < 0$ such that $\mathbf{A}^{2,\varepsilon}(\mathbf{D}) = \{0\}$ whenever $\varepsilon \leq \varepsilon_0$; for $\varepsilon > \varepsilon_0$, the corresponding weighted Bergman projection P_{ε} is the orthogonal projection of $\mathbf{L}^{2,\varepsilon}(\mathbf{D})$ onto $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$.

The first purpose of this paper is to generalize to the weighted Bergman spaces $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$ the Plancherel-Gindikin formula proved for $\mathbf{A}^2(\mathbf{D})$ by S. G. Gindikin [G] and by A. Korányi and E. M. Stein [KoS]. Our proof is an extension of that of Korányi and Stein. More precisely, assume that the Siegel domain \mathbf{D} is associated with a homogeneous cone $\mathbf{V} \subset \mathbb{R}^n$, $n \geq 3$, and with a V-Hermitian homogeneous form $\mathbf{F} : \mathbb{C}^m \times \mathbb{C}^m \to \mathbb{C}^n$, and let \mathbf{V}^* denote the conjugate cone of \mathbf{V} . Thus, \mathbf{D} is contained in $\mathbb{C}^n \times \mathbb{C}^m$. For $\varepsilon > \varepsilon_0$, we prove that a function $f \in \mathbf{H}(\mathbf{D})$ belongs to $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$ if and only if there exists a function $\widehat{f} : \mathbf{V}^* \times \mathbb{C}^m \to \mathbb{C}$ belonging to a weighted \mathbf{L}^2 -space

¹⁹⁹¹ Mathematics Subject Classification: 32A07, 32A25, 32H10, 32M15.

221

such that

$$f(z,u) = \int_{\mathbf{V}^*} \exp(i\langle \lambda, z \rangle) \widehat{f}(\lambda, u) d\lambda$$

and the map $f \mapsto \widehat{f}$ is an isometry. Here, $\langle \ , \ \rangle$ denotes the inner product with respect to which V^* is the conjugate cone of V. This statement will be made more precise and more general in Section II, where a useful estimate for the Bergman kernel will be given as a corollary. J. Peetre [P] also proved a Plancherel–Gindikin formula for more general weights; his proof is different from ours.

Our second goal is to give conditions on real numbers $r > \varepsilon_0$ and $p \in (0, \infty)$ under which there exists $\varepsilon > \varepsilon_0$ such that the weighted Bergman projection P_{ε} reproduces functions in $\mathbf{A}^{p,r}(\mathbf{D})$. We first deduce from the Plancherel-Gindikin formula that P_{ε} is the integral operator defined on $\mathbf{L}^{2,\varepsilon}(\mathbf{D})$ by the kernel $c_{\varepsilon}B^{1+\varepsilon}(\zeta,z)$. Some of our reproducing formulae are based upon the density of $\mathbf{A}^{p,r}(\mathbf{D}) \cap \mathbf{A}^{2,\varepsilon}(\mathbf{D})$ in $\mathbf{A}^{p,r}(\mathbf{D})$. These formulae are an ingredient in the proof of the atomic decomposition theorem for functions in $\mathbf{A}^{p,r}(\mathbf{D})$ [CR]. In a subsequent paper, we shall deal with the atomic decomposition theorem for not necessarily symmetric Siegel domains of type II.

Our last goal is to give sufficient conditions on $p \in [1, \infty)$ and real r and $\varepsilon > \varepsilon_0$ under which P_{ε} is bounded on $\mathbf{L}^{p,r}(\mathbf{D})$. Our results are far better than those obtained by M. M. Dzhrbashyan and Karapetyan [DK] for the tube over the cone of Hermitian positive definite matrices of order n. We also give values of p and ε for which P_{ε} is not bounded on $\mathbf{L}^{p,\varepsilon}(\mathbf{D})$. In particular, let us point out that for $\varepsilon = r = 0$, there are two intervals I_1 and I_2 in $[1, \infty)$ where we are unable to conclude whether P is \mathbf{L}^p -bounded on $\mathbf{L}^p(\mathbf{D})$ or not for $p \in I_1 \cup I_2$. Our results extend to general Siegel domains of type II those obtained in [B] and [BeBo] for the tube over the spherical cone of \mathbb{R}^n , $n \geq 3$.

The plan of this paper is as follows. In Section II, we recall some preliminary results about affine-homogeneous Siegel domains of type II and we give precise statements of our results. In Section III, we prove the Plancherel-Gindikin formula for $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$ (Theorem II.2) and its useful corollary (Corollary II.4). The reproducing formulae (Theorem II.6) are proved in Section IV, while weighted \mathbf{L}^p -estimates for weighted Bergman projections are proved in Section V.

All the results stated below were first presented in [T]. In the sequel, as usual, the same letter C will denote constants that may be different from each other.

II. Statements of results. Let $\mathbf{V} \subset \mathbb{R}^n$, $n \geq 3$, be an irreducible, open, convex and homogeneous cone which contains no straight line. We first recall the canonical decomposition of \mathbf{V} as stated in [G].

NOTATIONS. (i) At the jth step, j = 1, 2, ..., the real line will be denoted by R_{jj} ; at the kth step, $k = 2, 3, ..., R_k$ will stand for the n_k -dimensional euclidean space.

(ii) Let $\Gamma \subset \mathbb{R}^{\sigma}$ be a convex homogeneous cone which contains no straight line and let φ be a homogeneous Γ -bilinear symmetric form defined on $\mathbb{R}^{\tau} \times \mathbb{R}^{\tau}$. Recall that the associated real homogeneous *Siegel domain* $\mathbf{P} = \mathbf{P}(\Gamma, \varphi)$ is defined by

$$\mathbf{P} = \mathbf{P}(\Gamma, \varphi) = \{ (y, t) \in \mathbb{R}^{\sigma} \times \mathbb{R}^{\tau} : y - \varphi(t, t) \in \Gamma \}.$$

We shall denote by V(P) the homogeneous cone defined by

$$\mathbf{V}(\mathbf{P}) = \{ (y, t, r) \in \mathbb{R}^{\sigma} \times \mathbb{R}^{\tau} \times \mathbb{R} : r > 0 \text{ and } (ry, t) \in \mathbf{P} \}.$$

In order to describe the canonical decomposition of the irreducible homogeneous cone \mathbf{V} , we consider at the first step the cone $\mathbf{V}^{(1)}=(0,\infty)$ $\subset R_{11}$. At the second step, we associate with $\mathbf{V}^{(1)}$ and with a homogeneous $\mathbf{V}^{(1)}$ -bilinear symmetric form $\varphi^{(2)}$ defined on R_2 , the real Siegel domain $\mathbf{P}^{(2)}=\mathbf{P}(\mathbf{V}^{(1)},\varphi^{(2)})$ contained in $R_{11}\times R_2$ and then the irreducible cone $\mathbf{V}^{(2)}=\mathbf{V}(\mathbf{P}^{(2)})\subset R_{11}\times R_2\times R_{22}$. At the kth step, we associate with the cone $\mathbf{V}^{(k-1)}$ and with a homogeneous $\mathbf{V}^{(k-1)}$ -bilinear symmetric form $\varphi^{(k)}$ defined on R_k , a real Siegel domain $\mathbf{P}^{(k)}=\mathbf{P}(\mathbf{V}^{(k-1)},\varphi^{(k)})\subset R_{11}\times R_2\times R_{22}\times\ldots\times R_{k-1,k-1}\times R_k$ and then the irreducible cone $\mathbf{V}^{(k)}\subset R_{11}\times R_2\times R_{22}\times\ldots\times R_{k-1,k-1}\times R_k\times R_{kk}$.

It follows from the results of [G] that every homogeneous irreducible cone containing no straight line can be decomposed in the form $\mathbf{V} = \mathbf{V}^{(i)}$ (up to affine isomorphism). The required number of steps to obtain \mathbf{V} in this form is called the $rank\ l$ of \mathbf{V} , $\mathbf{V} = \mathbf{V}^{(l)}$. Hence this yields the following decomposition of \mathbb{R}^n that contains \mathbf{V} :

(1)
$$\mathbb{R}^n = R_{11} \times R_2 \times R_{22} \times \ldots \times R_{l-1,l-1} \times R_l \times R_{ll}, \quad l + \sum_{i=1}^l n_i = n.$$

Furthermore, the projection $\varphi_{ii}^{(k)}$ of $\varphi^{(k)}$ onto R_{ii} is a non-negative form. Then $\varphi_{ii}^{(k)}$ is positive definite on a subspace R_{ik} of R_k with dim $R_{ik} = n_{ik}$. We have

(2)
$$R_k = \prod_{i=1}^{k-1} R_{ik}$$
, and so $n_k = \sum_{i=1}^{k-1} n_{ik}$.

On the other hand, the projection $\varphi_{ij}^{(k)}$ of $\varphi^{(k)}$ onto R_{ij} $(i < j < k \le l)$ is concentrated on $R_{ik} \times R_{jk}$.

We denote by G(V) the simply transitive group of affine automorphisms of V described in [G]. With respect to its canonical decomposition, the cone V can be described in the following quantitative manner: let x be in

V and let x_j , $j=2,\ldots,l$ (resp. x_{ii} , $i=1,\ldots,l$) denote the projection of x onto R_j (resp. R_{ii}). Then there exists a unique transformation $h\in \mathbf{G}(\mathbf{V})$ such that $(h(x))_j=0$ for all $j=2,\ldots,l$. We set $\widetilde{x}=h(x)$. The l functions χ_j defined for $j=1,\ldots,l$ by $\chi_j(x)=\widetilde{x}_{jj}$, $j=1,\ldots,l$, define the cone \mathbf{V} in the following sense: a point $x\in\mathbb{R}^n$ belongs to \mathbf{V} if and only if $\chi_j(x)>0$, $j=1,\ldots,l$. More explicitly, set $x^{(0)}=x$; then there exists a unique transformation in $\mathbf{G}(\mathbf{V})$ which maps $x^{(0)}$ into $x^{(1)}\in\mathbf{V}$ satisfying $x_l^{(1)}=0$. A second automorphism maps $x^{(1)}$ to $x^{(2)}$ satisfying $x_{l-1}^{(2)}=x_l^{(2)}=0,\ldots$, and finally, the (l-1)th automorphism assigns to $x^{(l-2)}$ satisfying $x_j^{(l-2)}=\ldots=x_l^{(l-2)}=0$ the point $x^{(l-1)}=\widetilde{x}$. Moreover, the defining functions χ_j of \mathbf{V} are given by

$$\chi_l(x)=x_{ll},$$

$$\chi_j(x) = x_{jj} - \sum_{i=j+1}^l rac{arphi_{jj}^{(i)}(x_i^{(l-i)}, x_i^{(l-i)})}{\chi_i(x)} \quad ext{ for } j = l, l-1, \dots, 1.$$

Since the decomposition (1) and (2) of \mathbb{R}^n yields in a natural way the following decomposition of \mathbb{C}^n :

(3)
$$\mathbb{C}^n = \prod_{i=1}^l \mathbb{C}_{ii} \times \prod_{i < j} \mathbb{C}_{ij},$$

the functions χ_j , $j=1,\ldots,l$, can naturally be extended as rational functions on \mathbb{C}^n .

Let $\varrho \in \mathbb{C}^l$. We define the function $(z)^{\varrho}$ by

$$(z)^{\varrho} = \prod_{i=1}^{l} \chi_{i}^{\varrho_{i}}(z), \quad z \in \mathbb{C}^{n}, \ \varrho = (\varrho_{1}, \dots, \varrho_{l}).$$

For $i = 1, \ldots, l$ we set

$$m_i = \sum_{j>i} n_{ij}$$
 and $d_i = -(1 + (n_i + m_i)/2)$

and d will denote the vector of \mathbb{R}^l whose components are d_i . Also, in the sequel, e will denote the point of \mathbf{V} whose components are $e_{ii} = 1$ for all $i = 1, \ldots, l$ and $e_i = 0$ for all $j = 2, \ldots, l$.

Let us now recall the definition of the conjugate cone V^* of V. Consider the inner product $\langle \ , \ \rangle$ on \mathbb{R}^n defined with respect to the canonical decomposition of \mathbb{R}^n by

$$\langle x,y
angle = \sum_{i=1}^l x_{ii}y_{ii} + 2\sum_{j < i} arphi_{jj}^{(i)}(x_i,y_i).$$

The $conjugate.cone\ \mathbf{V^*}$ of \mathbf{V} with respect to $\langle\ ,\ \rangle$ is defined by

$$\mathbf{V}^* = \{ x \in \mathbb{R}^n : \langle x, y \rangle > 0 \text{ for all } y \in \overline{\mathbf{V}} - \{0\} \}.$$

The adjoint group $G^*(V)$ of G(V) with respect to \langle , \rangle is a simply transitive group of affine automorphisms of V^* . The cone V^* is an irreducible, convex homogeneous cone of rank l in \mathbb{R}^n . We shall denote by χ_j^* the defining functions of V^* . Moreover, we have the following:

$$n_{ij}^* = n_{ij}(\mathbf{V}^*) = n_{l-i+1,l-j+1}, \quad 1 \le i < j \le l,$$

 $n_i^* = m_{l-i+1}, \quad m_i^* = n_{l-i+1}, \quad d_i^* = d_{l-i+1}, \quad 1 \le i \le l.$

For $\varrho \in \mathbb{C}^l$, we define ϱ^* by $\varrho_i^* = \varrho_{l-i+1}$, and we define the function $(z)_*^{\varrho^*}$ on \mathbb{C}^n by

$$(z)^{\varrho^*}_* = \prod_{i=1}^l (\chi^*_i)^{\varrho^*_i}(z), \quad z \in \mathbb{C}^n.$$

The Siegel domain of type II associated with the cone $\mathbf{V} \subset \mathbb{R}^n$ and a V-Hermitian, homogeneous form $\mathbf{F} : \mathbb{C}^m \times \mathbb{C}^m \to \mathbb{C}^n$ is defined by

$$\mathbf{D} = \mathbf{D}(\mathbf{V}, \mathbf{F}) = \left\{ (z, u) \in \mathbb{C}^n \times \mathbb{C}^m : \frac{z - \overline{z}}{2i} - \mathbf{F}(u, u) \in \mathbf{V} \right\}.$$

This domain is affine-homogeneous. Now, let \mathbf{F}_{ii} denote the projection of \mathbf{F} onto the complex plane \mathbb{C}_{ii} and let \mathbb{C}_i denote the complex subspace of \mathbb{C}^m where \mathbf{F}_{ii} is positive definite. Set $q_i = \dim_{\mathbb{C}} \mathbb{C}_i$ (the complex dimension); then $\mathbb{C}^m = \prod_{i=1}^l \mathbb{C}_i$ and $m = \sum_{i=1}^l q_i$. Hence, by (2) and (3), the space $\mathbb{C}^n \times \mathbb{C}^m$ containing \mathbf{D} is decomposed as follows:

$$\mathbb{C}^n \times \mathbb{C}^m = \prod_{i=1}^l \mathbb{C}_{ii} \times \prod_{i < j} \mathbb{C}_{ij} \times \prod_{i=1}^l \mathbb{C}_i.$$

We shall denote by q the vector of \mathbb{N}^l whose components are q_i .

We first recall the following two expressions of the Bergman kernel of $\mathbf{D} = \mathbf{D}(\mathbf{V}, \mathbf{F})$.

II.1. PROPOSITION [G]. The Bergman kernel $B((\zeta,v),(z,u))$ of ${\bf D}$ is given by

$$B((\zeta, v), (z, u)) = c \left(\frac{\zeta - \overline{z}}{2i} - \mathbf{F}(v, u)\right)^{2d - q}$$

$$= c \int_{\mathbf{V}^*} \exp\left(-\left\langle \lambda, \frac{\zeta - \overline{z}}{2i} - \mathbf{F}(v, u)\right\rangle\right) (\lambda)_*^{-d^* + q^*} d\lambda.$$

NOTATIONS. For $\varrho = (\varrho_1, \dots, \varrho_l) \in \mathbb{C}^l$, the notation $1 + \varrho$ stands for the vector $(1 + \varrho_1, \dots, 1 + \varrho_l)$. Let $\varrho' = (\varrho'_1, \dots, \varrho'_l) \in \mathbb{C}^l$; we set $\varrho \varrho' = (\varrho'_1, \dots, \varrho'_l)$

 $(\varrho_1\varrho_1',\ldots,\varrho_l\varrho_l')$. For two points (ζ,v) and (z,u) in $\mathbf{D}\subset\mathbb{C}^n\times\mathbb{C}^m$, we let $b((\zeta,v),(z,u))$ denote the kernel

$$b((\zeta,v),(z,u)) = \left(rac{\zeta-\overline{z}}{2i} - \mathbf{F}(v,u)
ight)^{2d-q}$$

Notice that B=cb. Moreover, we let b^{ϱ} and $b^{1+\varrho}$ denote the expressions

$$b^{arrho}((\zeta,v),(z,u)) = \left(rac{\zeta-\overline{z}}{2i} - \mathbf{F}(v,u)
ight)^{(2d-q)arrho}$$

and

$$b^{1+\varrho}((\zeta,v),(z,u)) = \left(\frac{\zeta-\overline{z}}{2i} - \mathbf{F}(v,u)\right)^{2d-q+(2d-q)\varrho}$$

Let ε be a vector in \mathbb{R}^l . For $p \in (0, \infty)$, we set $\mathbf{L}^{p,\varepsilon}(\mathbf{D}) = \mathbf{L}^p(\mathbf{D}, b^{-\varepsilon}(z, z) dv(z))$ and define the weighted Bergman space $\mathbf{A}^{p,\varepsilon}(\mathbf{D})$ by $\mathbf{A}^{p,\varepsilon}(\mathbf{D}) = \mathbf{L}^{p,\varepsilon}(\mathbf{D}) \cap \mathbf{H}(\mathbf{D})$. The "norm" of $\mathbf{A}^{p,\varepsilon}(\mathbf{D})$ is the $\mathbf{L}^{p,\varepsilon}$ -"norm" $\|\cdot\|_{p,\varepsilon}$. The corresponding weighted Bergman projection P_{ε} is the orthogonal projection of $\mathbf{L}^{2,\varepsilon}(\mathbf{D})$ onto $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$.

In order to state the Plancherel-Gindikin formula for $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$, let $\widehat{\mathbf{L}}^2(\mathbf{V}^* \times \mathbb{C}^m, \varepsilon)$ stand for the Hilbert space consisting of functions $f: \mathbf{V}^* \times \mathbb{C}^m \to \mathbb{C}$ such that

(i) for all compact subsets \mathbf{K}_1 and \mathbf{K}_2 of \mathbf{V}^* and \mathbb{C}^m respectively, the map $u \mapsto f(\cdot, u)$ is holomorphic on \mathbf{K}_2 with values in $\mathbf{L}^2(\mathbf{K}_1, \varepsilon)$, where

$$\mathbf{L}^{2}(\mathbf{K}_{1},\varepsilon) = \Big\{ g: \mathbf{K}_{1} \to \mathbb{C}: \int_{\mathbf{K}_{1}} |g(\lambda)|^{2} (\lambda)_{*}^{(2d-q)^{*}\varepsilon^{*}+d^{*}} d\lambda < \infty \Big\},\,$$

(ii) the quantity

 $||f||_{\widehat{\mathbf{L}}^2(\mathbf{V}^* \times \mathbb{C}^m, \varepsilon)}$

$$= \left(\int_{\mathbf{V}^* \times \mathbb{C}^m} \exp(-2\langle \lambda, \mathbf{F}(u, u) \rangle) |f(\lambda, u)|^2 (\lambda)_*^{(2d-q)^* \varepsilon^* + d^*} d\lambda \, dv(u)\right)^{1/2}$$

is finite and is the norm of f in $\widehat{\mathbf{L}}^2(\mathbf{V}^* \times \mathbb{C}^m, \varepsilon)$.

II.2. THEOREM (Plancherel-Gindikin formula). Let $\varepsilon \in \mathbb{R}^l$ satisfy

$$\varepsilon_i > \frac{n_i + 2}{2(2d - q)_i} \quad (i = 1, \dots, l).$$

1) For all $f \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$, there exists a function $\widehat{f} \in \widehat{\mathbf{L}}^2(\mathbf{V}^* \times \mathbb{C}^m, \varepsilon)$ such that

(i)
$$f(z,u) = \int_{\mathbf{V}^*} \exp(i\langle \lambda, z \rangle) \widehat{f}(\lambda, u) \, d\lambda$$

with the estimate

(ii)
$$||f||_{2,\varepsilon} = c_{\varepsilon} ||\widehat{f}||_{\widehat{\mathbf{L}}^{2}(\mathbf{V}^{*} \times \mathbb{C}^{m},\varepsilon)}.$$

2) Conversely, for all $\widehat{f} \in \widehat{\mathbf{L}}^2(\mathbf{V}^* \times \mathbb{C}^m, \varepsilon)$, there exists $f \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$ such that (i) and (ii) hold.

The condition on ε is justified by the following consequence of the proof of Theorem II.2:

II.3. COROLLARY. Let $\varepsilon \in \mathbb{R}^l$ be such that there exists $i \in \{1, \dots, l\}$ for which

$$\varepsilon_i \le \frac{n_i + 2}{2(2d - q)_i}.$$

Then $\mathbf{A}^{2,\varepsilon}(\mathbf{D}) = \{0\}.$

From Theorem II.2 and Proposition II.1, we shall also deduce the following useful corollary:

II.4. COROLLARY. Let α and ε be two vectors in \mathbb{R}^l and (ζ, v) a point of \mathbf{D} . Then the quantity

$$\int\limits_{\mathbf{D}}|b^{1+\alpha}((\zeta,v),(z,u))|b^{-\varepsilon}((z,u),(z,u))\,dv(z,u)$$

is finite if and only if

$$\varepsilon_i > \frac{n_i + 2}{2(2d - q)_i}$$
 and $\alpha_i - \varepsilon_i > \frac{n_i}{-2(2d - q)_i}$ for all $i = 1, \dots, l$.

In that case, the following identity holds:

$$\int\limits_{\mathbf{D}}|b^{1+\alpha}((\zeta,v),(z,u))|b^{-\varepsilon}((z,u),(z,u))\,dv(z,u)=c_{\alpha,\varepsilon}b^{\alpha-\varepsilon}((\zeta,v),(\zeta,v)).$$

Theorem II.2 and its corollaries are proved in Section III.

Before stating our reproducing formulae, let us give the following description of P_{ε} :

II.5. PROPOSITION. The weighted Bergman projection P_{ε} , where $\varepsilon \in \mathbb{R}^l$ satisfies

$$arepsilon_i > rac{n_i + 2}{2(2d - q)_i} \quad (i = 1, \dots, l),$$

is equal to the integral operator defined on $\mathbf{L}^{2,\varepsilon}(\mathbf{D})$ associated with the kernel $c_{\varepsilon}b^{1+\varepsilon}((\zeta,v),(z,u))$.

Our reproducing formulae read as follows:

II.6. THEOREM. 1) Let $r \in \mathbb{R}^l$ and $p \in \mathbb{R}_+$ be such that $r_i \geq 0$ and

$$1 \le p < \frac{n_i - 2(2d - q)_i(1 + r_i)}{n_i} \quad (i = 1, \dots, l).$$

227

Then for all $\varepsilon \in \mathbb{R}^l$ satisfying

$$\varepsilon_i > \frac{n_i+2}{2(2d-q)_i} \cdot \frac{p-1}{p} + \frac{r_i}{p} \quad (i=1,\ldots,l)$$

when p > 1 (resp. for all $\varepsilon \in \mathbb{R}^l$ satisfying $\varepsilon_i \geq r_i$ (i = 1, ..., l) when p = 1), the reproducing formula $P_{\varepsilon}f = f$ holds for all $f \in \mathbf{A}^{p,r}(\mathbf{D})$.

2) Let $r \in \mathbb{R}^l$ and $p \in (0, \infty)$ satisfy

$$r_i > \frac{n_i + 2}{2(2d - q)_i}$$
 and $0 $(i = 1, \dots, l)$.$

Then for all $\varepsilon \in \mathbb{R}^l$ satisfying

$$\varepsilon_i > \frac{n_i + 2}{2(2d - q)_i} + \frac{r_i + 1}{p} \quad (i = 1, \dots, l),$$

the reproducing formula $P_{\varepsilon}f = f$ holds for all $f \in \mathbf{A}^{p,r}(\mathbf{D})$.

In particular, for r = 0, we are able to prove that $\mathbf{A}^p(\mathbf{D})$ has a reproducing operator P_{ε} just when $p \in (0, p_0)$ where

$$p_0 = \min_{i=1,\dots,l} \left\{ \frac{n_i - 2(2d-q)_i}{n_i} \right\}.$$

These reproducing formulae will be proved in Section IV.

Our last results are weighted \mathbf{L}^p -estimates $(p \in [1, \infty))$ for the weighted Bergman projections P_{ε} . We let P_{ε}^* denote the integral operator on $\mathbf{L}^{2,\varepsilon}(\mathbf{D})$ associated with the positive kernel $|b^{1+\varepsilon}((\zeta, v), (z, u))|$.

II.7. THEOREM. 1) Let ε and r in \mathbb{R}^l satisfy

$$arepsilon_i > rac{n_i+2}{2(2d-q)_i}, \quad r_i > rac{n_i+2}{2(2d-q)_i}$$

and

$$\varepsilon_i - r_i > \frac{n_i}{-2(2d-q)_i} \quad (i=1,\ldots,l).$$

Then P_{ε}^* is bounded on $\mathbf{L}^{1,r}(\mathbf{D})$.

2) Let r and ε in \mathbb{R}^l be such that

$$\varepsilon_i > \frac{1}{(2d-q)_i} \quad and \quad r_i > \frac{n_i+2}{2(2d-q)_i} \quad (i=1,\ldots,l).$$

Let $p \in (1, \infty)$ satisfy

$$\max_{i=1,\dots,l} \left(1, \frac{2n_i + 2 - 2(2d-q)_i r_i}{n_i + 2 - 2(2d-q)_i \varepsilon_i} \right)$$

Then P_{ε}^* is bounded on $\mathbf{L}^{p,r}(\mathbf{D})$.

Of course, the $\mathbf{L}^{p,r}$ -boundedness of P_{ε}^* implies that of P_{ε} . We also prove the following negative result for P_{ε} .

II.8. THEOREM. Let $\varepsilon \in \mathbb{R}^l$ satisfy

$$\varepsilon_i > \frac{n_i + 2}{2(2d - q)_i} \quad (i = 1, \dots, l)$$

and set

$$p_0(\varepsilon) = \max_{i=1,\dots,l} \left\{ \frac{n_i}{-2(2d-q)_i(1+\varepsilon_i)} + 1 \right\}.$$

Then P_{ε} is not bounded on $\mathbf{L}^{p,\varepsilon}(\mathbf{D})$ when $p \in [1, p_0(\varepsilon)]$.

In particular, in view of Theorems II.7 and II.8, for $r = \varepsilon = 0$, P is bounded on $\mathbf{L}^p(\mathbf{D})$ if $p \in (p_1, p_1')$ where

$$p_1 = \max\left\{\frac{2n_i + 2}{n_i + 2}\right\}$$

and p'_1 denotes the conjugate exponent of p_1 . On the other hand, P is not bounded on $\mathbf{L}^p(\mathbf{D})$ when $p \in [1, p_0]$, with

$$p_0 = \left\{ \frac{n_i}{-2(2d-q)_i} + 1 \right\} < p_1,$$

and P is not well defined on $\mathbf{L}^p(\mathbf{D})$ when $p \in (p'_0, \infty)$. There are two gaps, $p \in (p_0, p_1)$ and $p \in (p'_1, p'_0)$, where we are unable to decide whether P is bounded on $\mathbf{L}^p(\mathbf{D})$ or not. Theorems II.7 and II.8 will be proved in Section V.

III. Proof of Theorem II.2 and its corollaries

Proof of Theorem II.2. The proof relies heavily on ideas of [KoS]. In particular, we use the following lemma:

III.1. LEMMA [KoS]. Let U be a subdomain of \mathbb{C}^N . Let M be a measure space and let $f: \mathbf{U} \to \mathbf{L}^2(\mathbf{M})$ be holomorphic. Then for each $z \in \mathbf{U}$, one can define f(z)(p) for almost all $p \in \mathbf{M}$ so that

- (i) for almost all $p \in \mathbf{M}$, the function $z \mapsto f(z)(p)$ is holomorphic on U;
- (ii) the map $(z,p) \mapsto f(z)(p)$ is jointly measurable on $\mathbf{U} \times \mathbf{M}$;
- (iii) for each subdomain U_0 whose closure is compact in U, there exists $\varphi \in L^2(M)$ so that $|f(z)(p)| \leq \varphi(p)$ for all $z \in U_0$ and almost all $p \in M$.

We first prove assertion 2) of Theorem II.2. Let $\widehat{f} \in \widehat{\mathbf{L}}^2(\mathbf{V}^* \times \mathbb{C}^m, \varepsilon)$. By Lemma III.1, for almost all $\lambda \in \mathbf{V}^*$ the function $u \mapsto \widehat{f}(\lambda, u)$ is an entire function on \mathbb{C}^m . Then, by the Fubini theorem, for all $u \in \mathbb{C}^m$, we get

(4)
$$\int_{\mathbf{V}^*} \exp(-2\langle \lambda, \mathbf{F}(u, u) \rangle) |\widehat{f}(\lambda, u)|^2 (\lambda)_*^{(2d-q)^* \varepsilon^* + d^*} d\lambda < \infty.$$

We can now define f on \mathbf{D} by

$$f(z,u) = \int_{\mathbf{V}^*} \exp(i\langle \lambda, z \rangle) \widehat{f}(\lambda, u) d\lambda \quad ((z,u) \in \mathbf{D}).$$

For this definition, let us prove that the integral on the right hand side is absolutely convergent. By the Hölder inequality, for z = x + iy, we have

$$\begin{split} \int\limits_{\mathbf{V}^*} & \exp(-\langle \lambda, y \rangle) |\widehat{f}(\lambda, u)| \, d\lambda \\ & \leq \Big(\int\limits_{\mathbf{V}^*} & \exp(-2\langle \lambda, \mathbf{F}(u, u) \rangle) |\widehat{f}(\lambda, u)|^2 (\lambda)_*^{(2d-q)^*} \varepsilon^* + d^* \, d\lambda \Big)^{1/2} \\ & \times \Big(\int\limits_{\mathbf{V}^*} & \exp(-2\langle \lambda, y - \mathbf{F}(u, u) \rangle) (\lambda)_*^{-(2d-q)^*} \varepsilon^* - d^* \, d\lambda \Big)^{1/2}. \end{split}$$

The first integral on the right converges by (4) while the second also converges under the hypothesis $\varepsilon_i > (n_i + 2)/(2(2d - q)_i)$ (i = 1, ..., l) by virtue of the following proposition (assertion 2)):

III.2. PROPOSITION [G]. A) Let $z \in \mathbb{C}^n$ and $\varrho \in \mathbb{C}^l$.

- 1) The integral $\int_{\mathbf{V}} \exp(-\langle \lambda, z \rangle)(\lambda)^{\varrho+d} d\lambda$ is absolutely convergent if and only if $\operatorname{Re} z \in \mathbf{V}^*$ and $\operatorname{Re} \varrho_i > m_i/2$ (i = 1, ..., l). In this case, this integral is equal to $c(\varrho)(z)_*^{\varrho^*}$.
- 2) The integral $\int_{\mathbf{V}^*} \exp(-\langle \lambda, z \rangle)(\lambda)_*^{\varrho^* + d^*} d\lambda$ is absolutely convergent if and only if $\operatorname{Re} z \in \mathbf{V}$ and $\operatorname{Re} \varrho_i > n_i/2$ (i = 1, ..., l). In this case, this integral is equal to $c(\varrho)(z)^{-\varrho}$.
- B) Let **F** be a **V**-Hermitian homogeneous form on \mathbb{C}^m . Then for all $\lambda \in \mathbf{V}^*$,

$$\int_{\mathbb{C}^m} \exp(-\langle \lambda, \mathbf{F}(u, u) \rangle) \, dv(u) = c(\lambda)_*^{-q^*}.$$

Let us show next that f is holomorphic on \mathbf{D} . It suffices to show that for each compact subset \mathbf{K} of \mathbf{D} , there is a function h in $\mathbf{L}^1(\mathbf{V}^*)$ such that for all $(z,u) \in \mathbf{K}$,

(5)
$$\exp(-\langle \lambda, y \rangle) |\widehat{f}(\lambda, u)| \le h(\lambda) \quad (\lambda \in \mathbf{V}^*).$$

Take $\mathbf{K} = \mathbf{K}_1 \times \mathbf{K}_2$, where \mathbf{K}_1 and \mathbf{K}_2 are compact subsets of \mathbb{C}^n and \mathbb{C}^m respectively (recall that $\mathbf{D} \subset \mathbb{C}^n \times \mathbb{C}^m$). Moreover, we can suppose that there exists $y_0 \in \mathbf{V}$ such that $y - y_0 \in \mathbf{V}$ for all $y \in \operatorname{Im} \mathbf{K}_1$ and $y_0 - \mathbf{F}(u, u) \in \mathbf{V}$ for all $u \in \mathbf{K}_2$. It is well known that there exists a constant ϱ such that for all $\lambda \in \mathbf{V}^*$ and for all y lying in the compact set $\operatorname{Im} \mathbf{K}_1$ (note that $\operatorname{Im} \mathbf{K}_1 - y_0 \subset \mathbf{V}$), we have $\langle \lambda, y - y_0 \rangle \geq \varrho |\lambda|$.

Thus, if we set $\delta = \varrho/|y_0|$, then the left hand side of (5) is less than $\exp(-\langle \lambda, y_0(1+\delta) \rangle)|\widehat{f}(\lambda, u)|$.

Let \widehat{f}_{y_0} be the function defined on $\mathbf{V}^* \times \mathbb{C}^m$ by

$$\widehat{f}_{y_0}(\lambda, u) = \exp(-\langle \lambda, y_0 \rangle) \widehat{f}(\lambda, u).$$

For almost all $\lambda \in \mathbf{V}^*$, the function $\widehat{f}_{y_0}(\lambda,\cdot)$ is entire. In the sequel, $\mathbf{L}^2(\mathbf{V}^*,\varepsilon)$ will stand for the space $\mathbf{L}^2(\mathbf{V}^*,(\lambda)^{(2d-q)^*\varepsilon^*+d^*}_*d\lambda)$. We next prove that $\widehat{f}_{y_0}(\cdot,u) \in \mathbf{L}^2(\mathbf{V}^*,\varepsilon)$. Since $y_0 - \mathbf{F}(u,u) \in \mathbf{V}$ for all $u \in \mathbf{K}_2$, we obtain

$$\|\widehat{f}_{y_0}(\cdot,u)\|_{\mathbf{L}^2(\mathbf{V}^*,\varepsilon)}^2 \leq \int_{\mathbf{V}^*} \exp(-2\langle\lambda,\mathbf{F}(u,u)\rangle)|\widehat{f}(\lambda,u)|^2(\lambda)_*^{(2d-q)^*\varepsilon^*+d^*}d\lambda.$$

The integral on the right is finite by (4), because $\hat{f} \in \hat{\mathbf{L}}^2(\mathbf{V}^* \times \mathbb{C}^m, \varepsilon)$. It follows that \hat{f}_{y_0} satisfies the hypotheses of Lemma III.1 with $\mathbf{M} = (\mathbf{V}^*, (\lambda)_*^{(2d-q)^*\varepsilon^*+d^*}d\lambda)$ and $\mathbf{U} = \mathbb{C}^m$. Then by assertion (iii) of this lemma, using an open relatively compact neighbourhood of \mathbf{K}_2 , there exists $g \in \mathbf{L}^2(\mathbf{V}^*, \varepsilon)$ such that $|\hat{f}_{y_0}(\lambda, u)| \leq g(\lambda)$ for all $u \in \mathbf{K}_2$ and almost all $\lambda \in \mathbf{V}^*$.

Inequality (5) is of course satisfied by the function $h(\lambda) = g(\lambda) \times \exp(-\langle \lambda, \delta y_0 \rangle)$. By the Hölder inequality, we obtain

$$||h||_{\mathbf{L}^{1}(\mathbf{V}^{*})} \leq ||g||_{\mathbf{L}^{2}(\mathbf{V}^{*},\varepsilon)} \left(\int_{\mathbf{V}^{*}} \exp(-2\langle \lambda, y_{0}\delta \rangle)(\lambda)_{*}^{-(2d-q)^{*}\varepsilon^{*}-d^{*}} d\lambda \right)^{1/2}$$

and the integral on the right converges by Proposition III.2.2 because $\varepsilon_i > (n_i + 2)/(2(2d - q)_i)$ (i = 1, ..., l). This concludes the proof of identity (i). Let us next prove estimate (ii). Write (i) as

$$f(x+iy,u) = \int_{\mathbf{V}^*} \exp(-\langle \lambda, y \rangle) \widehat{f}(\lambda,u) \exp(i\langle \lambda, x \rangle) d\lambda.$$

By the classical Plancherel formula on \mathbb{R}^n , we have

$$\int\limits_{\mathbb{R}^n} |f(x+iy,u)|^2 \, dx = \int\limits_{\mathbf{V}^*} \exp(-2\langle \lambda,y\rangle) |\widehat{f}(\lambda,u)|^2 \, d\lambda$$

and hence

(6)
$$||f||_{2,\varepsilon}^{2} = \int_{\mathbf{V}^{*}} d\lambda \int_{\mathbb{C}^{m}} dv(u) |\widehat{f}(\lambda,u)|^{2} \exp(-2\langle\lambda,\mathbf{F}(u,u)\rangle)$$

$$\times \int_{\mathbf{V}+\mathbf{F}(u,u)} \exp(-2\langle\lambda,y\rangle) (y - \mathbf{F}(u,u))^{-(2d-q)\varepsilon} dy$$

$$= c_{\varepsilon} \int_{\mathbf{V}^{*}} d\lambda \int_{\mathbb{C}^{m}} |\widehat{f}(\lambda,u)|^{2} \exp(-2\langle\lambda,\mathbf{F}(u,u)\rangle)$$

$$\times (\lambda)_{*}^{(2d-q)^{*}\varepsilon^{*}+d^{*}} dv(u),$$

where the last equality follows from the application of Proposition III.2 to the integral with respect to y: the convergence of this integral requires $\varepsilon_i > (n_i + 2)/(2(2d - q)_i)$ (i = 1, ..., l).

Now, let us prove assertion 1). Let $f \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$. Then by the Fubini theorem, for all $u \in \mathbb{C}^m$ and $y \in \mathbb{R}^n$ such that $y - \mathbf{F}(u, u) \in \mathbf{V}$ we have

(7)
$$\int_{\mathbb{R}^n} |f(x+iy,u)|^2 dx < \infty.$$

For each $y \in \mathbf{V}$, define the function f_y on $\mathbb{R}^n \times \{u \in \mathbb{C}^m : y - \mathbf{F}(u, u) \in \mathbf{V}\}$ by $f_y(x, u) = f(x + iy, u)$. Then by (7), the function $x \mapsto f_y(x, u)$ admits a Fourier transform $\lambda \mapsto \widehat{f}_y(\lambda, u)$, i.e.

(8)
$$f_y(x,u) = \int_{\mathbb{R}^n} \exp(i\langle \lambda, x \rangle) \widehat{f}_y(\lambda, u) \, d\lambda$$

and $\widehat{f}_y(\cdot, u) \in \mathbf{L}^2(\mathbb{R}^n)$.

Let us prove that for all $\lambda \in \mathbb{R}^n$ and $u \in \mathbb{C}^m$, the quantity $\widehat{f}_y(\lambda, u) / \exp(-\langle \lambda, y \rangle)$ does not depend on $y \in \mathbf{V} + \mathbf{F}(u, u)$. Let y and y' be two points in $\mathbf{V} + \mathbf{F}(u, u)$. Notice that since \mathbf{V} is an open cone, there exists $r \in \mathbb{N}$, $r \geq 2$, such that $ry - y' \in \mathbf{V}$. Set t = ry - y'; then

$$\widehat{f}_{ry}(\lambda, u) = \int_{\mathbb{R}^n} \exp(-i\langle \lambda, x \rangle) f(x + iry, u) \, dx$$

$$= \int_{\mathbb{R}^n} \exp(-i\langle \lambda, x \rangle) f(x + i(t + y'), u) \, dx$$

$$= \int_{\mathbb{R}^n + it} \exp(-i\langle \lambda, x \rangle) f(x + iy', u) \exp(-\langle \lambda, t \rangle) \, dx.$$

The analyticity of f on \mathbf{D} and (7) now yield the equality $\widehat{f}_{ry}(\lambda, u) = \exp(-\langle \lambda, t \rangle) \widehat{f}_{y'}(\lambda, u)$, which is equivalent to

(9)
$$\frac{\widehat{f}_{ry}(\lambda, u)}{\exp(-\langle \lambda, ry \rangle)} = \frac{\widehat{f}_{y'}(\lambda, u)}{\exp(-\langle \lambda, y' \rangle)}.$$

In particular, since $ry - y \in V$, (9) also gives

(10)
$$\frac{\widehat{f}_{ry}(\lambda, u)}{\exp(-\langle \lambda, ry \rangle)} = \frac{\widehat{f}_{y}(\lambda, u)}{\exp(-\langle \lambda, y \rangle)}.$$

Combining (9) and (10) then leads to the desired conclusion.

We can now define \widehat{f} on $\mathbb{R}^n \times \mathbb{C}^m$ by $\widehat{f}(\lambda, u) = \exp(\langle \lambda, y \rangle) \widehat{f}_y(\lambda, u)$, where y is an arbitrary point of $\mathbf{V} + \mathbf{F}(u, u)$. Replacing in (8) gives

(11)
$$f(z,u) = \int_{\mathbb{R}^n} \exp(i\langle \lambda, z \rangle) \widehat{f}(\lambda, u) \, d\lambda.$$

We next prove that $\widehat{f}(\lambda, u)$ is concentrated on \mathbf{V}^* , for all $u \in \mathbb{C}^m$. By a contradiction argument, assume that there exists an open subset N of $\mathbb{R}^n \setminus \mathbf{V}^*$ where $\widehat{f}(\cdot, u)$ is never zero. Then for all $\lambda_0 \in N$, there exist $\delta > 0$, $y \in \mathbf{V}$ and a neighbourhood $N(\lambda_0)$ of λ_0 contained in N such that for all $\lambda \in N(\lambda_0)$, we have $\langle \lambda, y \rangle < -\delta < 0$. By the classical Plancherel theorem, we deduce from (11) that for all $t \geq 1$, we have

$$\int_{\mathbb{R}^n} |f(x+ity,u)|^2 dx = \int_{\mathbb{R}^n} \exp(-2\langle \lambda, ty \rangle) |\widehat{f}(\lambda,u)|^2 d\lambda$$

$$\geq \exp(2\delta t) \int_{N(\lambda_0)} |\widehat{f}(\lambda,u)|^2 d\lambda.$$

We let t tend to ∞ . Then the left hand side tends to 0. To see this, it is enough to prove that for all $u \in \mathbb{C}^m$, $f(\cdot, u) \in \mathbf{L}^2(\mathbb{R}^n + i(\mathbf{V} + \mathbf{F}(u, u)))$; since $f \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$, this follows by the Fubini theorem. Thus, the latter inequality implies that $\widehat{f}(\lambda, u) = 0$ for almost all $\lambda \in N(\lambda_0)$. This contradicts the assumption that $\widehat{f}(\cdot, u)$ is never zero on N. Hence (11) becomes

$$f(z,u) = \int_{\mathbf{V}^*} \exp(i\langle \lambda, z \rangle) \widehat{f}(\lambda, u) \, d\lambda,$$

and this ends the proof of assertion 1). Thus Theorem II.2 is entirely proved.

Proof of Corollary II.3. Let $\varepsilon \in \mathbb{R}^l$ be arbitrary and let $f \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$. When we go back carefully to the proof of Theorem II.2, we notice that identity (11) holds for f and the associated function \widehat{f} is concentrated on $\mathbf{V}^* \times \mathbb{C}^m$. Moreover, the first identity of (6) holds:

$$\begin{split} \int\limits_{\mathbf{D}} |f(z,u)|^2 b^{-\varepsilon}((z,u),(z,u)) \, dv(z,u) \\ &= \int\limits_{\mathbf{V}^*} d\lambda \int\limits_{\mathbb{C}^m} dv(u) |\widehat{f}(\lambda,u)|^2 \exp(-2\langle \lambda, \mathbf{F}(u,u)\rangle) \\ &\times \int\limits_{\mathbf{V}} \exp(-2\langle \lambda, y \rangle)(y)^{-(2d-q)\varepsilon} \, dy. \end{split}$$

Assume now that ε satisfies

$$\varepsilon_i \leq \frac{n_i + 2}{2(2d - q)_i}$$
 for some $i \in \{1, \dots, l\}$.

The integral over V is infinite for all $\lambda \in \mathbf{V}^*$ by Proposition III.2.1. Since $f \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$, we conclude that $\exp(-2\langle \lambda, \mathbf{F}(u,u) \rangle)|\widehat{f}(\lambda,u)|^2 = 0$ for all $u \in \mathbb{C}^m$ and almost all $\lambda \in \mathbf{V}^*$. Hence \widehat{f} is identically zero and this implies f = 0 on \mathbf{D} .

233

Proof of Corollary II.4. The two conditions

$$\varepsilon_i > \frac{n_i + 2}{(2d - q)_i}$$
 and $\alpha_i - \varepsilon_i > \frac{n_i}{-2(2d - q)_i}$ $(i = 1, \dots, l)$

imply that

$$\alpha_i > \frac{1}{(2d-q)_i} \quad (i=1,\ldots,l).$$

Then, by Propositions II.1 and III.2.2, we obtain

$$b^{(1+\alpha)/2}((\zeta,v),(z,u))$$

$$= c_{\alpha} \int_{\mathbf{V}^*} \exp(-i\langle \lambda, \overline{z} \rangle) \exp(\langle \lambda, i\zeta + 2\mathbf{F}(u, v) \rangle) (\lambda)_*^{-(2d-q)^*(1+\alpha)^*/2+d^*} d\lambda.$$

By Theorem II.2, if we set $\zeta = s + it$, we have

$$||b^{(1+\alpha)/2}(\cdot,(\zeta,v))||_{2,\epsilon}^2$$

$$= c_{\alpha,\varepsilon} \int_{\mathbf{V}^* \times \mathbb{C}^m} \exp(-2\langle \lambda, t - \mathbf{F}(v, v) \rangle) \exp(-2\langle \lambda, \mathbf{F}(u - v, u - v) \rangle)$$

$$\times (\lambda)_*^{-(2d-q)^*(1+\alpha-\varepsilon)^*+3d^*} d\lambda dv(u)$$

By Proposition III.2.B, the integral over \mathbb{C}^m is equal to $c(\lambda)_*^{-q^*}$. Hence $\|b^{(1+\alpha)/2}(\cdot,(\zeta,v))\|_{2,\varepsilon}^2$

$$= c_{\alpha,\varepsilon} \int_{\mathbf{V}^*} \exp(-2\langle \lambda, t - \mathbf{F}(v,v) \rangle) (\lambda)^{-(2d-q)^*(\alpha-\varepsilon)^* + d^*} d\lambda;$$

this integral converges by Proposition III.2.2 because

$$\alpha_i - \varepsilon_i > n_i/(-2(2d-q)_i)$$
 $(i=1,\ldots,l)$

and its value is $c_{\alpha,\varepsilon}b^{\alpha-\varepsilon}((\zeta,v),(\zeta,v))$.

IV. Proofs of Proposition II.5 and Theorem II.6

Proof of Proposition II.5. It suffices to prove that the kernel $b^{1+\varepsilon}((\zeta,v),(z,u))$ is in $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$, is conjugate symmetric and reproduces $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$. The first two properties are satisfied in view of the definition of $b^{1+\varepsilon}$ (cf. notations adopted after Proposition II.1) and Corollary II.4.

Let us prove that this kernel reproduces $\mathbf{A}^{2,\varepsilon}(\mathbf{D})$. Let $f \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$; then by Theorem II.2, there exists $\widehat{f} \in \widehat{\mathbf{L}}^2(\mathbf{V}^* \times \mathbb{C}^m, \varepsilon)$ such that

(12)
$$f(z,u) = \int_{\mathbf{V}^*} \exp(i\langle \lambda, z \rangle) \widehat{f}(\lambda, u) \, d\lambda \quad ((z,u) \in \mathbf{D}).$$

On the other hand, since $\varepsilon_i > (n_i + 2)/(2d - q)_i$ (i = 1, ..., l), we have by Propositions II.1 and III.2,

$$\begin{split} b^{1+\varepsilon}((z,u),(\zeta,v)) &= c_\varepsilon \int\limits_{\mathbf{Y}^*} \exp(i\langle\lambda,z\rangle) \exp(\langle\lambda,-i\overline{\zeta}+2\mathbf{F}(u,v)\rangle)(\lambda)_*^{-(2d-q)^*(1+\varepsilon)^*+d^*} d\lambda. \end{split}$$

Hence by Theorem II.2 (Plancherel-Gindikin formula), we get

$$(13) \qquad \langle f, b^{1+\varepsilon}(\cdot, (\zeta, v)) \rangle_{2,\varepsilon} = c_{\varepsilon} \langle \widehat{f}, (b^{1+\varepsilon})^{\wedge}(\cdot, (\zeta, v)) \rangle_{\widehat{\mathbf{L}}^{2}(\mathbf{V}^{*} \times \mathbb{C}^{m}, \varepsilon)}$$

$$= c_{\varepsilon} \int_{\mathbf{V}^{*}} \exp(\langle \lambda, i\zeta + 2\mathbf{F}(v, v) \rangle)$$

$$\times \left(\int_{\mathbb{C}^{m}} \widehat{f}(\lambda, u) \exp(-2\langle \lambda, \mathbf{F}(u, v) \rangle) \right)$$

$$\times \exp(-2\langle \lambda, \mathbf{F}(u - v, u - v) \rangle) dv(u) d\lambda.$$

We use the following lemma:

IV.1. LEMMA. Let G be an entire function on \mathbb{C}^m and let φ be a continuous function with circular symmetry: $\varphi(u_1e^{i\psi},\ldots,u_me^{i\psi})=\varphi(u_1,\ldots,u_m)$ for all $\psi\in\mathbb{R}$. Assume that the integral $I=\int_{\mathbb{C}^m}G(u)\varphi(u)\,dv(u)$ converges absolutely. Then $I=G(0)\int_{\mathbb{C}^m}\varphi(u)\,dv(u)$.

By Lemma IV.1 (use the change of variables u' = u - v and take $G(u') = \widehat{f}(\lambda, u' + v) \exp(-2\langle \lambda, \mathbf{F}(u' + v, v) \rangle)$ and $\varphi(u') = \exp(-2\langle \lambda, \mathbf{F}(u', u') \rangle)$ and by Proposition III.2, the integral over \mathbb{C}^m is equal to

$$c_{arepsilon}\int\limits_{\mathbf{V}^{*}}\exp(i\langle\lambda,\zeta
angle)\widehat{f}(\lambda,v)\,d\lambda=c_{arepsilon}f(\zeta,v),$$

where the last equality is (12). This completes the proof of Proposition II.5.

In the sequel, to simplify the notations, a point of **D** will be denoted by z or ζ , instead of (z, u) or (ζ, v) , while ie will stand for (ie, 0). Also, we will write z/n, ie/n, z+ie/n instead of $(z/n, u/\sqrt{n})$, (ie/n, 0) and (z+ie/n, u) respectively $(n \in \mathbb{N})$.

Proof of Theorem II.6. We shall use the following density lemma:

IV.2. LEMMA. Let $r \in \mathbb{R}^l$ satisfy $r_i \geq 0$ (i = 1, ..., l) and let $p \in [1, \infty)$. Then for all $\varepsilon \in \mathbb{R}^l$ such that

$$\varepsilon_i > \frac{n_i + 2}{(2d - q)_i} \quad (i = 1, \dots, l),$$

the subspace $\mathbf{A}^{p,r}(\mathbf{D}) \cap \mathbf{A}^{2,\varepsilon}(\mathbf{D})$ is dense in $\mathbf{A}^{p,r}(\mathbf{D})$.

The proof of Lemma IV.2 is somewhat lengthy: we shall give it in an appendix. It also uses the following lemmas:

IV.3. LEMMA [R]. Let $r \in \mathbb{R}^l$ and let $p \in (0, \infty)$. Then for all $f \in \mathbf{H}(\mathbf{D})$, $|f(z)|^p \leq cB^{1+r}(z,z)||f||_{p,r}^p \quad (z \in \mathbf{D}).$

IV.4. LEMMA. Let $\beta \in \mathbb{R}^l$ be such that $\beta_i \geq 0$ (i = 1, ..., l). Then for all z and ζ in \mathbf{D} , we have

$$(14) b^{\beta}(z+\zeta,z+\zeta) \le b^{\beta}(z,z)$$

and

$$|b^{\beta}(\zeta,z)| \le b^{\beta}(z,z).$$

Lemma IV.4 is an easy consequence of Proposition III.2.2.

1) Let us first prove assertion 1) of Theorem II.6. For $\zeta \in \mathbf{D}$, consider the linear functional φ on $\mathbf{A}^{p,r}(\mathbf{D})$ defined by

$$\varphi(f) = f(\zeta) - c_{\varepsilon} \int_{\mathbf{D}} b^{1+\varepsilon}(\zeta, z) f(z) b^{-\varepsilon}(z, z) dv(z).$$

The integral on the right converges absolutely. For $p \in (1, \infty)$, this follows by the Hölder inequality and Corollary II.4 since

$$\varepsilon_i > \frac{n_i + 2}{2(2d - q)_i} \cdot \frac{p - 1}{p} + \frac{r_i}{p}$$

and

$$p < \frac{n_i - 2(2d - q)_i(1 + r_i)}{n_i}$$
 $(i = 1, \dots, l).$

For p = 1, Lemma IV.4 implies

$$|b^{1+\varepsilon}(\zeta,z)|b^{-\varepsilon}(z,z)b^r(z,z) \le |b^{1+r}(\zeta,z)| \le |b^{1+r}(\zeta,\zeta)|$$

when $\varepsilon_i - r_i \ge 0$ and $1 + r_i \ge 0$ (i = 1, ..., l). The conclusion follows and its proof also yields that φ is a bounded linear functional on $\mathbf{A}^{p,r}(\mathbf{D})$.

The functional φ is identically zero on $\mathbf{A}^{p,r}(\mathbf{D}) \cap \mathbf{A}^{2,\varepsilon}(\mathbf{D})$. Hence, by the Hahn-Banach theorem and Lemma IV.2, φ is identically zero on $\mathbf{A}^{p,r}(\mathbf{D})$. This proves assertion 1).

2) Let us next prove assertion 2). Let $f \in \mathbf{A}^{p,r}(\mathbf{D})$. For $\alpha \in \mathbb{R}^l$ such that $\alpha_i \geq 0$ $(i=1,\ldots,l)$, define the sequence $f_n(z) = b^{\alpha}(z/n,ie)f(z+ie/n)$, $n \in \mathbb{N}$ and $z \in \mathbf{D}$. Since the function $z \mapsto f(z+ie/n)$ is bounded in \mathbf{D} by Lemmas IV.3 and IV.4 since $1+r_i \geq 0$, we deduce by Corollary II.4, for α_i sufficiently large, that $f_n \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$. Then by Proposition II.5, we have

(16)
$$f_n(\zeta) = c_{\varepsilon} \int_{\mathbf{D}} b^{1+\varepsilon}(\zeta, z) f_n(z) b^{-\varepsilon}(z, z) \, dv(z).$$

On the other hand, by Lemmas IV.3 and IV.4, since $1 + r_i \ge 0$, we get $|f(z+ie/n)|^p \le b^{1+r}(z+ie/n,z+ie/n)||f||_{p,r}^p \le b^{1+r}(z,z)||f||_{p,r}^p$

and $|b^{\alpha}(z/n, ie)| \leq b^{\alpha}(ie, ie)$. Thus the function $|b^{1+\varepsilon}(\zeta, z)|b^{(1+r)/p-\varepsilon}(z, z)$ dominates the integrand in (16) and it belongs to $\mathbf{L}^1(\mathbf{D}, dv(z))$ by Corollary II.4, under our assumptions on ε and r. Hence by the dominated convergence theorem, we obtain the equality

$$f(z) = c_{\varepsilon} \int_{\Omega} b^{1+\varepsilon}(z,\zeta) f(\zeta) b^{-\varepsilon}(\zeta,\zeta) dv(\zeta).$$

This proves Theorem II.6.

V. Proof of Theorem II.7. 1) Let $f \in L^{1,r}(\mathbf{D})$. Then by the Fubini theorem, we obtain

$$\int_{\mathbf{D}} P_{\varepsilon}^* f(\zeta) b^{-r}(\zeta, \zeta) \, dv(\zeta)
\leq c_{\varepsilon} \int_{\mathbf{D}} \left(\int_{\mathbf{D}} |b^{1+\varepsilon}(\zeta, z)| b^{-r}(\zeta, \zeta) \, dv(\zeta) \right) |f(z)| b^{-\varepsilon}(z, z) \, dv(z)
\leq c_{\varepsilon} ||f||_{1,r},$$

where the last inequality follows from Corollary II.4 since $\varepsilon_i - r_i > n_i/(-2(2d-q)_i)$ and $r_i > (n_i+2)/(2(2d-q)_i)$ $(i=1,\ldots,l)$.

- 2) By the Schur lemma [FRu], it suffices to prove the existence of a positive function g on $\mathbf D$ and of two positive constants c_1 and c_2 such that
 - (i) for all $\zeta \in \mathbf{D}$,

$$\int |b^{1+\varepsilon}(\zeta,z)|g^{p'}(z)b^{-\varepsilon}(z,z)\,dv(z) \le c_1 g^{p'}(\zeta),$$

where p' is the conjugate exponent of p, and

(ii) for all $z \in \mathbf{D}$,

$$\int\limits_{\mathbf{D}}|b^{1+\varepsilon}(\zeta,z)|g^p(\zeta)b^{-r}(\zeta,\zeta)\,dv(\zeta)\leq c_2g^p(z)b^{\varepsilon-r}(z,z).$$

We take $g(z) = b^{\delta}(z, z)$, with $\delta \in \mathbb{R}^{l}$. By Corollary II.4, estimates (i) and (ii) hold if and only if

$$\frac{n_i}{-2(2d-q)_i}(p-1) < \delta_i p < \frac{n_i + 2 - 2(2d-q)_i \varepsilon_i}{-2(2d-q)_i}(p-1)$$

and

$$\varepsilon_i > \frac{1}{(2d-q)_i} \quad (i=1,\ldots,l)$$

on the one hand, and on the other hand,

$$\frac{n_i - 2(2d - q)_i(r - \varepsilon)_i}{-2(2d - q)_i} < \delta_i p < \frac{n_i + 2 - 2(2d - q)_i r_i}{-2(2d - q)_i}$$

237

and

$$r_i > \frac{n_i + 2}{2(2d - q)_i}$$
 $(i = 1, \dots, l).$

A suitable exponent δ exists when these conditions are compatible. A simple calculation gives that this is the case when for all i = 1, ..., l,

$$n_i(p-1) < n_i + 2 - 2(2d-q)_i r_i$$

and

$$n_i - 2(2d - q)_i(r - \varepsilon)_i < (n_i + 2 - 2(2d - q)_i\varepsilon_i)(p - 1).$$

This completes the proof of Theorem II.7.

Remark. Quite recently, M. M. Dzhrbashyan and A. O. Karapetyan [DK] also studied the $\mathbf{L}^{p,r}$ -boundedness for weighted Bergman projections P_{ε} in the tube over the cone of Hermitian positive definite matrices of order n for $\varepsilon_i = \varepsilon_0$ and $r_i = r_0$ $(i = 1, \ldots, l)$. They proved a positive result when

$$\max\left\{1, \frac{n(2r_0+1)}{2n\varepsilon_0+1}\right\}$$

According to Theorem II.7, our sufficient condition is

$$\max_{i=1,\dots,n}\left\{1,\frac{2i-1+4nr_0}{4n\varepsilon_0+i}\right\}$$

 $\varepsilon_0 > -1/(4n)$ and $r_0 > -1/(4n)$. More particularly, in the case $\varepsilon_0 = r_0 = 0$, those two authors obtain no value of p for which the Bergman projection P is bounded on $\mathbf{L}^p(\mathbf{D})$. We prove that P has this property when

$$\frac{2n-1}{n}$$

Our method of proof is more efficient because we allow the exponent δ of the Schur test function $g(z) = b^{\delta}(z, z)$ to be a vector instead of a real number.

Proof of Theorem II.8. Notice that under our hypotheses, $P_{\varepsilon}f$ is well defined for all $f \in \mathbf{L}^{p,\varepsilon}(\mathbf{D})$. Let B(ie) be a Euclidean ball centered at ie whose closure is contained in \mathbf{D} . Let f denote the function defined on \mathbf{D} by

$$f(z) = \begin{cases} B^{\varepsilon}(z, z) & \text{if } z \in B(ie), \\ 0 & \text{if } z \in \mathbf{D} \setminus B(ie). \end{cases}$$

Of course, $f \in \mathbf{L}^{p,\varepsilon}(\mathbf{D})$. Moreover, by the mean value property, $P_{\varepsilon}f(\zeta) = c_{\varepsilon}b^{1+\varepsilon}(\zeta, ie)$ for all $\zeta \in \mathbf{D}$. Hence,

$$\|P_{\varepsilon}f\|_{\mathbf{L}^{p,\varepsilon}(\mathbf{D})}^p = c\int\limits_{\mathbf{D}} |b^{1+\varepsilon}(\zeta,ie)|^p b^{-\varepsilon}(\zeta,\zeta) \, dv(\zeta).$$

By Corollary II.4, the integral on the right is infinite if $p \leq p_0(\varepsilon)$. This concludes the proof.

Remark. The same proof can be used to show that for each $\varepsilon \in \mathbb{R}^l$ such that $\varepsilon_i > (n_i + 2)/(2(2d - q)_i)$ (i = 1, ..., l), P_{ε} is not bounded on $\mathbf{L}^{1,r}(\mathbf{D})$ when the conditions of Theorem II.7.1 are not satisfied, i.e. when either $r_i \leq (n_i + 2)/(2(2d - q)_i)$ or $\varepsilon_i - r_i \leq n_i/(-2(2d - q)_i)$ for some $i \in \{1, ..., l\}$.

Appendix

Proof of Lemma IV.2. Let $f \in \mathbf{A}^{p,r}(\mathbf{D})$. Let $\alpha \in \mathbb{R}^l$ satisfy $\alpha_i \geq 0$ $(i=1,\ldots,l)$. Define the sequence $\{f_n\}$ of holomorphic functions on \mathbf{D} by $f_n(z) = c_{\alpha}f(z+ie/n)b^{\alpha}(z/n,ie), n \in \mathbb{N}$, where c_{α} is a complex number such that $\lim_{n\to\infty} c_{\alpha}b^{\alpha}(z/n,ie) = 1$. We are going to prove that if the numbers α_i are large enough, then $f_n \in \mathbf{A}^{p,r}(\mathbf{D}) \cap \mathbf{A}^{2,\varepsilon}(\mathbf{D})$ for all n and $\lim_{n\to\infty} ||f_n - f||_{p,r} = 0$.

By Lemma IV.3 and inequality (14) of Lemma IV.4, since $(1+r_i)/p \ge 0$ $(i=1,\ldots,l)$, we get

$$|f(z+ie/n)| \le c_{p,r} b^{(1+r)/p} (z+ie/n, z+ie/n) ||f||_{p,r}$$

$$\le c_{p,r} b^{(1+r)/p} (ie/n, ie/n) ||f||_{p,r}.$$

Then each function $z \mapsto f(z + ie/n)$ is bounded on **D** and hence by Corollary II.4, $f_n \in \mathbf{A}^{2,\varepsilon}(\mathbf{D})$ for all n if α and ε satisfy

$$2\alpha_i - 1 - \varepsilon_i > \frac{n_i}{-2(2d-q)_i}$$
 and $\varepsilon_i > \frac{n_i + 2}{2(2d-q)_i}$ $(i = 1, \dots, l)$.

Moreover, $f_n \in \mathbf{A}^{p,r}(\mathbf{D})$ because by Lemma IV.4 (inequality (15)), condition $\alpha_i \geq 0 \ (i=1,\ldots,l)$ implies

$$(17) |b^{\alpha}(z/n, ie)| \le b^{\alpha}(ie, ie)$$

on the one hand, while on the other hand, the function $z \mapsto f(z + ie/n)$ belongs to $\mathbf{A}^{p,r}(\mathbf{D})$.

Let us next prove that (f_n) converges to f in $\mathbf{A}^{p,r}(\mathbf{D})$. By the Minkowski inequality and (17), we obtain $||f_n - f||_{p,r} \leq I_1 + I_2$, where

$$I_{1} = \left(\int_{\mathbf{D}} |c_{\alpha}b^{\alpha}(z/n, ie) - 1|^{p} |f(z)|^{p} b^{-r}(z, z) dv(z) \right)^{1/p},$$

$$I_{2} = \left(\int_{\mathbf{D}} |f(z + ie/n) - f(z)|^{p} b^{-r}(z, z) dv(z) \right)^{1/p}.$$

The integral I_1 tends to zero by the Lebesgue dominated convergence theorem. Let us prove that I_2 also tends to zero.

For $s \in \mathbb{N}$, denote by \mathbf{K}_s the compact set defined by $\mathbf{K}_s = \{z \in \mathbf{D} : d(z, \partial D) \geq 1/s, \ |z| \leq s\}$. Of course $\bigcup_s \mathbf{K}_s = \mathbf{D}$ and $\mathbf{K}_s \subset \mathbf{K}_{s+1}$. For all $s \in \mathbb{N}$, we have $I_2(s) \leq I_3(s) + I_4(s)$, where (with $\mathbf{K}_s^c = \mathbf{D} \setminus \mathbf{K}_s$)

$$I_3(s) = \Big(\int\limits_{\mathbf{K}_s} |f(z+ie/n) - f(z)|^p b^{-r}(z,z) \, dv(z)\Big)^{1/p},$$

$$I_4(s) = \Big(\int\limits_{\mathbf{K}_a^c} |f(z+ie/n) - f(z)|^p b^{-r}(z,z) \, dv(z)\Big)^{1/p}$$

Moreover, $I_4(s) \leq I_5(s) + I_6(s)$, where

$$I_5(s) = \Big(\int\limits_{\mathbf{K}_s^c} |f(z)|^p b^{-r}(z,z) \, dv(z)\Big)^{1/p}, \ I_6(s) = \Big(\int\limits_{\mathbf{K}^c} |f(z+ie/n)|^p b^{-r}(z,z) \, dv(z)\Big)^{1/p}$$

Let η be an arbitrary positive number. Then there exists $N \in \mathbb{N}$ such that

(18)
$$I_5(s) < \eta/3$$
 for all $s > N$.

Fix s such that s > 2N. Since by estimate (14) of Lemma IV.4, we have $b^{-r}(z,z) \le b^{-r}(z+ie/n,z+ie/n)$ (because $r_i \ge 0$ $(i=1,\ldots,l)$), it follows that whenever $|e/n| < \min(1/s,s/2)$, then

(19)
$$I_{6}(s) \leq \left(\int_{\mathbf{K}_{s}^{c}} |f(z+ie/n)|^{p} b^{-r}(z+ie/n,z+ie/n) \, dv(z)\right)^{1/p}$$
$$\leq \left(\int_{\mathbf{K}_{s/2}^{c}} |f(z)|^{p} b^{-r}(z,z) \, dv(z)\right)^{1/p} < \eta/3,$$

where the last inequality follows from (18) because s/2 > N.

Lastly, fix s such that s>2N. Since f is uniformly continuous on \mathbf{K}_s , there exists $\delta=\delta(\mathbf{K}_s)>0$ such that $|f(z+ie/n)-f(z)|<\eta/(3(|\mathbf{K}_s|_r)^{1/p})$ whenever $|e/n|<\delta$. Here $|\mathbf{K}_s|_r$ stands for $\int_{\mathbf{K}_s}b^{-r}(z,z)\,dv(z)$. Hence,

(20)
$$I_3(s) < \eta/3$$
.

Combining (18)–(20) yields that $I_2 < \eta$ whenever $n > \delta/|e|$. This completes the proof of Lemma IV.2.

References

 [B] D. Békollé, Solutions avec estimations de l'équation des ondes, in: Sém. Analyse Harmonique 1983-1984, Publ. Math. Orsay, 1985, 113-125.

- [BeBo] D. Békollé and A. Bonami, Estimates for the Bergman and Szegő projections in two symmetric domains of \mathbb{C}^n , Colloq. Math. 68 (1995), 81-100.
- [CR] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L^p, Astérisque 77 (1980), 11-66.
- [DK] M. M. Dzhrbashyan and A. O. Karapetyan, Integral representations in a generalized upper half-plane, Izv. Akad. Nauk Armenii Mat. 25 (6) (1990), 507-533.
- [FRu] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions on balls, Indiana Univ. Math. J. 24 (1974), 593-602.
 - [G] S. G. Gindikin, Analysis in homogeneous domains, Russian Math. Surveys 19
 (4) (1964), 1-89, 379-388 and ibid. 28 (1973), 688.
- [KoS] A. Korányi and E. M. Stein, H² spaces of generalized half-planes, Studia Math. 44 (1972), 379-388.
 - [P] J. Peetre, A reproducing kernel, Boll. Un. Mat. Ital. (6) 3-A (1984), 373-382.
 - [R] R. Rochberg, Interpolation in Bergman spaces, Michigan Math. J. 29 (1982), 229-236.
 - [T] A. Temgoua Kagou, Domaines de Siegel de type II: noyau de Bergman, Thèse de 3^e cycle, Université de Yaoundé I, 1993.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF YAOUNDE I P.O. BOX 812 YAOUNDE, CAMEROON

Received May 26, 1994 (3281)