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Convergence in the generalized sense relative to
Banach algebras of operators and in LMC-algebras

by

BRUCE A BARNES (Eugene, Oreg.)

Abstract. The notion of convergence in the generalized sense of a sequence of closed
operators is generalized to the situation where the closed operators involved are affiliated
with a Banach algebra of operators. Also, the concept of convergence in the generalized
sense is extended to the context of a LMC-algebra, where it applies to the spectral theory
of the algebra.

1. Introduction. Let X be a Banach space, and let B(X) denote the
algebra of all bounded linear operators on X. Assume % C B(X) is a Banach
algebra of operators (the complete norm on % need not be the operator
norm). A linear operator T with domain D(T) in X, T : D(T") — X,
is affiliated with & if for some A € C, (A — T)~' € . The spectral and
Fredholm theory of operators affiliated with Z is developed in [B1] and [B2].
Also, examples and applications of the theory are given in [B1], [B2], and
[PR] (where affiliated semigroups of operators are considered}.

In this paper we study convergence in the generalized sense (GS-con-~
vergence) of a sequence of operators affiliated with 4. This is a natural
type of convergence which can be usefully applied to the spectral theory of
affiliated operators. When & = B{X), this notion of convergence has been
widely used; see [K]. We develop the basic properties of GS-convergence of
affiliated operators in §2.

In addition to applications to the spectral theory of affiliated operators,
this paper is also motivated by the fact that the concept of GS-convergence
applies directly to analysis in LMC-algebras. In fact, from the point of view
of analysis, GS-convergence is the most useful type of convergence in the
context of LMC-algebras. GS-convergence in an LMC-algebra is studied in
§3. The results there are exactly analogous to those for GS-convergence of
sequences of affiliated operators as developed in §2.
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88 B. A. Barnes

2. GS-convergence relative to a Banach algebra of operators.
Throughout this section, & € B(X) is a fixed Banach algebra of operators
which contains the identity operator I. The #-norm of an operator R € &
is dendted by |R||w, and it is assumed that || - || dominates the usual
operator norm.

Let &7 be the collection of all closed operators with domain in X which
are affiliated with & For an operator T' we let

resg(T)={AeC:(A-T)"' € &} and ox(T)=C\resg(T).
Of course, resg(T) may be empty, and by definition, T & @y exactly when
resg(T) is nonempty.

DerFINITION 1. Assume {7} and T are linear operators with domain
in X. The sequence {T,,} converges to T in the generalized sense (relative to

) if there exist Ap € resg(T) and N such that A¢ € resa(Ty,) for n 2 N,
and

[Go=Ta)™' = Qo =T) 7@ = 0
We use the notation T,, — T (GS) when T}, converges to 7' in the generalized
sense.

as N < n — oo,

The notion of GS-convergence (relative to ) is a generalization of a well-
known type of convergence used in the spectral theory of closed operators;
see [K, Chapter 2, especially Theorem 2.23, p. 206]. Since % is fixed, we
drop the statement “(relative to #)” in what follows.

PROPOSITION 2. Let T' € &g,

(1) Assume T-' € &, § =T + R where R € &, and ||T - S|z <
|75 Then S~) € B, and

171307 - Sl
= (17 - STall7-"a)

(2) resg(T) is open and og(T) is closed.

177!~ 5 e <

Proof. Part (2) is an immediate consequence of (1). Now we give a proof
of (1) (although the argument is a standard one). Assume § and I are as
stated in (1). Note that T—1S € &, and

11~ T8 g < | T @l - Slla < 1.
By [BD, Cor. 10, p. 12] it follows that 715 has an inverse W in Z8. Then

(WT 18z =2z for all z € D(S) = D(T);
and for all x € X, T7'S(WT 1)z = Tz, so
SWTNz=z forallzeX.
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Therefore 5~ = WT! € &. Now
157 &~ T & < 187 = T |z = |78 - T)8" ||«

<N T aliS — Til25™ | 2.
Therefore
(4) 187 lw(l ~ 18 - )2l T 2) <177 .

Substituting (4) into (3), we have the inequality in (1).

ProrosiTiON 3. Assume T, — T (GS). If A € resg(T), then there exists
N such that A € resg(T,) forn > N, and

IA=T) = (A=T)" ez —0 asN <n— oo
P roof. We use the following elementary equality repeatedly in the proof:
For i € resg(T),

(=T p-T)" =)+ (p-Dp—T)" =TI+ n—pm)p-T)""
Assurne Ag, A € resg(T'}, and
(1) (o =T) ™t = (Ao —=T) 7| — C.

Set S =(A~T)Ap~T) =T+ (A=) Ao —T)" L. Then 5! € B, and
S ==Y A=T)"' = I+ (A=A (A=T)"L Now (A=T,, ) do~Tn) "1 =
I+(A- /\0)()\0 - Tn)bd? and so, “(’\ - Tn)()\o - Tﬂ)_l - SH% — 0. By
Proposition 2, there exists N such that (A — T3,)(Ao — T5.)"! has an inverse
in # for n > N. This implies A — T}, has an inverse in & for n > N. Also,
120~Tn)(A=Tn) "t =5 @ — 0, and |(A=Tn) '~ Do —Tn) '8 Y|g — 0
as N > n — oco. Combining this with (1), we have

1A= Ta)™ = (A-T) "z -0
The next proposition containg some basic properties of GS-convergence.

PROPOSITION 4. (1) If T — T (GS), then Ty + A — T + Al (GS) for
all d & C.

(2) FT, — T (GS), S, — S{GS) and T71,57 € B, then T,S, ~
TS (GS).

3) If T, —» T (G8) and {M\,} C C with Ay — X, A %0, then AT, —
AT (GS).

(4) If{R,}C B, ReB, |R,—R|lz—0, and T,+ R— T+ R {GST),
then T, + Ry, — T+ R (GS).

Proof. The verification of (1) is completely elementary. To verify (2),
note that for all n sufficiently large, 77! and S;! are in %, and that
Tt — T g — 0, |S;t — 57l — 0. It follows immediately that
(7, Sp) ™ — (T'S) "l — 0. This implies Ty Sy, — T'S (GS).

as N <n — oo,
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Suppose V.71 € & for all n, V! € & with Vit = Ve — 0. Far-
thermore, assume {W,} C % with ||Wy ||z — 0. Since 1Va e = 11V e,
there exists N such that |W,|lz||V,, s € 1/2 for n = N. Using Proposi-
tion 2, we have for n 2 N, (W, +V,,)”! € & and

(W + Vo)™ = Vi e < Vi 1B Wal @l = (1WallliVi le) ™ — 0
as N < n — oo. Therefore ||(Wn + Va)™! = V7llm — 0. Now assume
as in (3) that 7, — T (GS) and A, — A # 0. Fix Ap € resg(T"). Then
I(Andg — AnTw) ™t = (Adg = AT) @ — 0. Let Wy, = (—Ando + Ao)l — 0.
Applying the previous argument we have

[(We + Asra = AaTn) ™t = (dod = AT) | — 0,
S0
(Mg = AnT) ™ — (Ao = AT) " Hja — 0.
This implies A, Tn, — AT (GS).
To prove (4), set Wy, = R — Ry, so by hypothesis |Wy[s — 0. Choose
Ao € resg(T + R}, so by assumption
1o = (To + B) ™ = (Ao = (T+R)) Mz — 0.
Applying the argument in the previous paragraph with
Vn=/\g—~(Tn+R), Vm)\[)—(T*]*R),
one concludes that
(A0 = (Tn+ RBa)) ™ — (Ao = (T + R)) | — 0.

It is not always true that when T}, — 7' (GS) and R € &, then T, + R —
T + R (GS). However, if resg(T + R) is nonempty (i.e. T+ R € og) and
resg(T) is unbounded, then this statement is true.

THEOREM 5. Assume T, — T (GS) and R € 9. Then there exists ¢ > 0
such that whenever |§| < ¢, then Ty, + 8R — T + 6R (GS). If resw (T + R)
is nonempty and resg(T) s unbounded, then T,, + R — T + R (GS).

Proof Fix —) cresg(T) and —p € resg(R). By Proposition 4(2),
(# + R)—l()\ + 1) — (/-0 -+ R)—l()\ + T) (GS).

Now (p+ R)~}{A+T') has an inverse in %, so by Proposition 2, there exists
g > 0 such that

6] < &= —6 e resg((u+ R)" (A +T)).
Fix any such §, By Proposition 4,
(p+ RN+ T) +6— (u+ Ry 1A+ T)+ 6 (GS),
and again by Proposition 4(2),
(A+To) -+ 8{p+ R) —~ (A T) + 8(u + R) (GS).
Thus, T, + 6R - T + §R {GS).
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The proof above shows that Ty, + 6R — T + 6R (GS) whenever —A €
resa(T), —p € resg(R), and —6 € resg((p+R) " (A+T)). Suppose now that
resg(T) is unbounded and resg (T + R) is nonempty. Fix —y € resg(T + ).
Choose —\ € resg(T) such that |\ —y| > | R|\@. Set g =+ — A;s0 —p €
resg( R). Then

I+(p+R) T AHT) = (u+ B H(u+ ) +(T+R)] = (ut+ B) ™ [y +{T+B)).

This last operator has an inverse in &; so —1 € resg((1 + R)™ (A + T)).
Therefore, as remarked above, T, + R — T -+ R (GS).

The next result has useful application to the operational calculus for
operators in &g (see Theorem 7) and to results concerning variation of
oz{-) (as in Theorem 9).

THEOREM 6. Assume T, — T (GS). Let I' be a compact subset of C
with I' C resg(T").

(1) There exists N such that for alin > N, I C resg(T5).
(2) Let N be as in (1). Then |[(A=Tp} ' = (A=T) & = 0 as N <
n — oo uniformly in A € I'.

Proof. Suppose that (1) does not hold. Then there exists a subsequence
{T..} and a sequence {Ax} C I' with Ay € o@(Th,), k = 1. Since I' is
compact, there is a subsequence of {);} that converges to some A € I'. To
simplify notation, we assume that A, € 0g(T,) NI and Ap, — Ap asn — oo
By Proposition 3, we may assume Ao € resgg(75,) for all n. Now

I = O = Tu)(Ao = To) "l = 1T = [(An = Xo)(ho = Tu) ™t + ]|
= Xn = Aol I(Ao ~ Tn) "8 — O

By Proposition 2, this implies (A, — Tn)(do — Tn) 7" is invertible in & for
all n sufficiently large. Therefore (A, —T,)~* € & for large n, contradicting
the fact that A\, € og(T,). This proves (1).

To prove (2), we first show that there is M > 0 such that ||{(A— T e
< M whenever A € I and n > N (N chosen as in (1}). For suppose no
such M exists, Then there exists a subsequence {T,,} and a sequence of
scalars {Ag} such that [|(he—Tn,) "} > &, k > 1. Also, some subsequence
of {Ar} converges to p € I'. Again, for convenience of notation, we agsume
I(An = Tn) " e = n and p € resa(Th), n 2 1, and Ay — p. Now

1w = To) "M — (= To) 'l 2
<N = To)™ ' = (= To) " w

= (= An)(dn = Ta) M= T) " 2
< o= Al [ = ) Mall (i — Tn) ™ [
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Thos for n > 1, (0 = T a{l — I~ Ml [l = o)~ llw} <

(e — Tn) Y e But {|[(g = T)" | @} is bounded in n (Proposition 3).
This is a contradiction.
Now assume N is as in (1) and

[(A~T,) " @ <M whenever A€ I'and n > N.

Fix Ay € I, so that [[(hg ~ Tn)™" — (Ao = T) " 'lsg — 0 as N < n — oo
Then forn > N and A € I,

A=T)t=(A -1t
= (A= Te) ™ o = T)[(Ro — T) ™ = o~ T) (A0 - DY A =T
= (T+ (ho =N =T o =~ To) ™ = (o= T) 7]
oI+ (=N -1V
Since [(A ~ Tp.)||@ and [|[{(A — T)~*||% have a uniform bound for n > N

and all A € I, we have [(A~T) ' - (A-T) g = 0as N £ n—
uniformly for A € I,

When T' € &/, then there 1s an operational calculus for 1' completely
analogous to that for unbounded closed operators with nonempty resolvent
set. The properties of this operational calculus can be proved by applying
the proofs in [DS, §9].

For T' € &g, let F(T") be the set of all holomorphic functions F with
the properties:

(i) F is holomorphic on some open set U with U® {the complement of
U) compact and o05(T) C U, and

(ii) F(oo) = lim|yjoo F(A) exists. Choose v to be a sum of suitable
closed curves with image in U \ o%(T) such that

{0 for all 2 € ow(T},
Ind.(z}) = { -1 forallzgU.

Define
F(T) = F{oo)I + (2r)™" [ F(AYA~1)"!

..

2

In this case F(T) € &.

THEOREM 7. Assume T € &g and assume F € F(T). If T,, - T {GS),
then there exists N such that F' € F(T},) forn 2> N and

1F(T) - F{T)le —0 as N<n-— oo

Convergence in the generalized sense 93

Proof. By definition there exists an open set 7 such that U'° is compact,
F is holomorphic in U, and F(co) = lim|y|_e F(A) exists. Fix v to be a
sum of closed curves in U \ og(T) such that
_ Da ZE J@(T)ﬂ
Ind, () = { -1, ze U=,
By definition

F(T) = F(oo)I + (2m4)~ fF )7t dA

Let v* be the image of v in C. Set V = {z ¢ +v* : Ind,(z) = 0}. Then V
is an open set with V® compact (V' contains the unbounded component of
(v*)°). By Theorem 6, there exists N such that o@(T,) CUNV forn > N.
Also, |[(A=T,)" ' — (A =T)"}g — 0 uniformly on (UNV)¢, and so on v*.
Thus, for n > N, F(T,,) is defined as above with 7, in place of T', It follows
easlly that

|F{T) — F{D)||l@ ~ 0  as N <n - 0.

COROLLARY B. Assume [’ is a nonempty compact and relatively open
subset of og{T). Let V be any open subsef of C with I’ C V. T, —» T
(GS), then oa(T,) NV is nonempty for all n sufficiently large.

Proof. Choose v to be an appropriate sum of closed curves in V M
resg (1) surrounding I" such that

P=(2mi)™ [[(A=T)"dr#£0
v
is the corresponding spectral projection. Denote by v* the image of v in V.
By Theorem 6, there exists N such that (A — T},) ™! € # whenever n > N
and A € v*, and
[(A=T) ' = (A=T) e —0 uniformly onvy* as N <n — co.

Applying Theorem 7, we have
P P,=(2r)t [ (A~T)) " dA

5
in #-norm as N < n — oo. f 05(7,)NV were empty for an infinite number
of n, then for these n, P, =0, so 7 = 0, a contradiction.

For R > 0 we use the notation D = {# € C : |z| £ R}. The upper
semicontinuity of the spectrum in a Banach algebra is a basic result in
spectral theory; see [R, Theorem (1.6.16)] or [BD, Proposition 17, p. 26].
For I" a subset of © and A € C, let

dA I =inf{|]A -~y € I'}.
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Now we prove a type of upper semicontinuity result that holds for og(')
relative to GS-convergerce.

THEOREM 9 (local upper semicontinuity of og). Assume T, — T (GS).
If R > 0 and U is any open set with og(T) C U, then there exists N such
that

TLZNZP-O‘Q(TTL)HDR_C_UQDR.

Proof. Assume R and U are as stated. Let I'g = U N Dp, and note
that I'y is compact, and I'y C U® C resg(T). Therefore by Theorem 6,
there exists NV such that I'g C resg(7),,) whenever n > N, Thus, for n > N,
og(Ty) CI'f = U U Dg. It follows that

nzNﬁ-O"_@(Tn)ﬂDRgUﬂDR.

Now we prove a stronger variational result when og(T) is totally dis-
connected (therefore this result holds when o 2(7") is countable).

THEOREM 10. Assume T, — T (GS) and og(T") is totally disconnected.
Lete >0 and R > 0 be arbitrary. Fiz §,0 < § < ¢, and set S = R-+6. Then
there exists N such that

pEogxk(I)NDy and n> N =d(yce(T,)NDg) <e.

Proof Suppose on the contrary that no such N exists. Then there is
an increasing sequence of positive integers, {n}, and a sequence {p,,} C
agg{T) N Dp such that

(1) Apin,,02(Tn, ) N Dg) > €

We may assume (by taking a subsequence if necessary) that p,, — uo €
oa(T) N Dg. Since c(T) is totally disconnected, there exists a compact
open and closed subset I" of 0g(T) such that

po €l C B(,!.LD,(S) = {)\ : iA— u()] < 5}

By Corollary 8, there exists N, such that for all n > Ny, there are \,, €
os(T) N B(po, §). Choose ny so large that

for all k.

ni = N1 and  pg, € Blug,e —8).
Then [fin, — An,| <€, contradicting the inequality in (1).

In the case when # is a C*-algebra, several strong continuity properties
hold for o%(-) when the elements involved are selfadjoint. We prove these
properties now.

For E and F nonempty subsets of C, let §(F, F) = max(dy,ds) where
dy = sup{d(\, F') : A € E} and dp = sup{d(y, B} : u € F}.
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THEOREM 11. Assume & is a closed x-subalgebra of B(H), H o Hilbert
space. Assume T =T" € g and W = W* € #. Then

5(ce(T), 05(T +W)) < [|W||s-

Proof. Assume d(A, 02(T)) > |W| 2, and set R(A) = (A -T)"' € &.
The spectrum of R()\) in the C*-algebra & is {(A—u)"*: 1 € oa(T)}U{0}
when T & B, and this set without {0} when T &€ 2. As R(}) is a normal
element of the C*-algebra %, we have

IR(N) || = sup{{A - u| ™ s p € 0@(T)} = (A, 0(T)) ™
Therefore 1 > [|R{A)] @] W| %, and so, I — R(A\)W is invertible in %. Then
I - R(AW = RA)[A— (T +W)], and thus, A — (I' + W) has a left inverse
in 4. By a similar argument it also has a right inverse in . This proves

Aeog(T+W)=dAoa(T)) <|W|as.
Now applying this implication with 17"+ W in place of T and ~W in place
of W, we have
A€ omnp(T) = dhoa(T+W)) < ||W|ae.
This proves §(oz(T),ca(T + W)) < |W] 2.
‘We need the following note.
Note. Let H be a Hilbert space, and assume that 99 is a closed

x-gubalgebra of B(H). For T' € &g, oz(T) = o(T) (the spectrum of T
as an operator).

Proof. It is clear that ¢(T") C c@(T). We now prove the reverse inclu-
sion. Fix A € resg(7"). Assume p & o(T), u # Ag- By direct computation,
M) (o=@ =(o-D ™ =a=p)+ o= k-1
Thus, (Ag — p}™* & o((Ao — T)71). Since (\g — T)7* € %, as is well known,
o((ho—T)"1) = og({Ag —T)"). Therefore (\g—p)~" € resa( Ao —=T)~1).
Then it follows from (1) that (u - T)~! € 2.

The proof of the next theorem is a paraphrase of the proof of [K, Theo-
rem 1.14, p. 431].

THEOREM 12. Assume # is o closed %-subalgebra of B(H). Assume
(T} C oy, Tx = Ty, foralln, T, » T = T* (GS). If Ao € 02(T)
and U is an open set with Ay € U, then there exists N such that

n> N =og(T,)NU is nonempty.

Proof Since T%, and T are selfadjoint, it follows from the Note that
oa(T,) C R and og(T) CR. Fix § > 0 such that {p: |0 —pl £ 36} € U.
Now by Proposition 3,

(Ao +6) = Tu)™! =

(Ao +i6) — T)"Y|@ — O.
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Since these inverses are normal elements of the C*-algebra 2,
(Ao +148) = T) || = sup{{Ag + 6 — p| " 1 n € oa(T)} = 671
Therefore there exists N such that for n > N,
(Ao +i6) — To) " Yz = sup{| (Mo +i8) — p| ™" p € oa(T0)} > (26)°

Thus, there exists p, € ca(Ty) with [(Ao +i8) — pin| £ 28 for n > N. This
implies |Ap — pin| < 36 forn > N.

[B1] and [B2] contain a number of examples of interesting algebras of
bounded operators where the theory of affiliated operators has been investi-
gated. Now we look briefly at the interpretation of GS-convergence relative
to one of these.

ExaMmpPLE [ {GS-convergence relative to a Jorgens algebra)., Let X and
Y be Banach spaces on which there is defined a bounded nondegenerate
bilinear form {z,y), z € X, y € Y. Let & be the algebra of all T € B(X)
such that there exists TT & B(Y) with

(Tz,y) = (z,Ty) (z€X, yeY).

Then £ is a Banach algebra of operators with norm |[T|lz = max(||T|,
|ZT|]) (where the norms on the right are the usual operator norms). % is
called a Jérgens algebra. Jorgens algebras are useful in the study of linear
integral operators; see [J] and {KR]. Closed operators with domain in X
which are affiliated with 28 are studied in [B1]. Assume T is such an operator,
and D(T) € X has the property {y € ¥ : {z,y) = 0forallz € D(T)} = {0}.
As shown in [B1], there exists a closed operator T with D(T") C V" having
the property

{Tz,y) =z, T'y) (z € D(T), y € D(TT)).

By [B1, Theorem 14], A € resg(T) if and only if (A —T)~! € B(X) and
(A—TT)~Y € B(Y). Now it is easy to see that if {7} C @, T € g, then
T, — T (GS) if and only 1f there exists NV such that A € resg (T) Nresg(1y)
forn > N, and JA=To) "t =(A=T)7Y| — 0and [|[(A-T5) " — (A—~TH™Y
-+ 0ag N <n — oo When T, — T (GS) relative to &, then all of the
results in this section apply to the spectral theory of T relative to 42.

3. Generalized convergence in LMC-algebras. Let & be a complex
algebra with identity such that the topology of &7 is determined by a set
{ps : § € D, where (D, =) is a directed set} of algebra seminorms with
the property § < v = ps < py. Assume & is complete in the sense that a
sequence {@,} € 2 which is Cauchy in all of the seminorms, ps, § € D,
converges to some a € 2. Also, we assume that if a € @ and ps(a) = 0 for
all § € D, then a = 0.
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Convergence of a sequence {a,} C & to a € &, which we denote by
an ~— (&), is often too weak a notion of convergence to be useful in
problems involving spectral analysis relative to o7. Let Inv(#) be the group
of invertible elements of &, and for a € & let o{a) ={A € C: (A~a) &
Inv{e’)}. Again, these algebraic notions are often not very useful from the
point of view of analysis relative to &/. Now assume that (&, || - ||») is a
Banach algebra with & a subalgebra of & such that

ps(b) < ||blles forall§ € D and all b € .

We make the standing assumption that the identity of & is in . In many
examples the Banach algebra # and the corresponding notions,

Invg(#) ={ac & :aclnv(e) and ™! € H},
cala) ={AeC:A~aglnvg(s)},
resg{a) = C\ og(a),

are useful in problems involving analysis. One interesting type of convergence
associated with & is the following:

an — a (#) if ap, — a € & for all n sufficiently large and ||a, — al|l# — 0.

We call this type of convergence of a sequence &-convergence.
‘We give two exarmples to further illustrate these ideas.

ExampLE II. Let & be as above, and in addition, assume &7 has an
involution * and ps(a*a) = ps(a)® for all a € &, § € D. Following Inoue [I],
we call such an algebra a locally C*-algebro. We assume in this case that the
Banach algebra % is a C*-algebra. A particular example we refer to often
in this section is the following. Let {2 be a locally compact Hausdorff space,
and let C'(£2) be the algebra of all complex-valued continuous functions on
{2. Let D be the set of all nonempty compact subsets of {2 directed by
inclusion. For § € D, f € C(2), let

ps(f) = sup{|f(w)| : w € &}

Let & be BC(£2), the algebra of all bounded continuous functions on 12, and
[ fllas = sup{|f(w)| : w € 2}, Clearly, Invg(C(§2)) = {f € C(2) : |f(w)]| is
bounded away from zero on {2}, and og(f) is the closure of the range of f.
Also, fn — f (%) exactly when f, — f uniformly on £2.

Locally C'*-algebras have been extensively studied; see for example [A],
(1, [F]. {S].

Exampre III. Let &7 be the algebra of all infinite complex lower tri-
angular matrices. Thus a matrix T = {tjr}s>1, 421 i8in & when ¢, =0
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whenever k > 7. Forn > 1 and T € &, let

Po(T) = max (Z t34]).

Let & be the algebra of ali bounded linear operators on the Banach space
co; see [TL, Theorem 6.3, p. 221]. In general a matrix T determines a
closed operator T on ¢ by defining D(T) = {{ar} € o : T({ar}) € e},
and T({ar)) = {S0_; tinar}i>1- In this case, Invs() is 111@ set of those
T € & such that T has a bounded inverse on ¢g, and for T' € &, ou(T") is
the usual spectrum of the closed operator T. A sequence T, — T (%) when
T — T, determines a bounded operator on ¢g for all n sufficiently large and
the operator norm of T' — T}, goes to zero.

In order to apply the previous results on (G3)-convergence to the al-
gebra &/, we define some natural closed operators determined by elements
a€ .

DEFINITION 13. For a € o, define D(L,) = {b € # : ab € &},
Ly(b) = ab for b € D(Lg); D(R)—{be,% ba € #}; R,(b) = ba for
be D(R,).

Note that b — Ly is an isometric algebra isomorphism of 4 onto the
closed subalgebra {L; : b € #} of B(%). We again denote this subalgebra
of operators by 8. Similarly, {Ry : b € %} can be completely identified
with 4.

Now we prove a basic result concerning the operators L, and R,.

THEOREM 14. (1) For all a € &, L, and R, are closed operators on .

(2) If A € resg(L,) Nresg(R,), then X € resz(a).

(3) If resgg(a) is nonempty, then resgla) = resg(L,) = resg(R,).

Proof. First we show that L, is closed; the proof that R, is closed is
similar. Assume {b,} C D(L,) and b,¢ € & with

by = bllae = 0 and ||L,(by) — ¢[|s — 0.

By definition {ab,} C &,
seminorm ps, 6 € D,

n — ¢|la — 0. Therefore for every

pe(oby, — ab) — 0 and  pglab, — c) — 0.

This implies ab = ¢. Thus b € D(L,) and L,(b) = ¢.

Now assume A € resg(L,) Nresg(R,). Then there are ¢,d € # such
that L, is the inverse of the closed operator A — L, and Ry is the inverse of
A— R,;. Since 1 € &, we have

L= (A—-Ly)L(1) = (A—a)g
Therefore A € resg(a).

1= (A= Rg)Ra(1) = d(\ — a).
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Assume A € resg(a), so (A —a)™t € B. Set c= (A — a)™*. Clearly,
Le(A—~ L)Wy =e(A—a)b=b (be D(L,)).
Also,
L) =cb e D(Ly), and (A—Lo)L.(8)= (A—a)cb=b (be B).

Thug L, is an inverse in & for A — L,. Similarly, R, is an inverse in % for
A~ R,. This proves resg(a) C resg(L,) Nresz(R,).

Conversely, assume A € resg( L, ). Then there exists ¢ € & such that L,
i the inverse of the operator A - Ly, This implies

= (A= La)Le(1) = (A — a)e.
Fix Ay € resg(a), and set d = (Mg —a)™! € #. Now d € D(L,), and
therefore,

(A —a)d = Lo() — Lo)d = d.
Multiplying this equality on the right by A¢ — a, we have ¢(A —a) = 1. Thus,
A € resg(a). This proves resg(a) = resg(L,). The proof that resg(a) =
resg({Ry) is similar. :

DermNiTION 15, Let & be a LMGC-algebra with topology defined by
{ps : § € D}. Assume that & is a Banach algebra, 42 is a subalgebra of &7,
and for all § € D, ps{(b) < ||bl|a for all b € Z. A sequence {a,} C &
converges to @ € & in the generalized sense (relative to 98) if there exist
Ao € resgz(a) and N such that Ay € resg{an) for n > N, and

1o — an)™" =

THEOREM 16. Assume {a,} C &, a € &. Then a, — a (GS) is equiv-
alent to:

()\O—a)“lli_g@ao as N < n — oco.

(i) resg(La) Nresg(R,) is nonempty; and
(i) Lq, — Lo (GS); and
(lii) Ra, — Ra (GS).

Proof. Assume a, — a (GS). Fix X € resg(a) and N such that A €
resgg(ag) for n 2 N, and |[(A—an)™ P = (A —a) g = 0as N <n - co.
Set ¢n = (A —an)"™', n > N, and ¢ = (A —a)~!. By Theorem 14(3},
A€ resg(L, YNresg(R,, ) and A € resg(L,)Nresg(R,). Clearly, forn > N,
[~ Loy = (A= L)@ = len ~ cla — 0. Similaaly, (A — Ba, )~ -
(A~ Ry)~|l@ — 0. This proves that (i), (ii), and (iii) hold.

Conversely, assume (i), (ii), and (iii) are true. Choose A € resg(L,) N
resg(R,). Applying Proposition 3, we see that there exists IV such that for
n> N, \€resg(Ly,, ) Nresg(R,, ) and (A — Ly ) b= (A= L) M|z —0
and [[(A—~ Ry, )"t — (A= Ry)"||l@ — 0 as V < n — oo, By Theorem 14(2),
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A € resg(an) for n > N, Let ¢, = (A - an) tforn> Nande=(A—-a)™l.
Then
lew — el = (A= Lap) ™t~ (A= L) Mg —0 as N <Sn- o0
This proves a,, ~ a (GS).
When restated in the terminology of LMC-algebras, all of the results

in §2 hold in this context. The restatement is usuaily straightforward. For
illustrative purposes, we restate two results.

RESTATEMENT OF THEOREM 6 (for the case of an LMC-algebra &), As-
sume an, — a (GS). Let I' be a compact subset of C with I' G resg(a).

(1) There exists N such that for alln 2 N, I'C res,rg(_a,n)_
(2) Let N be as in (1). Then ||(A—an) ™t — (A —a)" e — 0 as N <
n— oo uniformly in A €I

Now agsume that o is a locally C*-algebra. We always assume in this
situation that # is a C*-algebra. Theorems 11 and 12 from §2 have restate-
ments in this context.

RESTATEMENT OF THEOREM 11 (for the case where & is a locally C*-
algebra and & is a C*-algebra). Assume t = * € & and w = w* € #.
Then

§(oa(t), om(t+w)) < |wla

There are two approaches to proving the modified results for LMC-
algebras (such as the restatements given above), First, one can apply the
propositions from §2 to the closed operators L, and R,, and use Theorems 14
and 16. Secondly, one can modify the proofs given in §2 directly, replacing
statements such as 7, — T (GS) by a, — a (GS), og(T) by oczla), etc.
Either approach works.

Turning to analysis in ap LMC-algebra & relative to a Banach subalge-
bra &, for {a,} C & and o € &, there are three notions of convergence of
{an} to a:

an =0 () an—a(B); an— a (GS).
Now we compare these concepts of convergence, and give some examples.

Assume a,, — a (G8). Fix Ay € resg(a) such that Ag—ay, are in Invg(e)
for all n and [{(Ao = an)™ ~ (Ag = @) *|@ — 0. For each § & D it foliows
that pg((Ag = arn)~" — (Ag — @)71) — 0. Fix § and choose N such that for
nz=N,

ps{(d0 = an) ™" = (Mo — a) M )ps(do — a) < 1/2.
Following the computation in [BD, Lemma 5, p. 11], we have for n > N,

pslan — a) = ps((ho ~ an) ~ (Ao ~a)) < 2ps((Ao = a)™! = (Ao = &) 7).
Thus ps(an, —a) — 0 for each § € D, 80 anp, — a (&): '
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The argument above shows that a, — a (GS) = a, — a (&). It is easy
to find examples where the converse fails. Let & = CO(R), 2 = BC(R). Let
f be the zero function. Choose any sequence {f.} € & with f.(z) =0 for
all z & [n,n+ 1] and such that 1 is in the range of f, for all n. Clearly f, —
f(&)and 1¢ og(f). But 1 - f, ¢ Inv{e) for any n, so by Proposition 3,
fn = f (GS).

Turning to %-convergence, assume an, — o(%#) and og(a) # C. Fix
Ao € resg(a). Then (Ao — an) — (Mg — a) (%), and by Proposition 2, there
exists N such that

n>N= (A —ay) ' €Invg(e)
and as n > N, n — oo,
(Ao ~an)™" = (Ao —a) 7@ — 0.

Thus in the case when ogla) # C, a, — @ (GS). This proves that, in general,
convergence (%) is stronger than convergence (G8). There is an exceptional
case which we now illustrate with an example. Let & = C({2), & = BC({2)
where £2 = C\ {0}, and let f(2) = z for z € £2. Define fn, € C({2) by

|z if |z| > n71,
fulz) = {z|z|‘1fn"l if 0 < |zl €n~t

Tt is easy to see that f — f, € BC(2) and fo, — f (#). But f, = f (GS)

gince cz(f) =C.

Now assume b € & and a, — b (GS). By definition there exists Ap €
resg(b) such that ||(Ag ~ an)™ — (Ao — B)™*|@ — 0. Since (A —b)™' €
Inv (&), it follows from Proposition 2 that (Ag — ax )™ > € Inva(«?) for all
n sufficiently large. Therefore a, € & for all large n and |la, — b|lg — O.

The restatements of both Proposition 4(4) and Theorem 5 involve situa-
tions where a, — a (GS), b € &, and a,+b — a+b (GS). Now we note that
even in the best of circumstances it may be true that a, - a (GS), b € &,
but ay +b - a -+ b (GS). Consider the following example. Let 2 = C\ {0}.
We work in the commutative locally C*-algebra C(f2). Let B = BC(£2),
Define f and b in C(£2) by

E: if |2| 2 1,
fz) = {z/z iF0< 2l <1,
Then b € &, and

2(1—|z|7Y) if L
f(z)+b(z)={0( A ifOZ|<>}z|S.1.

Let u € C\ {0} be arbitrary, and let r = {u| > 0. Let 2o = (r + 1)r~'u, and
note that |zp| = {r -+ L)r~Yr =7 -+ 1 > 1. Then

Flao) +b(zo) = zo(L = 2o ™) = (r+ 1 'l = (r + 1)) = g,

b(z) = —z/lz| forze .



102 B. A. Barnes

Tt follows that oz(f +b) = C. For each n 2 1, let

nzlz|™t if |2) > n,
fulz) =< z if 1< [z £,
Zz|7t HO< g €1

E

It is easily verified that £, f! € BC(£2) for all n, and [|f' — f~¥]|4
— 0 as n -+ oo. Therefore f, — f (GS). But fy, ~ b - f-+ b (GS) as
oa(f+b)=C.

The restatement of Theorem 9 asserts the local upper semicontinuity of
ca() when a, — o (GS). It is casy to see that «/-convergence is too weak to
imply local upper semicontinuity. For example, let & = (/(C), I3 = BC(C),
and set f,(z) =n"tzfor n > 1, f(z) =0. Then f,, — f (&), but ow(f) =
{0} and og(f.) = C, n 2 1. Also, GS-convergence does not iwmply upper
semicontinuity. For example, let @ = C([1,00)), & = BC([1,00)), and set
folz) = (1 +in~YHz for n > 1, f(z) = 2. Then f, — f (GS). Let

U={zeC:d(z[l,00)) < 1/2},

and note that og(f) = [1,00) € U. For each n, n+1i = fi.(n) € on(fs) but
n+igU.
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