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A lifting theorem for locally convex subspaces of Lj
by

R. G. FABER (Urbana, IIL.)

Abstract. We prove that for every closed locally convex subspace E of Ly and for
any continuous linear operator T from Lg to Ly /B there is a continuous linear operator
S from Lo to Ly such that T = Q8§ where @ is the quotient map from Lg to Lo/E.

0. Introduction. Let E be a subspace of Ly = L0, 1], the space of
all measurable functions from [0, 1] to R. Let T be an operator from L to
Lo/E. What conditions on E ensure that we can find an operator & that
makes the following diagram cormmmute?

Lo
A
g, l@
- T
LQ—->LU/E

A. Pelczyriski was the first to ask if locally convex subspaces E have this
property. If E is locally bounded then we can find such an operator (Kalton—
Peck [2]). Peck-Starbird [6] showed that this is also true when E is isomor-
phic to w, the space of all real sequences. The goal of the present paper is to
show that if E is locally convex then we can complete the previous diagram.

We will state some notation. We will let u represent the standard Leb-
csgue measure. We also define the map f — || filp (Lo — R) as

_ [ =)
”fHO_bf Wfim-

This map is an F-norm on Ly, that is,

() || £llo > 0 for f #0,
(1) lefllo < 1| £lo for |a] <1 and f € Ly,
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(ii}) limg o || fllo = 0 for f € Lo,
) If + gllo < [Ifllo + ligllo for f,g € Lo.

The map also induces a metric on Ly. The topology induced by the Ly
metric is just the topology of convergence in measure. For f € Lg we define
ag:Lg—[0,1] by

a(f) =sup nfllo = Hm [nflo-

W-EN fL—+00
By the dominated convergence theorem we can see that o(f) = u(supp f),
where supp f = {z : |f(z)! > 0}. The F-norm on the quotient space Ly/F
is defined in the usual way:

I7lzo/5 = inf |[fllo  for ally € Ly/E.

fev
For a subset A of [0,1] we will let Ly(A) mean the subspace of Ly consisting
of all functions supported on A. We define

1 fllzotay = I1F - xallo,
where x4 is the characteristic function of A.

1. Preliminary lemmas. We have a lifting theorem for locally bounded
subspaces (see Theorem 3.6 of [2]) and we will see that locally convex sub-
spaces are in some sense almost locally bounded. The lemmas that follow
show us that the “unbounded part” of a locally convex subspace is arbi-
trarily small. Lemma 1.2 is at the heart of this argument. However, we first
need a lemma from Paley and Zygmund [5].

LemMMA 1.1. Let o > 8 > 0. If f € Ly[0,1] such that folf > o and

fllz=1 then
pt: f(£) > B) = (e - B)%

Proof We have

1 1
o< [f= [i+ [F<[FIyem=B
0 {rz8} {f<A} o
< Ifll2 - Mypemilla+ 8 (Schwarz Inequality)
= y/p(t: fE) 2 B) + 8.
Sop(t: ft) 28) 2 (a~p)" =
Notice that Rademacher functions do not appear in the statement of
the next lemma but they play a key role in the proof. Recall that all the
Rademacher functions act on [0,1] and have values in the two-point set

{—1,1}. The first Rademacher function, ry, is 1 everywhere. The second,
rz, is 1 on [0,1/2) and ~1 on [1/2,1]; rg is 1 on [0,1/4) and [1/2, 3/4) but
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—1on [1/4,1/2) and [3/4, 1]; and so on. For convenience we will say that a
sequence of functions (f;)$2, is 6-tapering if ||2¢ - fillo < 6 for all ¢ > 1.

LEMMA 1.2. Let E be a locally conver subspace of Ly. For everyeg > 0
there is a § > 0 such that if (f;)52, C E is §-tapering then

(U{x fi@)>1}) <=
Moreover, & can be chosen to be any positive number such that the closed
convex hull of {f € E : ||fllo < &} is contained in {f € Lo : |||l < €/80}.
Proof. Consider the following function ou [0, 1}:

gt) = ‘(i“?)_l/zi

where ay,...,any € R and r1,...,7y are the first N Rademacher functions.
Then from Khinchin’s inequality we have
12 1 £\12 1
) () =3

Jom ()™ [ oen] 2 (2 )

Since the Rademacher functions are orthonormal over [0, 1] we have

> (i) -2 (i) -

=19 2 p=1 (Ej—laz')l/z

1/2and g =1/4:

(e () gl 25) 2 (G-1) =5

Ig]l3 =

‘We are now ready to use Lemma 1.1 with @ =

i=1
Therefore,
N N
1 2\ 1/2 1
(%) y(t:’Zakrk(t)lzg(Zaﬁ) ) Zﬁ
k=1 F=1
for a1,...,ay ¢ R.

Let & > 0 be given. Since E is locally convex there is a § > 0 such that
the closed convex hull of {f € E : {{f|lo £ 6} is contained in {f € Lo :
| fllo < &/80}. Suppose (f;)2, C F is §-tapering. Then for every N > 0 we
have

dt (local convexity)

E:gnﬁfﬁ z)
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_ R n@ )]
Gf of L+ [0, milt) filz)|

11 N
_ 12 i fila)ra (1)
of f L+ [0, file)ra(s)]

dx di

didz  (Tonelli)

dz  (by (x))

So

oy M

4]

— dw_<_1680
1+ % \/ zi:l fi(z)?

for all N > 1. Therefore u(z : (T8 | £i(z)2)Y2 > 1) < ¢ for all N. Indeed,
suppose not; then

11 N e
f 1 Z::jvfz(m) iz > s( 1/4 ) _
0 L3/ 30iss filz)? '

This. is a contradiction. Thus u(z : Eiil fi@)P > 1) <eforall N > 1.
Letting NV go to infinity we get plz: 32 filz)? > 1) <e. Finally, since

U{m Hfi(z) > 1} ¢ {m : ifi(ﬂﬁ)g N 1}
E=1 f=]

we can conclude thag

M(G{:r N fi(z)] > l}) <e m

fus]

1XLENL A hal Col 14&1]15 L. e

LEMMA 1.3. Let E be a locally convex subspace of Ly, Lete > 0 and find
f > 0 so that the closed convez hull of {f € & | fllo < 8} is contained in
F€Lo:|fllo <e/80}. Then for any cor " (k2
= . y countable collects JHee e
E of 8-tapering sequences we have on (U )T:l)k:l -
0 00 oo

W UNUE: 117615 1) <.

Rzl [==] fa=g
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Proof. We will start by considering the first n sequences. Let N| <
eo. < N1, Then

IIWN DN -1 NnA iy 0o
GO U o (s U R

is another é-tapering sequence. So for all N,,_; we have

Ny Ng
ezu(Uta: 1@ > 100 U e 17@1> 10U

i Nyl

Nn-1 o0
0 U el e U e 5@ 1)
i=Ny..p+1 e Ny g -1
Ny Na

2 u(Ufe: 1) > 1) 0 U eli%e@i> 0.

Ne—1 oo oo
TNy {m:|f§“—1)(m)|>1}uﬂU{m;|f§“J(m)|>1}).
i=Np—g-1 I=1i=l

Let N,_1 go to infinity to obtain

Ny Na
p(U{m; @ > U | e P> 13U

i=1 i=Ny A1

U U e no e 1@ > 1) <.

t=Np—g+1 l=1 4e=i
Repeat this step n — 2 times to get

W(UNUts: 11901 > 1) <e

k=1 =1 i=1]
Let n go to infinity to get the desired conclusion,

(U AUE 121> 1) <o n

=1 =1 i=l
In the proof of Lemma 1.4 we use the fact that the space of all Lebesgue
meagurable subsets of [0, 1] is a complete separable metric space. The dis-
tance definition is '
d(4, B) = u(AsB),
where AA B stands for the symmetric difference {A\ B)U(B\ A). We consider
A and B to be identical if p(AAB) =0. '

LEMMA 1.4. Let F be a locally conves subspace of Lo. Let € > 0 and find
§ > 0 such that the closed convex hull of {f € E : ||f|lo < 8} is contained in
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{f € Lo : || fllo < &/80}. Then there is a measurable sel A, p(A) < e, such
that if (f;)2, C F is any é-lapering sequence then

s(NUte: 156 > 131 4) =o.
I1=1i=l
Proof. Let (f}'“)g’:;l, t € T, be the collection of all sequences in F such

that {|2° . f}t) llo < & for all . T could be an uncountable index set. For each
t € I define

oo o0
A= (VUL 152> 1),
I=11i=l
(At):er is a subspace of the separable metric space consisting of all Lebesgue

measurable subsets of [0, 1]. So (Ay)ver is separable. Let (4;,)%2, be a count-
able dense subset. Let
A=A,
j=1

By Lemma 1.3, u(A) <e. Let 7> 0 and t € T be given. There is a j such
that p(As; AA:) < 7 since (4y)%2, is dense in (4;)ier. Further,

p(A\ A) < p(A\ Ay) < plArddy) <.
Since 7 > 0 is arbitrary, u(4;\ A) =0forallte 7. w

We are now ready to prove the main theorem. The proof for locally
bounded spaces in Kalton—Peck-Roberts {3] was the inspiration for this
proof. However, the proofs are quite different in places.

2. The lifting theorem

THEOREM 2.1. Let E be a closed locally convez subspace of Lo[0,1]. Let
T: Lo[0,1] — Lg[0,1]/E be a continuous linear operator. Then there is a
unique condinuous linear operator § : Lg[0,1] — Lo[0,1] so that T = @8,
where Q@ : Lo[0,1] — Lo[0, 1]/ E is the quotient map:

Lo
. A
b/ lQ
7
Lo——é—LQ/E

Proof Foreachn = 1,2,... find 8, > 0 so that the closed convex hull
of {f € E:||fllo € 8n} is contained in {f € Lo : || £]o < 1/(80n)}, and use
Lemma 1.4 to find a measurable set A, so that

(1) /-‘(A'n.) < 1/”:
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{ii) it (f,),?;l C FE and HT . f,;“g < §, for all i then

o VU 15> B\ 42) =0

{=1 d==l

Without loss of generality we may assume that &; = & > ..., fn — 0,
and referring to the construction we can take A; D Ay O ... Since T is
continuous, for each &, we can find &, > 050 that || fllo S en = |Tf]re/e S
8n /6. Without loss of generality we may also assume that g1 > &2 = ... For
each m and k=1,...,2™ define

k-1 k
AZL:[ om ’Z—m)

fork=1,....,2"% and m=1,2,...

Define
Xp = Xam
Let v € Lg be given. Define S(0) = 0. So we will assume v # 0. For
the next few pages we will work to define S(v). Define wi’ = v - Xy’ for
E=1,...,2" and m = 1,2,,.. For the time being we will consider m
and k to be fixed and look at w{™. Let my be the smallest integer so that
1/2™ < g, and assume m > mg. Let n(m) be the largest integer 80 tk}at
Enim) = 1 f2™. Since T is continuous we know that m{m) goes to infinity
as m goes to infinity unless T is identically O. For each 1 = 1,2,... we can
select g; € Lo so that Qg; = Twi® and

. 1 i m
14" - gillo < (1 + ﬂ) 4" - Twilno/E-

Tfu = 0 then g; = 0 for all i = 1,2, ... Note that ||4" - wi*lo < 1/2™ < &n(m)
for all ¢ = 1,2,... So ||4" - TwP|lo < bn(m)/6 for all i = 1,2,... Therefore
o(Tw) < bngmy/6. For j =i 21,

44 (g: — gi)llo < 114* - gillo + 114" - g3llo

1 1 m
<(2+2i+2j) o wk:)—-

b (m)

< 6n(m)'

Let fz - Qi(gi _ gi+1)' Then Hz’i . f’iHO < 5n(m) foralli=1,2,... Therefore

/“‘( ﬁ D{-’E : 121(92 - gi+1)1 > 1} \ A'n(m)) =0,
l=11d=]
that is,
A(0U

1=1 i=l

1
{m gi — Giv1] > g} \An(m)) = 0.

=
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Let L(1} =1, and for each p=2,3,... find L(p) > L{p - 1) such that

u(D){M = git1l > 5 }\Anm)) <2

i=L{p P
Define
[+ )
B,= | {x 05— gl > = }\Anm p=1,2,...
i=L{p)

Observe that By 2 By D ..., and ,u(ﬂp 1 By) = 0. Suppose z & ﬂ -1 By
and 2 & A1,y We will bhOW that (g:(x ))1_1 converges in this case. First,
there is a p, such that z & B,,. Therefore lg: () — gig1(z)| < 1/2¢ for all
i > L(pg). Let o > 0 be given. Find M such that 2/2M < qand M > L(p,).
Suppose 7 > i > M. Then

|9:(2) ~ g;(2)] < lgi(2) ~ giya ()]
+1gi41(2) — giva (@) + .+ gi-1(z) — g;(=)|
1 1 1 2 2
£§+ﬁ++m—_l<2—%3'§“ﬁ§&
So (gi(x))2, is a Cauchy sequence in IR, For all z define
o) = {hmi-mgz»(a:), 2 & M2y By U A,
0: T e ﬂp:l Bp U An(m)
gi' is the pointwise limit of measurable functions, namely

i X(NZ, Bp)e N (Angm )
80 gy’ is measurable. Let B = (22 =1 Bp-

We now remember that £ and m were arbltrarlly chosen, so for each wi
we have defined g and Bl'fork=1,...,2"and m = mp,mg + 1,... Let

co 2™
B=JJBp.
n=]l k=1
p(B) =0 since B is the countable union of sets with zero measure. Define
27”

=, > of

It is not immediately clear that S(v) ex1sts. We turn to this question next.

CLAIM. For almost all © ¢ Anim) (M = mg) we have
gyt (z) = g%’;*i( z) + g5 ().
Proof of claim. We know that

. ((Q‘;n)i);'i1 C T(w}) converges in (Angmy)©
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((92}3—}_%[) =1 C T(pr— ) converges in (An(m+1)) 2 (An(m))ca
((gg;"'l) %2, C il’”('uu”"“"'1 ) converges in (Ap(mi1))° 2 (Angmy)®, and
o (95571 + (g5 i) 20 © T{w),
because T is additive. (The notation ((g7");)§2; simply means the sequence
H ) 2
(9:)324 that is associated with w™.) Since {|4*(g7)i[lo < (1 + 1/(24)) - [|4° -

4
T{Wwp ) zo/p <2 o(T(wy")) < 26 (m)/6 we have

[44((g) — (ghes)i ~ (o5 )il
5'”
(m+1) < 5n(m)

=73 35 T3
Therefore
(ﬂU{m )i(2) — (G5E0(@) = (Gl > 274 Angmy) = 0.
I=11=l

So for almost all 2 € (Anm))®
tim (¢7):(x) = lim ((651)i(5) + (9 )i(2).
Thus for almost all & € (Anm))©,
gy (@) = gpri(w) + ghy (),
which finishes the proof of the claim.

So the sequence

(S,

remains essentially fixed in Lo((A. n(m)) ) for v = m = myg. So the sequence
converges in Lo{lUre_; (Angm))°) = Lo[0, 1], and S(v) is well defined.
Next we show that 7' = Q5. Consider m > mg. Then

-
‘l(;ﬂg?) -S|, < n(?n)’

since the two functions are essentially identical except possibly on An(m)
and p(Ay, () < 1/n(m). For each k we can find fi* € T(w7) so that

m
L9 [ Amgmy)e = S5 Ay ye llo S 1747

‘We then have the following inequalities:

(S 5Pl ~ ()
k=1

1 1
| ,‘_{2'“-1;:2—,”1
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g™ 2m
1 1
m mll e T
Hzg""’ ka Ho‘“2m+n(m)’
k=1 k=1
= 12
— LT I G T ——
”S(U) gfk Ho - am + n(m)

Notice that 1/2™ + 1/n(m) — 0 as m — oo. The function Ezzlf;” is
an element of T(v). So we can find functions in 7(v) that are arbitrarily
close to S(v), which means that S(v) € T(v) since E is closed. That is,
QS(v) = T(v).

Next we will show that § is a continuous linear operator. If S is additive
and continuous at zero then S must also be homogeneous, and thus linear,
S0 it suffices to show that S is additive and continuous at zero.

S is additive. To see this, let u,v € Lo and let o > 0 be given. Find m
so that p(Anim)) < o (Recall that u(Apm)) < 1/n{m).) We will consider
vex, wexpr, and {(utv)-x} for an arbitrary k between 1 and 2™, From our
earlier construction we have (f;)%2, < T'(u- x7*) such that f; — S(u- x7)
on (Animy)® and

rs fz!o<( )4* T X720

and ()32, C T(v - x7*) such that g; — S{v - X7*) on {An(m))® and

i LYy
14 gulo < (1 55 )14 700 X0 e

and (h:)$2, < T({u+v) -

+') such that hy — S({u+ v) - xi*) on (Anpm)®
and

X
4'i h < 1 i m
[14° - hillo < { 1+ 52 1147 T((u + ) - XE) [ o/ -
We have fi + g; € T((u +v)

XM foralli=12,...Fori>1,
[4°(Fi + gi) — 4° - hullo < N14°- fillo + 14 gsllo + [|4° - hallo
< (3 + 3/(2%))671(111)/6 < 6'rL(vr11)-
Therefore,

(QU{ ((fi + i) = hi] > = }\A m)) = 0.
1 g

This implies that (f;+g¢;) and h; converge to the same function on (Anwm))°®-

Thusfor allk = 1,...,2™, S(u-x7)+8(w-xT) = S{{u+v)-x7) on (Anemy)".

Therefore S(u)+S( ) S(u4v) on (Angmy)® and || S(u)+ S{v) - S(u+v)io

< a. Since o > 0 was arbitrary we have S(u) + S(v) = S(u +v).
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S is continuous at zero. To see this, suppose (v;)3%; is a sequence in Lo
such that v; — 0. Let o > 0 be given. Find m so that 1/n(m) < a. Our set
Ay m) then has measure less than o, and 6,,(y,) is a positive number such that
the closed convex hull of the Bnimy-ball in E is contalned in the {@/80)-ball in
L. There also is an £,y > 0 bO that || flio € &ngm) => HTf”Lu/E < Opm) /65
and we have 1/2™ < g,,(p,). Let § > 1 be given. For each k=1,...,2™ there
is a sequence

(65320 < Tlog xT)
such that gﬁ) s Sy - x) on (Angmy)® 88 1 — oo and

, 1 .

o ol s (14 35 )44 Ty AP
Foreachi=1,2,...and k=1,...,
fix € E for all i and & and

2625 fillo = [141- 4% - (gﬁ’” — g% Do

<445 - g + 44 gl o
S’?’J(( Xk))sanm

Using the technique employed in proving Lemma 1.2 we can conclude that

am oo ( 11
(0> &) o
k=1 i=1

Let the set above be called D (so u(D) < o). Find I such that 2/21 < .
Then

2™ let fip = 2028 (gy:) gj(ﬂ ). Then

1 2 1
HS(’U.',' ) ngHLD "{m )cupu)<§§--2—k-:§f,ﬁ‘
Therefore
2111

st~ Zgu\

2 1
<N 2.«

Lol(Animy)uDe) ~ ; 21 gk "2l
and

= (k)

HS(W) ~> g1 ”0 < 3a.

k=1

This is true for any j = 1. Now

ol <25 ho 7o
k=1 P

Xe M LosEe
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Since T is continuous for each &, |47 - 4% - T(v; - X" 2o/ g0€S to zero
as j goes to infinity. Therefore the whole sum goes to zero as j goes to
infinity. So limsup, ., [[S(v;)llo < 3a. However, o > 0 was arbitrary, so
lim;_.o S{v;} = 0. That is, S is a continuous linear operator.

Suppose that S’ is another continuous linear operator from Lg to Ly
such that Q5" = T. Then Q(S ~ 8') = Q5 - QS =T —~T = 0, whence
5—8" maps Ly into the locally convex space E. We conclude that S=5". u

The proof of Theorem 2.1 works with a milder assumption on the sub-
space F. It does not have to be locally convex—the key assumption iy only
that given a neighborhood V' of 0 there is a smalier neighborhood IF so
that if », € U then Z;’Ll 27"z, s in V for all N (i.e. F is exponentially
galbed in the sense of Turpin [8]). We can generalize further by replacing
the sequence (27"} with a strictly positive term sequence {a,) such that
Y an < oo. By a classical result due to Acki [1] and Rolewicz [7] we know
that locally bounded spaces are locally p-convex for some p > 0. Also,
if I is locally p-convex then 22;1 o~/ ¢ U for all N. In this way
we can see that the generalized result includes locally bounded subspaces
of LD-

We can combine Theorem 2.1 with Kwapief’s theorem [4].

THrorREM 2.2. Let §: Ly — Ly be a linear operator. Then

S(F)(@) =3 gn() f(on(z))

for every f & Lg, where

(i) each oy, : [0,1] — [0, 1] is & non-singular measurable map,
(ii) each gy is in Lo,
(iii} for almost all © in [0,1], gn(z) # 0 for only finitely many n.

Conversely, every map defined in the above way is a linear operator from
L[) to LO.

COROLLARY 2.3. Let E be a closed locally conver subspace of Lo and Q
be the gquoticnt map. Then T is an operator from Lq to Lo/ E if and only if
T = Q8 for some S of the form in Theorem 2.2.

By following the proof of Theorem 4.1 in [2] we have the following corol-
lary.

COROLLARY 2.4. Let E and F be closed subspaces of Lg, each of which is
either locally convex or locally bounded. Then Lo/ E is isomorphic to Lo/ F
if and only if there is an isomorphism S of Ly to ttself such that S(E)=F,
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