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Two-weight mixed #-inequalities
for the one-sided maximal function

by

QINSHENG LAI (Leeds)

Abstract. Suppose u, v, w, and ¢ are weight functions on an appropriate measure
space (X, u), and @1, B3 are Young functions satisfying a certain relationship. Let T denote
an operator to be specified below. The main purpose of this paper is to characterize

(i) the strong type mixed $-inequality
o' ([ eampopdp) <o’ ([ ),
X X
(ii) the weak type mixed ®-inequality

qs;i( i d—"g(x\w}tdu)ﬁéfl( [ et )
(17>} X

and
(iii) the extra-weak type mixed d-inequality

o€ X5 7105} > Mlua 5 8297 ([ &1 (S22 )ua),
X

when T is the one-sided maximal function M;; as well to characterize (iii) for the
Fefferman-Stein type fractional maximal operator and the Hardy-type operator.

1. Introduaction. Let g be alocally integrable and positive function on
the real line R, The one-sided maximal function M ; is defined by

z+h

(1) My f(z) = sup o f F@)loty) dy,

where f € Lyjye and g(z, z+h) = f:+h' g(y) dy. Symmetrically, we can define
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Key words and phroses: Young function, one-sided maximal function, Feffermaantem

type fractional operator, Hardy-type operator, ﬁﬁsy'r E’»i:‘
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2 M) =

f | f(w)laly) dy.

Recently, much work has been done in order to characterize the weight
norm inequalities for these two operators (see [14]-[17], [20]). Their main
results are the two-weight strong type (p, p) inequalities (1 < p < oo} and
weak type (p,p) inequalities (1 < p < o0), which are parallel to those for
the two-sided maximal function M, defined by

P f F W) dy

In particular, the followmg characterizations have been proved.

(3) My f(z) =

THEOREM A ([15], [19]). Suppose w(x), v(z) are weight functions, i.e.
nonnegative measurable functions on R, and 1 < p < oco. Then the strong
type inequality

T(M;’f(x))”w(x) de < C ‘ofc If (z}Pu(z) d=

holds for all measurable f if and only if there exists a constant C > 0 such
that for every interval I = (a,b) with f(_m,a) w > 0, the inequality

b b
(4) f (M;‘(x;gl/(””"l)a))pw de < C f ¢ odz < oo
a

holds, where ¢ = v~ @~V 1/p+1/p' = 1 and xp is the characteristic
Junction of the measurable set E.

THEOREM B ([15], [20]). Suppose 1 < p < oo. Let (w,v) be a pair of
weight functions. Then the weak type (p,p) inequality

O d 1/p
®) M@%Gﬂ@>ms((ﬂiﬂq%mm )

holds for all measurable f and A > 0 if and only if there exists o constant
C > 0 such that for all a < b < ¢,

b e e
r NP1 P
(6) Ju( [ee) <o([9)
a b a
holds, where o is the same as above.

In comparison with the results for the two-sided maximal function My,
there is an obvious shortcommg, that is, both Theorem A and Theorem B
deal with just the single index case, In this paper we will characterize the
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two-weight strong type (p,q} and weak type (p,q) inequalities for the one-
sided maximal function M in the cases of 1 < p < ¢ < oo. These charac-
terizations are the analogues of those for the two-sided maximal function.
All results in this paper concerning M ;" have their counterparts for the
M., however, we shall omit presenting and proving those. Moreover, we
will establish our theorems in general Orlicz classes in the form in which the
statements appear in the abstract. The weighted (p,g) inequalities in the
cases ¢ < p are discussed in our papers [11] and [12].

In Section 2, we shall list some preliminaries on Young functions and
Orlicz spaces and state our theorems for M ;' . The proofs will be given in
Section 3. The method used in Section 3 lets us characterize extra~weak
type mixed ®-inequalities for the Fefferman—Stein type maximal operator

(see [5], [19]) and the Hardy-type operator (see [1]). We shall present those
in Section 4.

2. Notations and results concerning M;‘ . First, we list some nec-

essary notations and properties of Young functions and Orlicz spaces. We
refer to (6] for the details.

On the real line R, a Young function $(¢) (i.e. an N-function in [f]) is
given by the representation

I¢]

= [ #(z) dz
[t}

where ¢(t) is a nondecreasing function, positive for ¢ > 0 and continuous
from the right for ¢ > 0, satisfying the conditions ¢(0) = 0 and ¢(¢) — oo
as t — oo.

Further, let
¢~ (s) =sup{t: o(t) < 5}
be the right inverse of ¢(t). The function
[t

¥(t) = f ¢~(s)ds
0

is called the complementary function to $(t). It is also a Young function.
Let 4 be a measure on R and @ a Young function. The Orlicz space La(u)
consists of all y-measurable functions f on R for which the Luzemburg norm

") | flay = 1nE {A> 0+ [ @(1F(@)i/A) dula) < 1}
R

is finite. :
The following inequalities are well known and 1mporta.n1: for our argu-
ment, :
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(i) Hélder inequality:

(8) f £ (@)g(2)] de < 20 oy 19lwiyny

(ii) Young inequality:
(9) st < 8(s) + P (1)
{ili) the inequality
(10) PDT(t)) < & ()
where DI/(t) =
< BT ().
As in [10], for a given pair of Young functions &; and &, we write
@1 € Dy if the inequality
(11) 3" #207 (@i) < 6207 (Zai)

holds for every sequence {a;} with a; > 0.

The condition (11) is fulfilled if & "
|t|? and &, (t) = [¢P with 1 < p < ¢ < cc.

Throughout this paper, ¥ represents the complementary function to &.
For a weight function w and meagurable set E, w(E) = |E|, = [, w(z)d=.
In particular, w((a, b)) = w(a,b), and |E| is the Lebesgue measure of E.
Unspecified letters A, B8, C,. .. etc. will be absolute constants not necessar-
ily the same at each occurrence. However, when the theorems concern the
estimates for the best constants, they will be the same in a certain theorem.
We shall keep the usual conventions ¢- o0 = oo (t € (0,00]), 0 - 00 = 0,
1/oo=0and 1/0 = o0

Now we state our main results concerning M, ;‘ .

for every s,t € [0, 00);

for all £ > 0,
#(t)/t. Usually, the last inequality appears in the form

is convex, in particular, if &5(t) =

THEOREM 1. Suppose &) and By are Young functions satisfying &, < @,
and there ezisis o constant A > 0 such that

(12) fasl My flgvde < [ &1(Af)gvde

R
holds for all f > O, Let w and v be weight functions. Then there ewists o
constant C > 0 such that

(13) 237 ( [ #a0f (o))w) <87 ( [ @u(Cf)ov)
R R

holds for all measurable f if and only if
b
(14) (f@g(M (eX@p¥))w) < &7 (#1(Be) ) [ v) <0

a

holds for all £ > 0 and intervals (a. b) with [ _w > 0.

icm
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Furthermore, for the best constants C and B in (13) and (14) respec-
tively, we have

B< O <84B.

Remark 1. The condition (12) is rather artificial. However, it follows

from ¥ € Ay (see [21] or [3]), i.e. from the existence of a constant K > 0
such that

(121 P (2t) S KW (t) forallt> 0.
Conversely, for a given Young function &, we have

PROPOSITION 1. Suppose w is a weight on R, positive and integrable on
an intervel {a,b). If

[ oMy fywdz < [ #(Af)wda
B R

holds for all f 20, then ¥ € A,.
Proof Put I = (a,a+ h} and f = ex;. Using an obvious inequality

é-gb(—;-) < B(t) < t6(2),

we have
Aed(A)w(I) > B(Ag)w( f S( My, fwdz
Lo fefiw 5/2 f £/2) [, w
7 EI d:t e A z)dr
wah (fw) >a+fh I (fw “Jute
5/2
f
with the change of variable y = ((g/2w(I))/ [’ w, where §(I) =
((e/2)w(I))/ [ w. Hence

5/2
f dy < 2A¢(As).

Letting b — 0, we get the Duu condition
5/2

f 9 gy < 2.49(4e),

which is equivalent to ¥ € Ag (see [3]). Proposition 1 is proved.

Furthermore, Theorem 7 of [3] can be rewritten as
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PROPOSITION 2. Let & be a Young function, and t, u, v, w be weight
functions with 0 < t{z),u(x),v(z), w(x) < oo a.e. Then, in order for
[ o(w(z)M] f(@)i(e) dz < [ ®(Culz) f(2))v(x) da
to hold for all f >0, we must have ¥ € A,
Proof. The proof is nearly the same as that of Theorem 7 in (3], so we

just give an outline.
There exists a constant K > 0 such that the set

E={z: K™ <tlz),ulz),v(z),wz), g{z) < K}
has positive measure. Choose z to be a point of density of E' and a Lebesgue
point of g. Let 79 > 0 such that

("‘-’" -7 5‘-’")

1
(e~ r2)N Bl 2 5r ud g < 2g(z) < 2K

for all 0 < r < rp. Write B, = (z — 2 ™rg,z) (m = 0,1,...), and let
fm = XBAB.,- One has

x
(BonE)\ Br
and
M foly) 2 CK 2| B 0 El(z —y) ™"
when y € By\By,. Then Bloom-Kerman’s argument shows that
P (2y) < C2m K20 (y)
for all y > 0 if we choose m > 2CK®. Proposition 2 is proved.

Using Proposition 2, one can withdraw the condition (12) from the as-
sumptions of Theorem 1 when &, = ®». We shall omit the presentation to
avoid the dull repetitions.

We would like to thank the referee for informing us of the equivalence
between (12) and (12") and suggesting the previous propositions.

The condition (12) is always satisfied if () = [t[¥ with 1 < p < oc.
Therefore, using Theorem 1 and a well-known and obvious change, we obtain
the strong (p, ¢) inequality with p < ¢ for M,.

COROLLARY 1. Suppose 1 < p < g < oo. Let w, v be a pair of weight
functions. Then the strong type inequality

( f (M;'f)qw)l/'q < O( f m%‘)l/p
R R
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holds for all locally integrable f if and only if
b

b
(J O Cxang" o)) < B( [ g”'o)w < o0

o
holds for all intervals (a,b) with [*__w > 0, where g = y~1/(F=1),

[ ]When p = ¢, this is Theorem 2 of [15] which generalizes Theorem 2 of
20].

THEOREM 2. Suppose ®1 and 3 are Young functions with &1 & &4, o is

o Borel measure on R and w, u, v are weight functions. Then the following
statements are equivalent:

(i) there exists a constant C > 0 such that the weak type inequality
(15) e3*( [ ®00(e)delz)) <87 [ B1(Cr@pu(z)v(z) do)
{M] f>2} R

holds for all measurable f and A > 0;
(ii) there exists a constant B such that

o J(e, (a,b)glx
(16) bf o ( Beﬁafc)u}(}wg)i ()m)>®(z) dr < J(e,(a,b)) < o

holds for all a < b < ¢ and £ > 0, where

b
(17) I, (0,8) = 8:07" ([ Sa(w()) do(a) );
(iii) there ezists a constant D s'u.chuthat
90X ,0()
(18) E’LL(')’L‘(') 7y (5v) : Dg(a, C}n

holds for all € > 0 and every a < b < ¢, where n = 7(e,(a,b)) = () is
defined by

(19) n=sup{f > 0: J(0,(a,b)) < 1/e}.
Furthermore, for the best constants in (15), (16) and (18), we have
D<B<C<L8D.

THEOREM 3. Suppose $1 and $o are Young functions with $; < &, and
w, u, v are weight functions. Then the following statements are equivalent:

(i) there exists a constant C > 0 such that the extra-weak type inequality

(20) w{MFf >} < ¢2¢;1( / 4_51(&){1“-)1))
R

holds for oll mensurable f and all A > 0;
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(ii) there ewists a constant B > 0 such that

(21) f ¥ (%@51“‘)(“’ b))g(m)>v(m) dx < &85 (wla, b)) < 0o
b

Bg(a, c)v{z)u(z)
forevery o <b < ¢
(iii) there exists a constant D > 0 such that
(22) i 9{)xw.0 () Dfl.'(a,C)
ulW ey a5 wiapy ~ 182 (wla,b))
holds for all o < b < ¢ with $:85(w(a,b)) > 0, and $18; *(w(a,b)) < oo
for all bounded intervals (a,b).

Furthermore, for the best constants C, B and D in (20), (21) and (22),
we have

D<BSCLS8D.
Theorem 2 or Theorem 3 directly imply

COROLLARY 2. Suppose w, v are weight functions and 1 < p < ¢ < o0,
Then the following statements are equivalent:

(i) there exists C > 0 such that the weak type inequalily
c 2 \1/PN\Y
(e g £y >\ < (ST
holds for all measurable f and A > 0
(ii) there exists B > 0 such that
(w(a, B4 (5, )7 _
g{a,c) -
holds for all a < b < ¢, where o = (g/'u)P'v.

Moreover, for the best constants C end B above, we have
AiB <C £ AyB,
where Ay, A are absolute constanis depending only on p and gq.
The special case of p = ¢ gives Theorem 1 (p > 1) of [15].

Remark 2. It is obvious that both the weak type mixed P-inequality
like (15) and the extra~-weak type mixed $-inequality like (20) are extensions
of the usual weak type (p,q) inequality to Orlicz classes. The terminology
“extra-weak type” appears in {18] in the case of $; = P. It stems from the
fact that the weak type inequality implies the extra-weak type inequality
for all homogeneous operators T,

Remark 3. When &; = &3 = &, the weak type and extra-weak type
inequalities ({15) and (20)) have been discussed in [17] and [16]. In this
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particular case, our condition (21) becomes the A (®, g) condition in The-
orem 2 of {17]. However, our condition (16) is apparently different from the
corresponding A% (%, g) condition in Theorem 1 of [17] and its equivalent
AL (g) condition in Theorem 1 of [16]. Their condition is that

P S (%%?—’)R@(BQEM) f S (;ﬁ))g(m) i) <K

where Re(t) = &(t)/t and Sa(t) = € (1) /1.

3. Proofs of Theorems 1-3

Proof of Theorem 1. (13)=-(14) follows from a standard argument
(see e.g. [19], [20]) that involves testing (13) with f = €X(a,p). Conversely,
suppose (14) holds. Without loss of generality, we assume f is nonnegative,
bounded and supported by an interval bounded from above.

Let IV be a positive integer. For every integer k, let
2 = {z: M (fv){z) > 25} N (=N, 00).

Each (2. is an open set, therefore there exists a sequence {(a;x,b; %)} such
that the {(a;,bjr)}; are pairwise disjoint and 2, = U;(a5k,05,%). Further-
more, we have (see [20])

bk bj,

(23) J fav=2" [ g forevery x € (azp,bi4).

For every (a;x,bj.x), let
bj,_rc
d; k= inf {m € {04k, bi) : f gv < 00}.
&

It is clear that f::”"k gv < ooifz > djg, and w=0forae. z € (ay,d; 1) by
(14). With Ej,,r,., = (aj,;c, bj,k) \ {%+1 and Fj’j‘; = (dj,k,bj,k) \ 241, we have

08 [ 608 (o)=Y [ 606 (fr)yu
-N

ki Ejk

= Z f @Q(M;(fﬂ))w < Z f¢2(2k+1)w

k.j Fj,’c ki Fj.k
S fgu
<> f@2(2——fm—— w  (by (23)).
k,j Fj';‘; il g
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For every integer m, let

b,
fw;.k fgru S 2m+1}
Jo" v
2 1o
Jo" gv

Aj i = Ejge N {ﬁ? 27 <

= {x = (dj,k:bj,k:) 1 2™ <

Fix m, set e;; = inf HT, and JT% = (ej,6,b;%). Then
Aj,k,m - Jj,k n Fj)k‘

S Z’rnwlﬁl} a Fj,k

The sets {A; km};k are pairwise disjoint for fixed m. It is obvious that
the inequality

v [ fgu [ovsam®?

JT, a7,
holds for all §, k and m. Therefore
(25) U7 < {z: Myof(2) 2 27}

4.k

Let Ijx = (djx bjx). Then J C Ijx. Moreover, the collection {Ln}
is nested, that is, k < s implies that either Iy C Iy or I g NIy = @ for
all 4, 7. Smce all the lengths of I, ; are uniformly bounded above, we can
select maximal elements from the {I; x}. Denote this subfamily by {I;}. Let
G(i) = {(m,j,k) : JT, < L;}. Noting that U, ; mec Jik 18 an open set,

4
we can write
™o £,m
U Jj,k- - U 0,
dide {m g, k)e G (d) #

where {O%™} is a sequence of pairwise disjoint open intervals with O™ < I;
for all s and m. Fix m, and rewrite the {O}™};, as a sequence {Onmfn
which has the following properties:

{i) {On,m}n are pairwise disjoint, since {I;} are pairwise disjoint;
(ii) every J7, belongs to a certain Op m;
(iii) U, Onm = Uj’k Jﬁ""k C{z: Mg f(z) Z 2™} by (25).
Now, we estimate the right side of (24). Noting that, for « € A; x,m;
b, by, b,
(26) " fge _ [ fgv [ gy

e

< 2.m+1M;- (XJ;"‘,“U)(x):

Tuwo-weight @-inequalities for the mazimal function 11
we have
Dy ke
S fov
& v e
(27) Z f By (2 e Jw

bik
<ZZ > f@(fbj::g)“’
m=—co (n,m) {(k ,J)J wCOnmt Ajem “rz g
<220 X

f $o(MF (2m+2x,]}nkv))w
™M (n,m) {(k’.'l')"];ﬁe COnm} Aikom ’

SDIPIRN L

M (n,m) On,m

<3N o (Bi3527Y) [ ) (by (19).
m (n,m)

n,m

(by (26))

Let ®4(t) = ¢,(8Bt). Then (12) is still available with the same constant
A. Therefore the right side of (27) is bounded by

(28) @2@;1 ( Z Z |On,m|gv§§3(2m_1)) (SiIICe @1 <& @2)

m (n,m)

fl(Z}{m Mg, f(z)

2207 ([ @My f)ov) <287 [ 2s(Af)gv) (b (12)
E g

2 2™} pua(27 7))

= 807" ( [ 21(84Bf)gn).
R
Combining (24), {27), (28) and letting N — oo, we complete the proof
of Theorem 1.

Proof of Theorem 2. To avoid trivial cases, we may assume that
u{x)v(x) is not identical to infinity on any interval (a,co). Otherwise, we
can present and prove our theorem on (—oco,a) instead of {—o0, c0).

(15)=>(16). The proof of the right inequality depends on the fact that

(29) (0, 5) € {& : M (FXp.cp) (@) > mF (£)}
holds for every @ < b < ¢ and f > 0, where

fa.

3
=+
=

i

Q-L_Un
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Let E = {x € R : there exists § > 0 such that J(X,(z -~ §,2+§)) <co
for all A > 0} and 6 = inf{R \ E}. Then J(}, (a,b)) < oo for all A > 0 and
all (a,b) C (—o0,8). Moreover, we claim that § must be oo. Indeed, suppose
8 < co. Given § > 0 we consider the set Sy = {z € (8 + §,00) : u(z)v(z) <
MY} for arbitrary M > 0. Noting the definitions of # and E, we can choose
a < b= 0+ §such that (a+b)/2 € (8,84 + §) and that there exists X > 0
satisfying J(A, (a, b)) = co.

Suppose |Syr| > 0. First, we assume [{z € Spr : u(z) < 0o}| > 0. Then
we can choose ¢ > b and a set § C (b,¢) N Sy such that [S| > 0 and
u{z) < N on S for some N > 0 large enough. On the other hand, on setting
f(z) = xs(z), it follows from (29) and (15) that
(30) IO (b)) < @125 J 83 (0u(2)) de(=))

{MF(g(ae)ixg/g(S)>A)

< f 2] (ﬂig(—%;lﬂﬂ)v(x) dz

gla,c)CAN gla, ) CAM
<o (20 )is 0 (2T il <o

(In the last inequality above we use the fact that s®;(t) < @1(st) for all
s > land ¢ > 0). This is a contradiction.

Secondly, assume |[{z € Sy : u(z) < oo} = 0. Then we have v(z) =0
a.e. on Spr. The same argument as that used above also produces a contra-
diction because in this case the right side of (30) is 0 due to the convention
000 = 0. These contradictions imply |Sas| = 0. Therefore, we conclude that
u(z)v(z) = co a.e. on (f,c0), a trivial case we have excluded.

For the left inequality in (16), given a < b < ¢ we may assume J(z, (a, b))
> 0, otherwise (16) holds trivially. It follows that u(z)v(z) > 0 a.e. on (b, e).
Indeed, if |F| = {{z € (b,¢) : u{2)v(z) = 0} > 0, then taking f = yp, we
obtain, from (29) and (15),

gla,e)Chu(z) _
W)v(m) da = (),

This is a contradiction. Noting that the left side of (16) is zero if u(z) or

v{x) = 00, we may assume both u(z) and v(z) are finite a.e. on (b,¢);

otherwise, we can consider (b,¢) \ {2 : u(z) or v(z) = oo} instead of (b,¢).
For arbitrary n > 1, let

_ _' J(e, {a,b))g(x)
h(z) = nCeg(a, c)ulz)u(z)

I\ (@) < @1(
P

XE, (2),

icm
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:1/n < g(z),

F@) = =) e le)

where E,, = {z € (b,¢) u(z),v(z) < n}, and

Then

a

T = [ Wy (h(a))o(a) de =

b
where m7 (f) is defined in (29).
We claim that m}(f) < Ce, hence

7o e (0
n

and (16) follows by taking n — oc and 5 — 1. Furthermore, B < C.
Indeed, suppose m} (f) > Ce. It follows that

my (f) Cef(z)u(z)
T nCe fgbl( mg (f)

Je (a,b)

?

)v(m) dx

(by (29) and (15), also cf. (30))

B

<z f Py (flz)u(z))v(z)de = = f &1 {(DW1 (h(z)))v(z) dz
Eﬂ :
(since Ce/m¥(f) <1 and & is convex with &1 (0) = 0)
< 1 f Wy (h{z))u(z) de = T (by (10)).
Mo n

This contradiction completes the proof of (15)=-(16).

(16)=(18). Given a < b < ¢, suppose J(0, (a,b)) > 0 for all § > 0. Then
it follows from (16) and (7) the definition of the Luxemburg norm, that

X(b c:) ((I b))
(31) H e s

<1

LEICTRICRCHRADY
for all # > 0. Since J(8, (a,b)) is a continuous increasing function of ¢ for
fixed (a,b), and takes values from 0 to infinity, we can choose # such that
1/J{8,(a,b)) = ¢ for given £ > 0. Then (18) follows from (31) immediately.

When J(8y, (a,b)) = 0 for some 8y > 0, we have w(z) = 0 g-a.e. on (a, b).
Then J(4, (a, b)) = 0 for all & > 0. In this case, 5 = (g, (a,b)) = oo for all
e > 0, and (18) holds trivially.

Now we prove (18)=+(15). Without loss of generality, we can assume
f > 0. For given A > 0, as in the proof of Theorem 1, we can write {2 :
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M} f(@) > A} = [J(a;,b;) with
by

(32) A< f fg for all j and z € (ay, by).

= (a;,b;). Following the “cutting method” of
) we put 2o = a and let xg be such that

Fix 7 and let
F. J. Martin-Reyes

f—\f‘-

[

Then {z} is an increasing sequence with limit b, and we have

TR41
1

EE wkf Jos 7/ fe

(33) N
“’Ck”—lv L1 @

Let fr = fX(osmupy) 1t follows from the Halder inequality (8) that
Tt
gX(mk,mh.;_l)
34) fa 22| fevllostenny | —
{ m{ | 1{EqY) EpuU S

for any ex > 0. For § > 1 arbitrary, choose &5 such that

[ #1(88D ful)u(z))exv(z) do = 1.
Then

(35) .

| fulle, eney < YL
Combining (32)—(35), we have
1
36 A< <
( ) D5g(.’L'k lr$k+1) By (£11)

Recalling the definition of  (see (19)) and observing that J(#,(a,b)) is
increasing in @ for fixed {a,b), we obtain

J()\, (mk.,_l,ﬂik)) S 1/5;‘-,.
Summing over k and j, we cbtain

.f S dw(z)) do(z) < 22@2451 (1/ex)

{Mf 22}
_s'asg@;l(zz f@l(sapfk)v) sspz@;l(f @1(85Df)u).

The inequality (15) with € < 8D follows, since § > 1 is arbitrary. The proof
of Theorem 2 is complete.

IX (g, wns1)
ERUV

>3

(by (18))-
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Proof of Theorem 3. The proof of {20)=-(21) is similar to that of

(15)=-(16), we shall only give an outline. The details ignored can be found
above.

For a < b < ¢ given, we may assume that 0 < w(o,b) < oo and 0 <
u(z),v(x) < co a.e. on (b, ¢). Let
E,={z€ (bc):1/n < ulz),v(z), g(z) < n},
where 1 is a positive integer. For arbitrary n > 1, put

_ 8185 (w(a, b))g(x)
h(z) = nC;(a, cyv(z)u(z) XEns

and f(z) = D¥ (h(z))/u(z). Let

T= [#h(z)(z)ds.
Then K
(37) my(f) = ﬁmf

We claim that m (f) < C, hence

18" (w(a, b))
n )
and (21) follows by taking n — cc and n — 1. Furthermore, B < C.
Indeed, if mJ (f) > C, it follows that

T<

.+.
T = m;éf ) &85 (w(a, b)) (by (37))
my (f) CD¥(h(z))

< G E{ @1(W>v(m) dz  (by (29) and (20))
< % f@l(D!T/l(h( Niv(z)de - (since C/m(f) < 1)

By
<2 [ B de=—  (by (10)).

En

This is absurd.

The implication (21)=(22) follows from the definition of the Luxemburg
norm (see (7)) directly, and we shall omit it.

(22)=(20). Using the same notations as in the proofs of (18)=+(15), we
write {M;f > A} = Ulag.by) : (a5,85) = (6, 5) = U(zk, 2r4a] for any fixed
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4, where both {(a;,b;)} and {(zx, Tr+1]} are pairwise digjoint. Moreover,

4: Th+l
AL ——— -
(38) - g(a:kf1,$k+1) m‘{ fg
Civen § > 1 arbitrary, let A = 86D, We claim that
Thk41
(39) wizpo1,ox) < 8285 ([ S1{7upw)
E

holds for all (2x-1, %%} With w(zg—1,2x) > 0. Then it follows that
w({z: M} f > 86D}) < -;zsggzs;l( | @1(fu)v),
R

and this is (20) with C < 86D.
Now we prove (39). In order to reach a contradiction, we assumne that

Pre-r1
{40) W(Ze—1,Tr) > 459@1"1( f @1(fu)'u)
Ty
for some k. Writing mk 1= a, o = b and x4 = ¢, we have
(41) 86D < f fg (by (38))
84" o, ('w(a b)) FX(be)
< 22k 2(a PR IifX(b,c)qusl(p) w0 g
14

(by Hélder's inequality (8)),
where du = v(z) de/ 185 * (w(a,b)). However, the inequality (40) shows

(42} 1fxmeule g <L
and the condition (22) yields
gx(b, Dg(a, )
) [pea] <Pt
u ¥y (1} 1¥9 (w(a‘a ))

Substituting (42) and (43) into (41), we get
BOD £ 8D,
This is absurd. The proof of Theorem 3 is complete.

4. Some extra-weak type mixed @-inequalities. In this section,
we shall establish some extra-weak type mixed @-inequalities. The corre-
sponding weak type $-inequalities are given in [10] {also ¢f. [8] and [9]).
However, in previous articles the results are egtablished under the assump-
tion that all weight functions are positive and finite almost everywhere. For
the Hardy-Littlewood maximal operator, this restriction implies that there
is no solution for the weak type (p, ¢) inequality when p < ¢ (see [13]), and
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we are able to avold it by using some ideas of the proof of Theorem 2. The
theorems in this section not only present some new results, but also show
how to omit this restriction in previcus work.

The first result concerns the Fefferman- Stein type fractional maximal op-
erator on homogeneous-type spaces, which includes the well known Hardy—
Littlewood maximal function and fractional maximal operator on R™.

In what follows (X,d, ) will denote a homogeneous-type space in
Coifinan-Weiss’ sense. This is a set X with a quasimetric d and a mea-
sure u. The constant associated with the quasimetric d will be denoted by
K. It is assumed that every ball B = B{z,r) = {y € X : d(z,y) < r} is
measurable, and 4 satisfies the doubling condition

u(2B) < Cp(B)
for all balls B = B{z,r), where 2B = B{z,2r). Generally, for § > 0, 6B —
§B(z,r) = B(z,br). We will use A to denote the constant such that
WK (2K + 1)B) < Au(B)

for all balls B. The details about homogeneous-type spaces can be found
in [4].

Let X\ = {(z,t) : w € X, t > 0}, B =A§(9:,r) = {(y,t) : y € Bx,r),
0<t<r}andford >0, §B=E8B(z,r) = Blz,ér).

Given « € [0,1), the Fefferman-Stein type fractional maximal operator
M, is defined by

My f(z,t) = sup —————— du(y),

af(at) = s S mfﬂwyn u(y)

which maps locally integrable functions on X into functions on X .. In the

formula above, if r = 0, let
1

W [ 11 @) duly) =

Bz,

THEOREM 4. Suppose (X,d,u} is a homogeneous-type space, and ¢ is a
measure on X . Let u ond v be weight functions on X. Suppose &1, P2 are
Young functions with &, € $o. The following statements are equivalent:

(i) there exists a constant C > 0 such that the extra-weak type inequality

(44)  o{{(zt) : Maflz,t) > A}) 5@;@;1(;[ @1(0){”)@@)

holds for all measurable f >0 and all X¥&Y);
S UW E
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(ii) there exists o constant N > 0 such that

o~ Nfu
By<a cp“l( b, (—m—-——)ud )
(45) o(B) < 821 g‘ Wz ) v o
holds for oll locally integrable f > 0 and balls B, where
1
mg(f) =~ | Fl) duy);
B(.f) [.L(B)l"o‘ j_! )

(iil) there exists o constant D > 0 such thot
287" (o(B))

o) ‘JW(DMBV*WWWQ)
holds for all balls B.

Moreover, for the best constants C, N and D, we have

N<AC, D<N and C<2MD,
where M is o positive constant such that
w(5K*B)™% < Mp(B)'~*

)fu(m) dule) < 8187 (o(B)) < oo

holds for all balls B.

Proof. Since B(z,r) C B(y,2Kr) C Ble, K(2K + 1)r) for every y €

B(z,r), we have
B Mt > )}

for all balls B and § > 0. Then it is obvious that (45) follows from (44) and
N <AC.

(45)=-(46). The process is similar to that used in Theorem 2 (cf. the
proof of {15)=>(16)), and we just give the sketch.

Suppose &85 (0(Bp)) = oc for a ball By. For every B D By and given
H > 0, suppose u(Sy) = p({z € B : u(zh(r) < H}) > 0. On the one
hand, if u({z € Sp : u(z) < oc}) > 0, then we can choose a subset § C Sy

such that {S) > 0 and u(z) < L on § for some L large enough, On setting
f =xs, it follows from (45) that

-1/ 5 N u(B)'~*u(e)
oo < 8185 (o(B)) < [ &1 L2 Yo(w) dys
07 e < (™ ) ’

l-« Le-ax
<& (N—“(ils)—fi) G (N—“E%)-—E) WS) (k. (30).

This is a contradiction. On the other hand, if u({z € Sy : u(z) < 0o}) = 0,

then v(z) = 0 on Sy. By using the same method as previously, we obtain
a contradiction. Then we conclude that p({z € B : u(z)v(e) < H}) =0 for

icm
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every B 2 Bo and H > 0. Therefore we have u({z)v(x) = oo p-a.e. on X,

and this is a trivial case we should exclude. The right inequality in (46) is
proved.

For a given ball B, write
B, ={z € B:1/n<uz),v(z) <n}
6197 (o(B))
M) = B eyt - )
fz) = D (h{z))/u(z)

and

for every positive integer n;

for n > 1;

nN 8

We can prove m%(f) < N by the same argnment as in Theorem 2 (proof of
m7 (f) £ Ce in the implication (15)=(16}). Then we obtain

1 < 21927 (e(B)
n
and the left inequality in (46) with D < N follows.
(46)=>(44). For arbitrary R > 0, let

R ~ 1
MEf(z,t) = i s T B(;C)if(y)l du(y).

It is sufficient to prove (44) for ME with constant €' < 2M D which is
independent of R.

Fix a 2o € X, let By = B(zo,m), Bx = {(z,t) : MEf(z,t) > A} for
given f > 0 and A > 0 and EY" = E) n By,. It follows from a well-known
decomposition lemma in X (see [7] or [10]) that there exists a sequence of
balls {B;} which are pairwise disjoint and satisfy

-1 -~ ’
I = f Vi (h(z))v(z) du(z) = Mma ().
B

3

(47) By | J5K2B;,
(48) m, () > \
It follows from (48), Young inequality (9) and (46) that
1

AL e | f g
<y | 1o

D ( [ o uvans B{ 7 (@1@;1(9(5@@))@ d@

< e gy
_dsldjé—l(g(SK'sz)) 5, DM‘LL(Bj)l v

S5, BL(M fu)v dp
s D(M;l(gwmﬁj)) i 1)'
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Put A = 2D. We have

(51{2 ) < BpdT (fdh Mf(z)u(z ))v(m)du) for every j.

From (47) and $; < @3, we obtam
0B < 2207 (3 [ @1(Mfupwd) < @077 [ $(M fu)vdn).
X

B;
Letting m — oo, we finish the proof of Theorem 4.

Finally, we consider the extra-weak type mixed &-inequality for the
Hardy-type operator defined by
€
[ Kz, 9)f(y) duly),
0

(49) Tf(z) = z 20,

where p is a regular and nonatomic positive measure on (0, c0), and the
kernel K (z,7) on Rt x RT satisfies
(i) K(z,y}) > 0ifz > y;
(i) K (z,y) is nondecreasing in z and nonincreasing in y (see [1]).
THEOREM 5. Suppose T' is defined in (49), and &1, Py are Young func-

tions. Let w, u and v be weight functions. Then the following statements are
equivalent:

(i) there exists a constant C > 0 such that the extra-weak type inequality

60 e s> Mo 2307 21T Joan)

holds for oll measurable f and X\ > 0;
(ii) there exists a constant D > O such that

@) [u (Rl g

< G185 (|(ry 00) [wap) < 0
holds for all v > 0.
Moreover, for the best constants C, D, we have
D0 2D,

The corresponding four-weight weak-type inequality, like (15) in Theo-
rem 2, has been characterized in [2] and [10] independently. The necessary
modifications of the proof of the weak-type inequality in order to obtain
the extra weak-type inequality are demonstrated in the proof of Theorem 3

icm
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(also by comparing Theorem 4 with Theorem 3 in [10]). Therefore we shall
omit the proof of Theorem 5.
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Algebras of real analytic functions: Homomorphisms
and bounding sets

by

PETER BISTROM (Abo), JESUS A JARAMILLO (Madrid) -
and MIKAEL LINDSTROM (Abo)

Abstract. This article deals with bounding sets in real Banach spaces E with respect
to the functions in A(E), the algebra of real analytic functions on E, as well as to various
subalgebras of A{F). These bounding sets are shown to be relatively weakly compact and
the question whether they are always relatively compact in the norm topology is reduced
to the study of the action on the set of unit vectors in leo of the corresponding functions
in A(leo). These resulis are achisved by studying the homomorphisms on the function
algebray in question, an idea that is also reversed in order to obtain new results for the
set of homomorphisme on these algebras.

In this paper we are interested in subsets of a real Banach space on which
different classes of functions are bounded. In [3] it is shown that if a subset
B of a real Banach space F has the property that each C*°-function on F is
bounded on B, then B is relatively compact. As the continuous polynomials
P(E) on E are bounded on bounded sets the focus of interest in this article
is on the algehbras between P(E) and A(F), the algebra of real analytic
functions on E. Let A(E) denote such an algebra. Then we say that a set
in E is A-bounding if all functions in A(E) are bounded on it.

A main theme in this paper is the close interplay between the homo-
morphisms on A(E) and the A-bounding sets. Using appropriate properties
of the homomorphisms on the algebra R{E) of rational forms of elements
in P(F), we deduce that the R-bounding sets are always relatively com-
pact in the weak topology of the Banach space E. With this result at hand,
we show that the problem of the A-bounding sets being relatively compact
in arbitrary Banach spaces E is reduced to the study of the behaviour of
the real analytic functions on . acting on the set of unit vectors in le.
Further we show that the R-bounding and the relatively norm compact
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