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Some results about Beurling algebras
with applications to operator theory

by

THOMAS VILS PEDERSEN (Cambridge)

Abstract. We prove that certain maximal ideals in Beurling algebras on the unit disc
have approximate identities, and show the existence of functions with certain properties in
these maximal ideals. We then use these results to prove that if T is a bounded operator
on a Banach space X satisfyving |T™] = nﬁ) as n — oo for some § > 0, then

z H(l WL - T)=]|
=Ty Ta]
diverges for every # € X such that (1 - T)! B+l # 0.

L. Introduction. For a power bounded operator 7" on a Banach space X
it was proved in [9] that 37, ||(1—1)"z||/||(1—T)™ x| diverges for every
x € X with Tz = ». (The Hilbert space case was proved in [4].) This was
done by proving certain results about the algebra AT of analytic functions
with absolutely convergent Taylor series on the closed unit disc. When we are
studying operators which only satisfy the weaker condition ||T7|| = O(n”) as
n — oo for some J > 0, it seems natural to work with the Beurling algebras
A+ (see below) instead of A™. In Section 2 we prove that, although the

maxn”ncxl ideal M7 in AE does not have a bounded approximate identity
for 8 > 0, it does ﬁave a sequential approximate identity for 0 < 8 < 1, and
that it satisfies a similar condition for A > 1. The results of Bennett and
Gilbert ([2]) then enable us to describe the closed primary ideals in AE{. In

Section 3 we estimate the norms in A7 of the infinite products used in [4]
and [9], and in Section 4 we use the results of Sections 2 and 3 to prove the
existence of certain functions in AE, which we then use to deduce the main
result.

This paper is part of my Ph.D. dissertation. I would like to thank my
supervisor Dr G. R. Allan for his help and encouragement, the first referee
for suggestions (notably Lemma 3.1) which led to significant simplifications
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and the second referee for drawing my attention to the result mentioned in
the remark at the end of the paper.

1.1. Beurling algebras. Denote the open unit disc in C by A and the
unit circle by T. Let A(A) be the disc algebra of functions analytic in A and
continuous on A equipped with the supremum norm | f|le = sup{|f(z)| :
z€ A(f € A(A)) and let M, be the maximal ideal {f € A(A) : f{1)} = O}
For 3 > 0, define the Beurling algebra A+ as the subalgebra of A(A) of
functions whose Taylor coefficients at 0,

1 m
)?(TL) — f( )(0) — é}; f f(et't)e—i‘nt dt,

n!

n e Ng=NU{0},

satisfy
Wl = 3 17001 +7)°
n=0

It is not hard to see that Ab" with the norm || - || A is a semisimple Banach

algebra with character space A. Let M7 be the maximal ideal {f & A} :
f(1)=0}in .AE;L and denote the function z — z by . Then « generates A;‘
so M7 = (1—a)Af.

Also, for m € N, let A™(A) = {f € A(A): f,..., f™ & A(A)}. With
the norm || f|| am(ay = 2ieo 1F9) oo (for f € A™(A)), A™(A) becomes a
Banach algebra.

2. Approximate identities and the ideal structure in Beurling
algebras

2.1. Approzimate identities. Recall that a subset £ of a commutative
Banach algebra B is called an approzimate identity for B if, for every finite
set by,... by € B (n e N) and € > 0, there exists ¢ € £ such that

[bie—b;ll <& forj=1,...,n

If B has an approximate identity, then obviously B = B[, where B3 ;=
{ab : a,b & B}, If £ is bounded, then it is called a bounded approzimate
identity. It is well known that B has a bounded approximate identity if and
only if there exists a bounded subset £ of B such that, for every b € B
and e > 0, there exists ¢ € £ such that ||be — b|| < . If B has a bounded
approximate identity, then Cohen’s factorization theorem states that there
is factorization in B, i.e. that B = BI?, We say that a sequence (ep) in
B is a sequential approzimate identity for B if be, — b as n — oo for all
b € B. If the sequence (e,) is bounded, then we call it a sequential bounded
approzirnote identity.
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In this section we will be concerned with approximate identities in the
maximal ideals ME (82 0).If 8 > 1, then if is easily seen that .A"' C AN A)

and thus (M7 C {f e A7 : f(1) = f(1) = 0} G My, so .MJr does not
have an approxnnate Identlty The same is true for 0 < ﬁ <1, but we will
need the following two results to prove it.

LEMMA 2.1 Let 0 < § < 1. Then M} C (1 - a)? M.

Proof. Let n € N. Since
n|l~z|

S 1 mﬁ-gnﬁ for z € A with |L — 2| < 1/n,
— | <
(1—z)ﬁ\“ _
WSQT& fOI'ZGAWlthlJ.MZ’Z]./n
we have
a™ —1
W' <2'ﬂ for n € N.

Now let f € Mg‘ and note that f =" | OICE
o, at—1
= n)
converges in A(A) and that (1 - a)fg=f. =
LEMMA 2.2, Let 0 <t < 1. Then (1 - a)t € M"" if and only ¢f 8 < .

—~ 1), It thus follows that

Proof. It follows from the previous lemma that (1 — a)' @ MF for
£ > t. Conversely, for n € N, we have

ey ((L=o)8™(0) t1-t2—t n-1-%
(1 =a))(n) = nl Tn 12 n—1 "
Since 30 Mog((5—1)/§) € — PR L(t/§) < —tlogn it thus follows that
(1~ )V (n)] € (¢/n)exp(—tlogn) =tn )  forn e N

and the result follows, m

ProrosiTiON 2.3. For 8 > 0 the mazimal tdeal J\/t+ does not have a
bounded approzimaie identity. .

Proocf. We have already mentioned the case § > 1. Let 0 < 8 < 1 and
choose # such that 8 < ¢ < 2. By the previous lemma we have (1 —a)t €
ME, but on the other hand it follows from Lemma 2.1 that (Mg)m G

(1= a)* M;. Hence (1 — )t ¢ (Mg)m, 50 the result follows from Cohen’s
factorization theorem. w

We will soon turn our attention to unbounded approximate identities,
but first we need the following two lemmas. For 8 > 0 and m < {g], let
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In ={f € A} : f(1) = ... = fU™(1) = 0} (it is easily seen that A} C
A™{A) if and only if m < ). We will discuss ideal structures at the end of
the section and right now we will only need the following.

LEMMA 2.4, For 8 > 0 we have Iz = (1 — a)[ﬁ]HAg.

Proof. It is clear that (1 — &)lFI*! € Ii5. Conversely, let f € Iy
and choose a sequence (pn)nen of polynomials such that p, - f in A+ as
n — 0. Since the injection AE «— AW(A) is continuous we have ¥ (1 ) —
0 as n — oo for i = 0,...,[8], from which it follows that ¢, = p, -
E _0(1/3 ) ( Y a—1) — fin A+ as n - o0. Furthermore, g(J)(l) 0

for j = 0,...,[8], and as ¢, is a polynomml this implies that (1 — o)A+
divides gy and thus g € (1 - o)l AS forneN. u

The following result is well known but we include it for the sake of
completeness.

LevmMa 2.5. Let n € N and let p be a polynomial of degree at most n—1.

Then
(ot =0

Proof Form =0,...,n— 1 we have

n

> (- 1)?(3) (= 1)...(f —m+1).

j=0

Since {1, o, (e — 1),...,aa—1}...{o — (n — 2))} span the space of poly-
nomials of degree at most n — 1 the result follows. m

0=((1-a)")™ () =

For k,m € N, let

mAk+1\ 7 s (m+ k=5
gm”“”( k~1«1) ;( ko)

and note that g, x(1) = 1. Also, it is not hard to see that Hgm,[ﬂ]”Ag — 00

as m ~ o if § > 0. The proof of the following result is rather technical,
but it should be noted that it becomes much simpler when 0 < 8 < 1 (Le
when k = 0). Hence a direct and fairly simple proof of the fact that ME
has a sequential approximate identity when 0 < 8 < 1 (i.e. of Corollary 2.7)
can be obtained by letting k = 0 in the proof below,

PROPOSITION 2.6. Let 3> 0 and let k=

[8]. Then fgmuy — 0 in Aﬁ as
m— oo for f € I.
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Proof. We split the proof into three parts:

(i) (1 — @)+ gmu — 0 in A}“ as m — oo. Let m € Ny. Since

k41
P ) = 31 (T ) @i ia)

i=0 I

— min {k-+1,n
Z(m—i—k+1) b {il } (~1)! E+1N/m+k—n-+j
k41 g k

F=max {0,n—m}

((1-a)P

for n € Ny we deduce that ((1—a)** g, V" (n) =0 forn > m+k+2, and
since (™*7"*7) is a polynomial of degree k in § with n—m— 1,...,n=m—k
as zeros it follows from the previous lemma that ((1 — a)**+1g,, Y (n) =0

for k+1 < n £m-+ k. Furthermore,

. - m+k+ 1\t
(L= @) g ) (n)=( k+f_) gn(m) for0<n<k,

where g, is a polynomial of degree k and

-1
(1= )+ g (m o k4 1) = ("” tht 1) (~1)#L,
k1
Hence
k1 _(mtE+I\T
I1-q) .qm,klug—( FH (z;qn ) () (4 2)7),

so since 8 < 1+ k and since (m;ﬂ_“i"l) is a polynomial of degree k + 1 in m
it follows that (1 - a)**1g,, , — 0 in A7 as m — co.

(ii) There exists a constant cs such that Hfgm ’cH,ﬁ < Cﬁ”_f”A-;- for f e
Iy and m € Ng. Let f € I, and let m € Ny. Then

(fgm,k) (77')

(m;j.ffl)_li(m k]-c—n+j>f(j)

J=0

mAak+1\"T K mAk=nt g
( k41 ) 2 ( k )(3)

jmn-m

for n £ m,

forn>m+1.

Let 0 < n < m and write

m+k 7 4 ,
( J) Zdu, j € N,

for some constants di, I = 0,...,k. Slnce FfO) =0forl =0,... kit
follows that 322 f(f) p(7) = 0 for every polynomial p of degree at most, k.
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Hence
k + 4\ ~ L fmtk—n+\ 5.
Z(er kn J) (3)]: ( . )
j=0 '-n+1
<Zdz Z |f
j=n-+1l
k
<y a0+ it
1=0
_ m+kw;+1+n> (1+n)“ﬁ\|fi|A3-,

so it follows that

S [(Fgm ()

L+ )P < <m+1)(”"+’““)— (" g

k+1
n=0
=+ 1) 1 £1]ag-
Furthermore,
> i (Fgma) 1+ 1)
n=1m-+1

—1 o0 ™
+k—n- .
("IN (M) iRy
E+1 A
n=m+1 j=n—m
m+ k41
<
(e
For 1 < j < m we have

mg _ . k ;
D (m+kkn+3)(1+n)5§j( +;Jc

=1

Z ”i’f (m+-kk—n+j) (1+n)ﬂ\f(j)\.

j=1 n=max {m+1,5}

1)(1 +m+ j)°

< L1+ 2m)P <GP (L4 2mpbtt,

and for § > m+ 1 we have
m+J

3 (m-i-k;n-{-j)(l_'_n);a < (m-k—l)(m;_k)(zj)ﬁ.

=g
Since (mz'_:_“fl) is a polynomial of degree k + 1 in m it thus follows that
7 gm il s < 2517y

for some constant cg.
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(ili) Conclusion. Define bounded linear operators G, on I by G f =
fgm for f € Ir and m € Ny, Then G,,(1 — a)**' — 0 as m — oo by
(i) and ||Gr|| < cg for m € Ny by (ii), so it follows from Lemma 2.4 that
Gmf —0asm—ooforall fel,. n

CoROLLARY 2.7. Let 0 £ 8 < 1. Then (1 — gm.0)men 95 a sequential
approzimate identity for M"' It is bounded if and only if 3 = 0.

2.2. The ideol structure in A"' For a closed ideal I in A"‘ let h(I) =

{zc A: f(z)=0foral felI} (tho hull of I) and let @Q; be the greatest
commeon divisor of the inner factors of non-zero functions in I ({6, p. 85]).
Furthermore, Jet Ag = {f(e*) = 3°°°__ f(n)eit : w __1fm)a+
In|)? < oo} (the Beurling algebra on T) and let I# be the closed ideal in
Ag generated by I. For a closed set £ C T, let

I“L(E):{fGAE:f:DonE}.

For 0 < g7 < 1 it follows from Corollary 2.7 that A+ satisfles the “analytic
Ditkin condition” ([2]). Also, from [10, V.3.3, V.3.5] and [B, p. 230] it follows
that countable closed sets are of synthesis for Ag, so we can apply a result
of Bennett and Gilbert ({2, Theorem A]; see also [1, Proposition 7] where
Atzroon obtained slightly stronger results using a different method of proof)
to obtain the following result.

THEOREM 2.8, Let 0 < § < 1. If I is a closed ideal in Af with h(I)NT
countable, then

I'=QrAA)NIZ(R(I)NT).

Similarly, Proposition 2.6 implies that Ag satisfles the “[F]-analytic
Ditkin condition” ([2]) for 8 = 0, so we deduce the following from [2, Theo~
rem B]J. :

THEOREM 2.9. Let 8 = 0. If I is a closed ideal in AE with M(I)NT
finite, then

I=QrA(A)nI4s,

(Note that we olbviously cannot write I (h(1) N T) instead of I4#; just
take f =1 and I = I7.)

Let f € A(A) with f % 0 and let f = ByS;Fy be the factorization of f
as a product of a Blaschke product By, a singular inner function Sy and an
outer function Fy € A(A) (see e.g. [6, p. 67]). Let puy be the positive singular
meagure on T that defines Sy ([6, p. 66]). Then o(f) := max{a > 0:¢,f is
bounded on A} = py({1}). Also, for I C A(A), define p(I) = inf {o(f): f €
I, f 5 0}. We are now ready to describe the structure of the closed primary
ideals in Ag. (Recall that an ideal is called primary if it is contained in
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exactly one maximal ideal.} For # = 0 the following result was proved by
Kahane ([7]).

PropoOSITION 2.10. Let 8 > 0,N = [A] and let I be o closed primary
ideal in A} contained in the mazimal ideal My (i.e. with h(I) = {1}} and
let o = o(I). Then

(i) If a =0, then there exists 0 < n < N such that [ = I,,.
(1) If a >0, then I = I, n :=9_gA(A) N Iy.
, (iil) g’hﬂhermore, ME =1 250 2...21Iv 2 Ly 2 Ly for
>a>0.

Proof. By the previous theorem I = Q7 A(A)NI4s N AE{ and it follows
from [5, Theorem 1, p. 216] that there exists 0 < n < N such that IAs ﬂAb" =
I.. Write @1 = B;S;, where By iz a Blaschke product and Sy a singular
inner function. As A{I) = {1} we deduce that B; = 1. Let f € I and let
[ = By 57 Fy be the factorization of f. Since S does not extend continuously
to any point in supp us ([6, pp. 68-69]) it follows that f = Fy = 0 on
supp py. Also, S¢/8; is bounded so supp pr C supp gy (where gy is the
positive singular measure on T defining Sy). Hence supp py C A(I) = {1},
and since pr({1}) = inf {u;({1}) : f € I, f # 0} = a we deduce that
St =1_,. Hence

I=¢_,AA)NI,
and (i} follows immediately.

Now assume that a > 0 and let f € ¥_, A(A) NIy Forn =0,..., N,
let f" = B gny Sgem Fpiny be the factorization of f™) . From a result of
Caughran ([3]) we deduce that Sy /Sy is bounded (i.e. that ey > pg).
Since S /t—q is bounded it thus follows that 80 is Sy /1h-q. Hence 1 €
SUPD figin), SO we deduce as before that F™(1) = 0. Therefore f € g A(A)
N Iy and (ii) follows.

For (ili), note that (1 — a)™ € I, \ I ;41 forn = 0,..., N — 1 and
that (1 — a)V+' € Iy \ I, v for o > 0. Also, it follows from a result of
Hardy (see {6, p. 70] or [9, Lemma 3.3]) that AY(A) C AT (actually it
can be shown that A'(A) C A¥ if and only if v < 1/2) and from this we
deduce that AN*2(4) C AZ. Since ¢, = ~2a(1 — o)), we thus have
Yoa(lma) VB ey \Lyforb>a>0 =

COROLLARY 2.11. Let 8 > 0 and let N = [8]. Let f be an outer funciion
in M; and assume that f has no other zeros than z = 1. Let m = max {0<

n<N:fel} Then fAf = In.

3. Norms of infinite products. Let w = (wy),en, be a sequence of
strictly positive pumbers and assume that D,, := Zf;l W1 /Wy, < 00,
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With &n = wq—1/wn for n € N it follows from the proof of the second part
of [4, Théoréme 3.1] that

gu(z) =

converges uniformly on every compact subset of JT:={zeC:Rez <1}
and defines an element g, € (o (1 — )" A(A) with
G

& a-ar

We {irst prove the following.

< w, forneN.
o0

LeMMA 3.1. With the above notation, g, is an outer function.
Proof For m ¢ N, let

for =z & 1I1.

Since hy - 1 uniformly on every compact subset of A\ {1} as m — o

it follows that (Am)men is a bounded approximate identity for M; and
therefore that

My = ] hnMy.
meN
On the other hand, g/hy is an outer function with z = I as its only zero, so it
follows from the Rudin-Beurling ideal theory ([6, p. 85]) that hxM; = g My
for k € N. Hence

My = ng:
which, again by the Rudin-Beurling ideal theory, implies that g is outer. m

Let W be the set of all sequences w = (wn)nen, of strictly positive
numbers satisfying D, < oo and wy.-1 < w, for n € N. The following result
will enable us to reduce the proof of Theorem 4.1 to the case where u € W
and by restricting ourselves to sequences in W we avoid some technical
difficulties.

LEMMA 3.2, Let (vn)nen, be a sequence of strictly positive numbers with
Y o Un—1/Vn < 00. Then there evists w € W satisfying 0 < w, < v, and
W /Wntt S U Vnqa forn € Ny,

Proof Choose N & Np such that v, € vpqp for n > N. Let o =
SUP{¥n-1/Un i n=1,...,N}. If ¢ < 1, then just set w, = v, for n € Ng. If
a > 1, then set wy, =a(‘”"N)vn forn=0,...,.Nand w,, = v, forn > N+1.
Then wy—1/wn = o™ yoy/vn € min{l,vp-1/vn} forn = 1,...,N and
hence forn € N, and w, < vy, forn € Ng. ‘
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For w € W we will now prove that gy € (), (1 —a)"A™(A) for m € Ny
and obtain bounds for || gw/(1 = @)"|| 4m(a) for m,n € No.

LEMMA 3.3, Forw € W and m,n € Ny we have g&,m)/(l —a)" € A(A).
Furthermore, there exist polynomials p,, of degree m with non-negative co-
efficients such that

‘ gu}n)
(I-a)
Proof Let w € W. Note that the result holds for m = 0 and n € N;

by (1). Furthermore, an easy induction exercise shows that, for m € N, we
have

m r
-r
gM () =gu(z) Y (1—2)" >
r=1 s=1 1<i1 .. &
Jit A ja=mta—r

< o (Do) Wnsam  for w € W and m,n € N.

s ¢)

bm,'r',g; .f“uJ,j1 (z) v .fw,jg (Z)

for z € \II, where the by, - ;s are constants and where

fw.j(3)=zﬁk/(1+6k—2)j for z ¢ 4II and j € N.
k=l

Since |1+ & — z| > |1 — 2| we have |fu ;(2)] < Dy |1 — 2|77 for z € T and
4 €N, so it follows from (1) that gi™ /{1 ~ a)* € A(A) with

& <2y %

r=]s=1 1<j5;%.. <]

Jiteds
-m+s——r

G
(]_ — a)ﬂ+7"+j1+»»-+j5 oo

(o, | Dl

|bm,7‘.;_r'1 Dy Watrtmts—r

|br,ml Dgptintom  for m,n € N

as required. m

LEMMA 3.4. Forw € W and m,n € Ny we have g, /(1 — @)™ € A™(A).
Furthermore, there exist polynomials g, and 0. of degree m with non-
negative coefficients such that

for w €W and m,n € Ng.

< Om {n) Qm(Dw) 'wn+2m_

A™(A)

[
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Proof. Let w € W and m,n € Np. For r € Ny and z € 4J7 we have

(%@;)W(z) = Z (5)93 )m+1-1)(n+1-2)..

=0

(1 —z)~ (),

The previous lemma thus implies that g,,/(1 — o)™

( Gw )(r)
(11— a)n

<y ): () + 1= 0t +12) (D) gz

r=0 |

S(n+m-1)(n+m-2). (ZZ()% l )wn+zm

r=0 }=0

& A™(A) with

-A"‘( ) =0

=

[

ag required. m

4. The main results

THEOREM 4.1. Let 8 > 0 and (un)nen, be o sequence of strictly positive
numbers with 377 | tir.1/Un < 00. Then there exists g € (20 q(1 — a)”A+
auch that

() g A} = Iig
(i)

- : +
= (1 - a)[ﬁ]“Aﬁ,

< Up

g
i(l——a)” P .fornENQ.

Proof Let m = [8]+2 so that A™(A) C A7 with HfHA;; < ef| fll.ama)
for f € A™(A) for some constant >0 (see the proof of Proposition 2.10(jii)).
With g, and ¢y, as in Lemma 3.4, let vpq0m = Uy /om(n) for n € Ny and

vp=1for 0 € n<2m~—1. Note that D, < oo and let Uy = v, /{c g (D))}

for n € Np. By Lemma 3.2 there exists a sequence w € W with 0 < w,, < ¥,
for n € Ny and D, € Dy = D, and it follows from Lemma 3.4 that

‘ g.u Q'w

S Com (n) Q"m.(Dw) W d-2m, _<__.C: Qm(n) Q'm.(Du) 6'n.-i-Bm
=, forn & Ny

Finally, since gy, is outer and has no other zeros than z = 1 we deduce from

Corollary 2.11 and Lemma 2.4 that
guwAf = Iig = (1~ )1 AT,

which finighes the proof. m



50 T. V. Pedersen

By imitating the method used by Esterie and Zouakia ([4]) we obtain a
series of corollaries.

THEOREM 4.2. Let X be a Banach space and let T € B{X). Assume that

I T = O(P) as n — oo and that (1 — T)PHlg £ 0 for some § > 0 and
z € X. Then

(i) For every seguence (un)nen, of strictly positive numbers with

S0 L Un—1/Un < 00 there exists A > 0 such that

I~ 7Yzl > Zf\"’ forn € No,

T

(i) The series
Z i@ =Ty
< (1~ T)"“ |
is divergent.

Proof. Define ¢ : A+—+ (X)

2]

AN =3 F,  fedr

Then ¢ is a continuous homomorphism (with || = sup,en |T™|/(1 +n)?)
and o{a) = T. Let the sequence (un)nen, be given and let g be as in
Theorem 4.1. Then

(gl < H‘”((:L_—Q&T)I (1 - o)l

< hollun (1 —T)"z| for n € Ng.

Since (1 — )it gA+ and since 0 # (1 — T)1+1g = ({1 ~ a)l@)z it
follows that @(g)z # 0. Thls proves (i) with A = {j¢(g)2]|/||l¢ll. The proof of
(ii) is now the same as that of {4, Théor&éme 4.1.2°]. m

Remark. Theorem 4.2 is in some sense the best possible result as the
following example shows. Let 3 > 0 and m = [8]. Let A = Ag /Ig and let
a s M, : A — B(A) be the isometric embedding defined by M b = ab for
a,b € A With T = M1, we have |[T7|| = [[o" + 5|l 7 < o™ 4z = O(n)
as n - oo and (1 — T)™ # 0, whereas (1 — T)™"! = 0. To obtain a

visually more appealing example, note that the continuous homomorphism
w: A™(A) ~» M;,1+1(C) given by
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O 510 0 &)
0 F) ) L R

e(fy=1 0 0 O R
o o0 0 .. F1)

induces an injective continuous homomorphism & : A — M +1(C). Hence,
with

1106 ... 00

011 0 0

_ 0 0 1 0 0
S=glat+l)=pl)=|. . . . . |
o090 ... 11

0060 ... 01

we have [|S™|| = O(n™) = O(n”) as n — oo and (1 — §)™ 3 0, whereas
(1= 8)ym+t =,

The proof of Theorem 4.2 carries over almost directly to yield the fol-
lowing,

COROLLARY 4.3. Let B be a unital Banach algebra. Let b € B and assume
that [|b°|| = O(n®) as n — oo and that (1 — HIFHL =L 0 for some 8 > 0.
Then

(i) For every sequence (un)nen, of strictly positive numbers satisfying
Yoraag Un—1/Un < 00 there exists A > 0 such that

(2~ &)z > A for n € Np.
Un,

(ii) The series

@ —o)tef
2_.: I(1 = B)e-ia]

is divergent.

Remark. After the submission of this paper it was pointed out to us
that Esterle and Zarrabi in a recent preprint Local properties of powers of
operators have given a short proof of a result which is slightly stronger than
our Theorem 4.2(ii). However, their result does not imply Theorem 4.2(i)
and our method of proof, using the existence of certain functions in Beurling
algebras, seems to be of independent interest.
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Analyticity of transition semigroups
and closability of bilinear forms in Hilbert spaces

by

MARCO FUHRMAN (Milano)

Abstract. We consider a semigroup acting on real-valued functions defined in a
Hilbert space M, arising ag a transition semigroup of a given stochastic process in H.
We find sufficient conditions for analyticity of the semigroup in the L®{1) space, where
# 18 a gaussian measure in H, intrinsically related to the process. We show that the in-
finitesimal generator of the semigroup is associated with a bilinear closed coercive form
in £2(1). A closability criterion for such forms is presented. Examples are also given.

L. Introduction. Let H be a real Hilbert space with scalar product {, ).
Let £(H) be the algebra of all bounded, everywhere defined, linear operators
in H. We denote the norm in H and in £(H) by the same symbol || ||. Let
By (H) be the set of all bounded Borel measurable functions f : H — R.
Let A be the infinitesimal generator of a strongly continuous semigroup e*4,
t > 0, of linear operators in H. Assurne R € £(H) is a nonnegative operator
in H,ie R=R">0 and assume that J; given by the formula

¢
Qi = f e Re®4" ds
0
Is a trace class operator (here and in the following, operator-valued integrals
converge in the strong operator topology). Then one can define the transttion
sEMIgroup

(1) (P9)(@) = [ o) N(e"2,Qu)(dy), & € By(H),
H

where N(e*4z, Q) is the gaussian measure in H with mean value e*4z and
covariance operator @y. In this paper we will study regularity properties
of Pt.

A motivation for studying P; is its well known probabilistic interpretation
which we now sketch. Consider the stochastic differential equation in H:
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