Relatively perfect σ-algebras for flows

by

F. BLANCHARD (Marseille) and B. KAMIŃSKI (Toruń)

Abstract. We show that for every ergodic flow, given any factor σ-algebra \mathcal{F}, there exists a σ-algebra which is relatively perfect with respect to \mathcal{F}. Using this result and Ornstein's isomorphism theorem for flows, we give a functorial definition of the entropy of flows.

Introduction. Perfect σ-algebras play an important role in ergodic theory and statistical mechanics, especially in the spectral theory of dynamical systems with discrete time (measure preserving \mathbb{Z}^d-actions). The existence of these σ-algebras in the case $d \geq 2$ has been proved by the use of their relative versions (for \mathbb{Z}^{d-1}-actions), the so-called relatively perfect σ-algebras ([K1]). In [K2] the relatively perfect σ-algebras have been used to give a functorial definition of entropy of a \mathbb{Z}^d-action.

Blanchard in [B1] and Gurevič in [G2] have shown that for every ergodic flow there exists a perfect σ-algebra. The main purpose of the present paper is to prove a relative version of this result (Theorem B). The motivations of this theorem are, on the one hand, expected applications of relatively perfect σ-algebras to the investigation of the spectral structure of multidimensional flows and, on the other hand, an application to an axiomatic, i.e. functorial definition of entropy of one-dimensional flows. Such definitions have been given for \mathbb{Z}^d-action by Rohlin ([R0]) in the case $d = 1$ and by Kamiński in [K2] for $d \geq 2$, but it was not known whether such a characterisation exists for flows. Section 1 contains definitions and auxiliary results needed in the sequel. In Section 2 we prove a relative version of the Abramov formula for the entropy of a special flow. Section 3 is devoted to relatively excellent σ-algebras. Results of these sections together with a relative version of the Ambrose Kakutani–Rudolph theorem allow us to prove in Section 4 the existence of relatively perfect σ-algebras.

1991 Mathematics Subject Classification: Primary 28D15.
Key words and phrases: entropy, flow, principal factor, relatively excellent σ-algebra, relatively perfect σ-algebra.

Research of the second author supported by KBN grant 211109101.
In Section 5 we first introduce a concept of a principal factor for a flow in terms of increasing \(\sigma \)-algebras. Next, using Theorem B we describe principal factors in terms of entropy. It follows from the Ornstein isomorphism theorem for Bernoulli flows and the result above that, as in the case of \(\mathbb{Z}^d \)-actions, the behaviour of the entropy of flows under factor and principal factor maps and direct products determines it uniquely up to normalization.

1. Preliminaries. Let \((X, B, \mu)\) be a Lebesgue probability space and let \(\mathcal{A}_X\) be the trivial sub-\(\sigma\)-algebra of \(B\).

With every measurable partition \(P\) of \(X\) we associate the \(\sigma\)-algebra \(\mathcal{P} \hat{\mathcal{P}}\) of \(P\)-sets, i.e. \(\hat{\mathcal{P}}\) consists of all measurable sums of elements of \(P\). It is well known that for every sub-\(\sigma\)-algebra \(A \subset B\) there is a unique (mod \(\mu\)) measurable partition \(\mathcal{A}\) such that \(\mathcal{A}\) is the \(\sigma\)-algebra of \(\hat{\mathcal{A}}\)-sets.

The symbol \(\mathcal{Z}\) stands for the set of all countable measurable partitions with finite entropy.

Let \(P = \{P_i\} \in \mathcal{Z}\) and let \(\mathcal{A}\) be a sub-\(\sigma\)-algebra of \(B\). The information of \(P\) given \(\mathcal{A}\) is

\[
I(P \mid \mathcal{A}) = - \sum_i \chi_{P_i} \cdot \log \mu(P_i \mid \mathcal{A}).
\]

For a given function \(f \in L^1(X, \mu)\) we put

\[
E(f) = \int_X f \, d\mu.
\]

Let now \(\tau\) be an automorphism of \((X, B, \mu)\). With every partition \(P \in \mathcal{Z}\) we associate the two \(\sigma\)-algebras

\[
P^\tau = \bigvee_{i=1}^{+\infty} \tau^{-i} P, \quad \tau P = \bigvee_{i=-\infty}^{+\infty} \tau^i P.
\]

Let \(T = (T^t)\) be a measurable flow on \((X, B, \mu)\).

A sub-\(\sigma\)-algebra \(A \subset B\) is said to be increasing if \(T^t A \supset A\) for all \(t > 0\).

It is called a factor \(\sigma\)-algebra if \(T^t A = A\) for all \(t \in \mathbb{R}\).

We denote by \(h(T^t)\) and \(\pi(T^t)\) the entropy and the Pinsker \(\sigma\)-algebra of the automorphism \(T^t\) respectively, \(t \in \mathbb{R}\). It is well known ([A2], [G1]) that

\[
h(T^t) = |t| \cdot h(T^1), \quad \pi(T^t) = \pi(T^1), \quad t \in \mathbb{R}.
\]

Recall that the entropy \(h(T)\) and the Pinsker \(\sigma\)-algebra \(\pi(T)\) of the flow \(T\) are defined as follows:

\[
h(T) = h(T^1), \quad \pi(T) = \pi(T^1).
\]

Let now \(\mathcal{H}\) be a fixed factor sub-\(\sigma\)-algebra of \(T\) and let \(T_{\mathcal{H}}\) be the factor flow induced by \(\mathcal{H}\). We denote by \(h(T^t \mid \mathcal{H})\) and \(\pi(T^t \mid \mathcal{H})\) the relative entropy and the relative Pinsker \(\sigma\)-algebra of \(T^t\) with respect to \(\mathcal{H}\) respectively,

\[
t \in \mathbb{R}. \text{ Proceeding similarly to [A1] and [G1] one easily obtains}
\]

\[
h(T^t \mid \mathcal{H}) = |t| \cdot h(T^1 \mid \mathcal{H}), \quad \pi(T^t \mid \mathcal{H}) = \pi(T^1 \mid \mathcal{H}), \quad t \in \mathbb{R}.
\]

We define the relative entropy and the relative Pinsker \(\sigma\)-algebra of \(T\) with respect to \(\mathcal{H}\) as

\[
h(T \mid \mathcal{H}) = h(T^1 \mid \mathcal{H}), \quad \pi(T \mid \mathcal{H}) = \pi(T^1 \mid \mathcal{H})
\]

respectively. Clearly

\[
h(T) = h(T \mid \mathcal{N}) \text{ and } \pi(T) = \pi(T \mid \mathcal{N}).
\]

We shall use in the sequel the following equalities:

\[
(1) \quad h(T) = h(T_\mathcal{H}) + h(T \mid \mathcal{H}),
\]

\[
(2) \quad \pi(T \mid \pi(T)) = \pi(T).
\]

They have been shown for \(\mathbb{Z}\)-actions in [K2] and [K1] respectively.

Now we recall the concept of a special flow built under a function.

Let \((Y, \mathcal{C}, \nu)\) be a Lebesgue probability space, \(\sigma\) be an automorphism of \(Y\) and \(f: Y \to \mathbb{R}^\geq 0\) a measurable function such that \(\inf\{f(y) : y \in Y\} > 0\) and \(f \in L^1(Y, \nu)\). Let \(Y_f = \{(y, u) : y \in Y \times \mathbb{R}^\geq 0 : u < f(y)\}\) and let \(\mathcal{C}_f\) be the restriction of the product \(\sigma\)-algebra \(\mathcal{C} \otimes \mathcal{C}\) to \(Y_f\), where \(\mathcal{C}\) denotes the \(\sigma\)-algebra of Lebesgue sets of \(\mathbb{R}^\geq 0\). We denote by \(\nu_f\) the measure on \(\mathcal{C}_f\) defined by

\[
\nu_f = (E(f))^{-1} \cdot (\nu \times \lambda),
\]

where \(\lambda\) stands for Lebesgue measure. Let \(\tau_f\) be the measurable flow on \((Y_f, \mathcal{C}_f, \nu_f)\) defined as follows. For \(0 \leq t < \inf\{f(y) : y \in Y\}\) we put

\[
\tau_f(y, u) = \begin{cases} (y, u + t) & \text{if } u + t < f(y), \\ (\tau^t y, u + t - f(y)) & \text{if } u + t \geq f(y). \end{cases}
\]

For other values of \(t\) the automorphism \(\tau_f\) is uniquely determined by the condition that \(\tau_f\) is a one-parameter group of automorphisms.

The flow \(\tau_f\) is called the special flow built under the function \(f\), the automorphism \(\tau\) is the base automorphism and \(f\) is the ceiling function of \(\tau_f\).

Since Bernoulli flows will play an essential role in Section 5 we recall their definition and the Ornstein result which we will need.

A flow \(T\) is said to be a Bernoulli flow if for every \(t \neq 0\) the automorphism \(T^t\) is a Bernoulli shift.

The existence of Bernoulli flows has been proved by Ornstein in [O1]. The following “Sinai type” theorem may be easily deduced from the corollary to the Main Lemma from [O2].

Theorem A. For every ergodic flow \(T\) with \(h(T) > 0\) and every \(a \in (0, h(T))\) there exists a Bernoulli flow \(S\) which is isomorphic to a factor of \(T\), with \(h(S) = a\).
2. Relative version of the Abramov formula for flows. Let \((Y, \mathcal{C}, \nu)\) be a Lebesgue probability space, \(\tau\) an automorphism of \(Y\) and \(\mathcal{F} \subset \mathcal{C}\) a factor \(\sigma\)-algebra of \(\tau\). Let \(A \in \mathcal{C}\) be a set of positive measure such that \(\bigcup_{n=0}^{\infty} \tau^n A = Y\). It is well known that if \(\tau\) is ergodic then every set \(A\) of positive measure satisfies this condition. The automorphism of \(\mathcal{F}\) induced by \(\tau\) is denoted by \(\tau_{\mathcal{F}}\).

Let \(\mathcal{F}^A\) be the sub-\(\sigma\)-algebra of \(A\) consisting of the sets of the form \(F \cap A\) where \(F \in \mathcal{F}\).

Remark 1. If \(A \in \mathcal{F}\) then \(\mathcal{F}^A\) is a factor \(\sigma\)-algebra of \(\tau_{\mathcal{F}}\). Indeed, the Poincaré recurrence theorem implies that \(A = \bigcup_{m=1}^{\infty} A_m\), where \(A_m\) denotes the set of the \(m\)th return time. The desired property follows at once from the equality

\[
\tau_{\mathcal{F}}(F \cap A) = \bigcup_{m=1}^{\infty} \tau^m(F \cap A \cap \tau^{-1} A \cap \ldots \cap \tau^{-(m-1)} A) \cap A
\]

where \(F \in \mathcal{F}\).

Lemma 1. For every \(A \in \mathcal{F}\) with \(\nu(A) > 0\) we have

\[
h(\tau_A \mid \mathcal{F}^A) = (\nu(A))^{-1} \cdot h(\tau \mid \mathcal{F})\]

We omit the proof because it may be easily obtained from the proof in the absolute case (see [A1]).

Let now \(\sigma\) be an automorphism of \((Y, \mathcal{C}, \nu)\) and let \(\mathcal{F} \subset \mathcal{C}\) be a factor \(\sigma\)-algebra of \(\sigma\). Let \(\mathcal{L}\) denote the \(\sigma\)-algebra of Lebesgue sets of the interval \([0,1]\), \(\lambda\) the Lebesgue measure on \([0,1]\) and \(\varphi : Y \to [0,1]\) a \(\mathcal{C}\)-measurable function.

We consider the product measure space

\[(X, B, \mu) = (Y, \mathcal{C}, \nu) \times ([0,1], \mathcal{L}, \lambda)\]

and the automorphism \(\tau = \tau_{\varphi}\) of \((X, B, \mu)\) defined by

\[
\tau(y, u) = (\sigma y, u + \varphi(y)),
\]

where + means addition mod 1.

We put \(\mathcal{H} = \mathcal{F} \otimes \mathcal{L}\). One easily checks the following

Remark 2. If \(\varphi\) is \(\mathcal{F}\)-measurable then \(\mathcal{H}\) is a factor \(\sigma\)-algebra of \(\tau_{\varphi}\).

Lemma 2. If \(\varphi\) is \(\mathcal{F}\)-measurable, then

\[
h(\tau \mid \mathcal{H}) = h(\sigma \mid \mathcal{F}).
\]

We omit the proof for the same reason as in the case of Lemma 1 (see the Lemma in [A2]).

Let now \((Y_f, \mathcal{C}_f, \nu_f, \tau_f)\) be the special flow over \((Y, \mathcal{C}, \nu, \tau)\) under a function \(f : Y \to \mathbb{R}^+\).

For a \(\sigma\)-algebra \(\mathcal{F} \subset \mathcal{C}\) we denote by \(\mathcal{F}_f\) the restriction of the product \(\sigma\)-algebra \(\mathcal{F} \otimes \mathcal{C}\) to \(Y_f\).

Remark 3 ([B2]). If \(\mathcal{F}\) is a factor \(\sigma\)-algebra for \(\tau\) and \(f\) is \(\mathcal{F}\)-measurable then \(\mathcal{F}_f\) is a factor \(\sigma\)-algebra for \(\tau_f\).

Lemma 3. If \(f\) is \(\mathcal{F}\)-measurable then

\[
h(\tau_f \mid \mathcal{F}_f) = |t| \cdot (B(f))^{-1} \cdot h(\tau \mid \mathcal{F}), \quad t \in \mathbb{R}.
\]

Proof. It is enough to show the equality for \(0 < t < \inf\{f(y) : y \in Y\}\).

We consider, as in the absolute case ([A2]), the product space \(\tilde{Y}_f = Y \times [0, t]\) equipped with the product \(\sigma\)-algebra \(\tilde{\mathcal{F}}_f = \mathcal{F} \otimes \mathcal{L}^t\), where \(\mathcal{L}^t\) denotes the \(\sigma\)-algebra of Lebesgue sets of \([0, t]\), and the natural product measure.

Let \(\tilde{\tau}_f\) be the automorphism of \(\tilde{Y}_f\) defined by

\[
\tilde{\tau}_f(y, u) = (\tau_f y, u + \varphi_f(y)),
\]

where + means addition mod \(t\) and

\[
\varphi_f(y) = t - f(y) + \left[\frac{1}{t} f(y)\right].
\]

As Abramov observed, \(\tilde{\tau}_f\) is the automorphism induced by \(\tau_f\) on \(\tilde{Y}_f\). Therefore, by Remark 1, \(\mathcal{F}_f = \tilde{\mathcal{F}}_f\). It follows from Lemma 1 that

\[
h(\tilde{\tau}_f \mid \tilde{\mathcal{F}}_f) = (\nu(\varphi_f(Y)))^{-1} \cdot h(\tau_f \mid \mathcal{F}_f) = t^{-1} \cdot B(f) \cdot h(\tau_f \mid \mathcal{F}_f).
\]

Applying Lemma 2 we have

\[
h(\tilde{\tau}_f \mid \tilde{\mathcal{F}}_f) = h(\tau \mid \mathcal{F}).
\]

Combining (3) and (4) finishes the proof.

3. Relatively excellent \(\sigma\)-algebras. Let \(\tau\) be an automorphism of a Lebesgue probability space \((Y, \mathcal{C}, \nu)\) and let \(\mathcal{F}\) be a factor \(\sigma\)-algebra of \(\tau\).

Definition 1. A sub-\(\sigma\)-algebra \(A \subset \mathcal{C}\) is said to be relatively excellent for \(\tau\) with respect to \(\mathcal{F}\) if

\[
\begin{align*}
(\text{i}) & \quad \mathcal{F} \subset A, \quad \tau A \supset A, \\
(\text{ii}) & \quad \mathcal{F} \subset A, \quad \tau^n A = C, \quad \text{for some } n \geq 0.
\end{align*}
\]

There exists a sequence \(\{P_n\} \subset \mathcal{C}\) with \(\mathcal{F} \narrow \mathcal{A}\) such that

\[
\lim_{n \to \infty} h(P_n, \tau \mid \mathcal{F}) - H(P_n \mid \mathcal{A}) = 0.
\]

The proof of Theorem 1 of [K2] yields

Lemma 4. For every factor \(\sigma\)-algebra \(\mathcal{F}\) of \(\tau\) there exists a relatively excellent \(\sigma\)-algebra \(A\) with respect to \(\mathcal{F}\). Every such \(\sigma\)-algebra is relatively
perfect with respect to \(\mathcal{F} \), i.e., it also satisfies the following two equalities:

\[
\begin{align*}
\tau^n \mathcal{A} &= \pi(\tau | \mathcal{F}), \\
\mathcal{H}(\tau | \mathcal{F}) &= \mathcal{H}(\tau \mathcal{A} | \mathcal{A}).
\end{align*}
\]

(8) \hspace{2cm} (9)

If \(\mathcal{F} = \mathcal{N} \), then \(\mathcal{A} \) is simply an excellent \(\sigma \)-algebra as defined in [B1].

In the sequel we shall use the relative Pinsker formula ([K2]):

\[
\mathcal{H}(\tau | \mathcal{F}) = \mathcal{H}(\tau \mathcal{A} | \mathcal{A}).
\]

(10)

for \(P, Q \in \mathcal{Z} \), \(\mathcal{H}(P \vee Q, \tau | \mathcal{F}) = \mathcal{H}(P, \tau | \mathcal{F}) + \mathcal{H}(Q, \tau | P \vee \mathcal{F}). \)

Lemma 5. If \(\mathcal{A} \subseteq \mathcal{C} \) is relatively excellent with respect to \(\mathcal{F} \) and \(Q \in \mathcal{Z} \) then the \(\mathcal{A} \)-\(\sigma \)-algebra \(\mathcal{A} \vee \tau Q^{-} \) is also relatively excellent with respect to \(\mathcal{F} \).

Proof. It is clear that the \(\mathcal{A} \)-\(\sigma \)-algebra \(\mathcal{A} \vee \tau Q^{-} \) satisfies (5) and (6). Let a sequence \((P_n) \subseteq \mathcal{Z} \) satisfy (7) and let \(Q_n = \bigvee_{m=0}^{\infty} \tau^{-m} Q, n \geq 0 \). We claim that the sequence \((P_n \vee Q_n) \) also satisfies (7) (for the \(\mathcal{A} \)-\(\sigma \)-algebra \(\mathcal{A} \vee \tau Q^{-} \)).

In the sequel we shall use some ideas from the proof of Proposition 1.3 of [B1].

For any natural numbers \(n, m \), formula (10) gives

\[
\begin{align*}
\mathcal{H}(P_n \vee Q_m, \tau | \mathcal{F}) &= \mathcal{H}(P_n, \tau | \mathcal{F}) + \mathcal{H}(Q_m, \tau | P_n \vee \mathcal{F}) \\
&= \mathcal{H}(P_n, \tau | \mathcal{F}) + \mathcal{H}(Q_m, \tau | (P_n) \vee \mathcal{F}).
\end{align*}
\]

(11)

Assume \(n < N \). Since \(\mathcal{H}(P_n | P_n) < \infty \) there exists a partition \(P_N^n \) with finite entropy such that \(P_n \vee P_N^n = P_n \). Simple properties of the conditional entropy give

\[
\begin{align*}
\mathcal{H}(P_n \vee Q_n | P_N^n \vee Q^{-} \vee \mathcal{F}) &= \mathcal{H}(P_n \vee Q_n | P_N^n \vee Q^{-} \vee \mathcal{F}) \\
&= \mathcal{H}(P_n \vee Q_n | P_N^n \vee Q^{-} \vee \mathcal{F}) - \mathcal{H}(P_N^n | P_n \vee P_N^n \vee Q_n \vee Q^{-} \vee \mathcal{F}) \\
&= \mathcal{H}(P_n | P_N^n \vee \mathcal{F}) + \mathcal{H}(P_N^n | P_N^n \vee P_n \vee \mathcal{F}) \\
&+ \mathcal{H}(Q \vee Q^{-} \vee (P_n) \vee \mathcal{F}) - \mathcal{H}(P_N^n | P_n \vee P_N^n \vee Q_n \vee Q^{-} \vee \mathcal{F}) \\
&\geq \mathcal{H}(P_n | P_N^n \vee \mathcal{F}) + \mathcal{H}(Q \vee Q^{-} \vee (P_n) \vee \mathcal{F}).
\end{align*}
\]

Hence, in view of (11) for \(m = n \), we get

\[
\begin{align*}
0 &\leq \mathcal{H}(P_n \vee Q_n | P_N^n \vee Q^{-} \vee \mathcal{F}) - \mathcal{H}(P_n \vee Q_n | P_N^n \vee Q^{-} \vee \mathcal{F}) \\
&\leq \mathcal{H}(P_n | P_N^n \vee \mathcal{F}) - \mathcal{H}(P_n | P_N^n \vee \mathcal{F}) \\
&+ \mathcal{H}(Q \vee Q^{-} \vee (P_n) \vee \mathcal{F}) - \mathcal{H}(Q \vee Q^{-} \vee (P_n) \vee \mathcal{F}), \quad n < N.
\end{align*}
\]

Since \(\mathcal{A} \) is generating and \((P_n) \) satisfies (7), it follows that taking the limit, first as \(N \to \infty \), and then as \(n \to \infty \), we obtain the desired result.

Corollary. If \(f : Y \to \mathbb{R} \) is measurable with an a.e. finite set of values then for every factor \(\sigma \)-algebra \(\mathcal{F} \) there exists a \(\sigma \)-algebra \(\mathcal{A} \) relatively excellent with respect to \(\mathcal{F} \) such that \(f \) is \(\mathcal{A} \)-measurable.

Proof. Let \(\mathcal{D} \) be an arbitrary relatively excellent \(\sigma \)-algebra with respect to \(\mathcal{F} \). Lemma 4 assures that such a \(\sigma \)-algebra exists. Consider the partition \(Q = \{ Q_1, \ldots, Q_n \} \) of \(Y \) into sets where \(f \) is constant. It follows from Lemma 5 that the \(\mathcal{A} \)-\(\sigma \)-algebra \(\mathcal{A} = \mathcal{D} \vee \tau Q^{-} \) is also relatively excellent with respect to \(\mathcal{F} \). It is clear that \(f \) is \(\mathcal{A} \)-measurable.

Now suppose \(g \) is an integrable function on \(Y \) with values in \(\mathbb{N} \). Let \((Y^0, \mathcal{C}^0, \nu^0, \tau^0) \) be the integral dynamical system over \((Y, \mathcal{C}, \nu, \tau) \) under the function \(g \) (cf. [CPS]). We denote by \(Q^g \) the partition of \(Y \) generated by \(g \), i.e.,

\[
Q^g = \{ g^{-1}(\{ k \}) : k \in \mathbb{N} \}.
\]

It follows from Lemma 1.1 of [B3] that \(Q^g \in \mathcal{Z} \).

For a given sub-\(\sigma \)-algebra \(\mathcal{F} \subseteq \mathcal{C} \) we denote by \(\mathcal{F}^0 \) the sub-\(\sigma \)-algebra of \(\mathcal{C}^0 \) defined in the same way as \(\mathcal{C}^0 \), i.e.,

\[
A \in \mathcal{F}^0 \iff A = \bigcup_{i=1}^{\infty} A_i \times \{ i \} \quad \text{iff} \quad A_i \in \mathcal{F}, \quad i \in \mathbb{N}.
\]

One easily checks the following

Remark 4. If the function \(g \) is \(\mathcal{F} \)-measurable and \(\mathcal{F} \) is a factor \(\sigma \)-algebra of \(\tau \) then \(\mathcal{F}^0 \) is a factor \(\sigma \)-algebra of \(\tau^0 \).

Let \(P = (P_k) \) be a countable measurable partition of \(Y \). We associate with it the partition \(\overline{P} \) of \(Y^0 \) as follows. The atoms of \(\overline{P} \) are all the sets \(P_k \times \{ k \} \), \(k \in \mathbb{N} \), and the set \(Y^0 \setminus \{ Y \times \{ 1 \} \} \).

Lemma 6. If \(\mathcal{F} \) is a factor \(\sigma \)-algebra of \(\tau \) such that \(g \) is \(\mathcal{F} \)-measurable then for every \(P \in \mathcal{Z} \) we have

\[
\mathcal{H}(P \vee \tau Q^g, \tau^0 | \mathcal{F}^0) = (E(g))^{-1} \cdot \mathcal{H}(P \vee \tau Q^g, \tau | \mathcal{F}).
\]

Proof. Let \(Y_0 = Y \times \{ 1 \} \), \(R = P \vee \tau Q^g \) and \(T = \tau^0 \). It follows easily from the definition of \(T \) that

\[
\begin{align*}
Y_0 \in R \mathcal{T}^0, \\
(R \mathcal{T}^0 \vee \mathcal{F}^0) \cap Y_0 = [(P \vee \tau Q^g) \vee \mathcal{F}] \times \{ 1 \}.
\end{align*}
\]

Hence

\[
\mathcal{H}(Y_0 | R \mathcal{T}^0 \vee \mathcal{F}^0) = \chi_{Y_0}
\]

(13)

(14)

(15)
and

\[\nu^\varphi(A \times \{1\} \mid R_T^{-} \vee \mathcal{F}^g)(y, 1) = \nu(A \mid (P \vee \varphi \mathcal{Q}^g)^- \vee \mathcal{F})(y), \quad A \in \mathcal{C}, \ y \in Y. \]

From (16) it follows that

\[\int_{Y^g} I(R \mid R_T^{-} \vee \mathcal{F}^g) \, d\nu^\varphi \]

\[= - \int_{Y^g} \sum_{A \in P \vee \varphi \mathcal{Q}^g} \chi_A \chi(1)(y, 1) \cdot \log \nu^\varphi(A \times \{1\} \mid R_T^{-} \vee \mathcal{F}^g)(y, 1) \, d\nu^\varphi \]

\[= (E(g))^{-1} \cdot \int_{Y} I(P \vee \varphi \mathcal{Q}^g \mid (P \vee \varphi \mathcal{Q}^g)^- \vee \mathcal{F})(y) \, d\nu \]

\[= (E(g))^{-1} \cdot h(P \vee \varphi \mathcal{Q}^g, \tau \mid \mathcal{F}). \]

The equality (15) implies

\[\int_{Y^g} I(R \mid R_T^{-} \vee \mathcal{F}^g) \, d\nu^\varphi \]

\[= - \int_{Y^g} \chi_Y \chi(y, 1) \cdot \log \nu^\varphi(Y^g \mid R_T^{-} \vee \mathcal{F}^g)(y, 1) \, d\nu^\varphi = 0. \]

Comparing (17) and (18) one gets

\[h(R, T \mid \mathcal{F}^g) = \int_{Y^g} I(R \mid R_T^{-} \vee \mathcal{F}^g) \, d\nu^\varphi = (E(g))^{-1} \cdot h(P \vee \varphi \mathcal{Q}^g, \tau \mid \mathcal{F}), \]

which completes the proof.

Now suppose \(f : Y \to \mathbb{R}^+ \) is an integrable function such that

\[\inf \{ f(y) : y \in Y \} = \alpha > 0. \]

Let \(\tau_f \) be the special flow on the space \((Y_f, C_f, \nu_f)\), built under \(f \) and over \(\tau \).

For a given sub-\(\sigma \)-algebra \(A \subseteq C \) we denote by \(A_f \) the sub-\(\sigma \)-algebra of \(C_f \) defined by

\[A_f = \{ A \cap Y_f : A \in A \otimes \mathcal{C} \}. \]

Remark 5 \((B2))\). If \(A \subseteq C \) is an increasing sub-\(\sigma \)-algebra for \(\tau \) and \(f \) is \(A \)-measurable then \(A_f \) is increasing for the flow \(\tau_f \).

Let \(Y_1 = Y \times [0, 1] \). With any measurable partition \(P \) of \(Y \) we associate the partition \(P^1 = P \times [0, 1] \) of \(Y_1 \). For a sub-\(\sigma \)-algebra \(A \subseteq C \) put \(A^1 = A \otimes \mathcal{L}^1 \).

Let \(R_k = \{ R_{k,i} : 0 \leq i < 2^{k-1} \} \) be the partition of \(Y_1 \) defined by

\[R_{k,i} = \{ (y, u) \in Y_1 : i \cdot 2^{k-1} \leq u < (i+1) \cdot 2^{k-1} \}, \quad 0 \leq i < 2^{k-1} - 1, \ k \geq 1. \]

It is clear that the smallest \(\sigma \)-algebra \(\mathcal{R} \) containing all \(R_k \), \(k \geq 1 \), coincides with the \(\sigma \)-algebra \(\mathcal{N} \otimes \mathcal{L}^1 \).

Let \(\tau_1 \) be the automorphism of \(Y_1 \) induced by \(T^1 = \tau_f^1 \). It follows from Abramov’s remark (see the proof of Lemma 3) that

\[\tau_1(y, u) = (\tau u, u + \tau(y)), \]

where \(\varphi(y) = 1 - \{ \tau(y) \} \). The \(\sigma \)-algebra \(C \otimes \mathcal{N} \otimes \mathcal{L}^1 \) is a principal factor \(\sigma \)-algebra of \(\tau_1 \) and the corresponding factor automorphism is isomorphic to \(\tau \).

Since \(\tau_1 \) is induced by \(T^1 \) on the set \(Y_1 \), \(T^1 \) is an integral automorphism over \(\tau_1 \). Let \(g \) be the corresponding ceiling function on \(Y_1 \), i.e., the Poincaré cocycle for \(\tau_1 \). If the flow \(\tau_f \) is ergodic then the well-known Katz theorem implies \(\int_{Y_1} g \, d\nu_f = 1 \), i.e.

\[E(g) = \int_{Y_1} g(y, u) \, d\nu \, du = E(f). \]

For a given measurable partition \(Q \) of \(Y \) we denote by \(\overline{Q} \) the partition of \(Y_f \) which consists of all atoms of \(Q \) and the set \(Y_f \). If \(\mathcal{D} \) is a sub-\(\sigma \)-algebra of \(Y_f \), \(\overline{\mathcal{D}} \) stands for the \(\sigma \)-algebra \(\overline{\mathcal{D}} = \{ A \cup Y_f : A \in \mathcal{D} \} \).

Let \(\mathcal{F} \) be a factor \(\sigma \)-algebra of \(\tau \).

Lemma 7. If \(A \subseteq C \) is a relatively excellent for \(\tau \) with respect to \(\mathcal{F} \) and \(f \) is \(A \)-measurable then \(A_f \) is

(19) \(f \) increasing for the flow \(\tau_f \),

(20) \(f \) relatively excellent for \(\tau_f^1 \) with respect to \(\mathcal{F} \).

Proof. Since \(A \subseteq \mathcal{F} \) and \(A \) is generating, \(A_f \) is of course generating and \(A_f \supseteq \mathcal{F} \).

We may assume \(\alpha = 1 \). Put \(T^1 = \tau_f^1 \) as above. It is easy to check that \(T^1 A_f = (\overline{\tau A})^1 \vee \mathcal{R} \). Since, by Remark 6, \(A_f \) is increasing with respect to \(T^1 \), the above equality implies

\[A_f = (\overline{\tau A})^1 \vee \mathcal{R}. \]

Let \((P_n) \) be a sequence of partitions of \(Y \) with finite entropy such that

\[\lim_{n \to \infty} (h(p_n, \tau \mid \mathcal{F}) - H(P_n \mid \mathcal{A}^1 \vee \mathcal{F})) = 0. \]

Let \(Q_n,k = (\tau p_n)^1 \vee R_k \), \(n, k \geq 1 \). We shall show that there exists an increasing sequence \((u_k) \) of natural numbers such that

\[h(\overline{Q}_{n,k}, T_f^1 \mid \mathcal{F}_f) - H(\overline{Q}_{n,k} \mid A_f \vee \mathcal{F}) \to 0 \]

as \(k \to \infty \). Since \(\overline{Q}_{n,k} \not\subseteq (\overline{\tau A})^1 \vee \mathcal{R} \) the equality (21) implies that \(A_f \) is relatively excellent for \(T^1 \) with respect to \(\mathcal{F} \). One easily checks the following.
equations:
\[\nu_f(\tau A \times [0,1] \mid A_f \vee F_f)(y, u) = \nu(\tau A \mid A \vee F)(y) \]
and
\[\nu_f(Y_1 \mid A_f \vee F_f) = \chi_{Y_1}, \quad (y, u) \in Y_1, \ A \in \mathcal{P}, \ n \geq 1. \]
From these equalities a straightforward computation yields
\[H((\tau P_n)^1 \mid A_f \vee F_f) = (E(f))^{-1} \cdot H(\tau P_n \mid A \vee F). \tag{22} \]
For every set \(A \in \mathcal{C} \) we have
\[\tau_f^{-1}(A \times [0,1]) = \tau^{-1}(A) \times [0,1], \]
\[(\nu \times \lambda)(A \times [0,1] \mid D \otimes \mathcal{L}^1) = \nu(A \mid D), \]
where \(D \) is an arbitrary sub-\(\sigma \)-algebra of \(C \). Therefore we get
\[h((\tau P_n)^1, \tau_f \mid F \otimes \mathcal{L}^1) = h(P_n, \tau \mid F) \tag{23} \]
and
\[H((\tau P_n)^1 \mid [\tau(A)^1]_{\tau_f} \vee F \otimes \mathcal{L}^1) = H(P_n, A^{-} \vee F). \tag{24} \]
We have
\[h(\overline{Q}_{n,k}, T^1 \mid F_f) - H(\overline{Q}_{n,k} \mid A_f \vee F_f) = a_{n,k} + b_{n,k} + c_{n,k}, \]
where
\[a_{n,k} = h(\overline{Q}_{n,k}, T^1 \mid F_f) - (E(g))^{-1} \cdot h(Q_{n,k} \vee \tau Q^q, \tau_1 \mid F \otimes \mathcal{L}^1), \]
\[b_{n,k} = (E(g))^{-1} \cdot h(Q_{n,k} \vee \tau Q^q, \tau_1 \mid F \otimes \mathcal{L}^1) \]
\[- (E(f))^{-1} \cdot h((\tau P_n)^1, \tau_1 \mid F \otimes \mathcal{L}^1), \]
\[c_{n,k} = (E(f))^{-1} \cdot h((\tau P_n)^1, \tau_1 \mid F \otimes \mathcal{L}^1) - H(\overline{Q}_{n,k} \mid A_f \vee F_f), \]
for \(n, k \geq 1 \). By Lemma 6 we have
\[a_{n,k} = h(\overline{Q}_{n,k}, T^1 \mid F_f) - h(\overline{Q}_{n,k} \vee \tau Q^q, T^1 \mid F_f) \leq 0. \]
It follows from the relative Pinsker formula (10) and the equality \(E f = E g \) that
\[b_{n,k} = (E(f))^{-1} \cdot h(R_k \vee \tau Q^q, \tau_1 \mid (\tau P_n)^1) \tau_1. \]
Since \(R_k \subset \mathcal{A} \) we have, by (22)-(24),
\[c_{n,k} = (E(f))^{-1} \cdot h(\tau P_n \mid F \vee F_f) = (E(f))^{-1} \cdot h(P_n, \tau \mid F) \]
\[= (E(f))^{-1} \cdot h(P_n, \tau \mid F) - H(P_n, A^{-} \vee F), \quad n, k \geq 1. \]
Since \(\overline{P}_n \not\subset \mathcal{A} \) and \(\mathcal{A} \) is generating we have \([\tau P_n]_{\tau_f} = [P_n]_{\tau_f} \not\subset \mathcal{C} \otimes \mathcal{L}^1 \). But \(\mathcal{C}^1 \) is a principal factor \(\sigma \)-algebra for \(\tau_1 \) so \(\lim_{n \to \infty} b_{n,k} = 0 \) for every \(k \geq 1 \). Therefore there exists an increasing sequence \((n_k)\) of natural numbers such that \(\lim_{n \to \infty} b_{n_k,k} = 0 \). Thus
\[\lim_{k \to \infty} (h(\overline{Q}_{n_k,k}, T^1 \mid F_f) - H(\overline{Q}_{n_k,k} \mid A_f \vee F_f)) = 0, \]
i.e. \(A_f \) is relatively excellent for \(T^1 \) with respect to \(F_f \), which completes the proof.

4. Relatively perfect \(\sigma \)-algebras. Our proof of Theorem B below requires a relative version of the well-known Ambrose–Kakutani–Rudolph (AKR) theorem ([AK], [Rud]).

Lemma 8. For every ergodic flow \(T \) on a Lebesgue probability space \((X, \mathcal{B}, \mu)\), given a nonatomic factor \(\sigma \)-algebra \(\mathcal{H} \) of \(T \) and two positive real numbers \(p \) and \(q \) with \(p/q \) irrational, there exists a special flow \((Y_f, \mathcal{C}_f, \nu_f, \tau_f)\), where \(f \) is a measurable function with values \(p \) and \(q \), a factor \(\sigma \)-algebra \(\mathcal{F} \) for \(\tau \) such that \(f \) is \(\mathcal{F} \)-measurable and an isomorphism \(\varphi : X \to Y_f \) of the flows \(T \) and \(\tau_f \) such that \(\varphi(\mathcal{H}) = \mathcal{F} \).

Proof. Let \(\xi \) be a measurable partition of \(X \) associated with \(\mathcal{H} \), i.e. \(\xi = \overline{H} \). It is clear that \(T^1 \xi = \xi, \ t \in \mathbb{R} \). We consider the quotient Lebesgue space \((X/\xi, \mathcal{B}_\xi, \mu_\xi)\) equipped with the quotient flow \(T_\xi \). We denote by \(H_\xi : X \to X/\xi \) the natural homomorphism. It follows from the proof of the AKR theorem ([cf. [CFS]]) that there exists a measurable partition \(\zeta_\xi \) of \(X/\xi \) which is regular for \(T_\xi \), i.e.
\[\zeta_\xi \text{ is a measurable partition of } X/\xi \text{ into intervals of trajectories with lengths } p \text{ and } q, \ i.e. \text{ sets of the form } \{T_\xi^t C : 0 \leq t \leq \tilde{f}(C)\}, \text{ where } \tilde{f}(C) = p \text{ or } \tilde{f}(C) = q, \]
\[\text{the functions } F, C \text{ defined by } F(D) = \tilde{f}(C), C(D) = t, \text{ where } D = T_\xi^t (C), \text{ are } \mathcal{B}_\xi \text{-measurable}. \]

Now we define a measurable partition \(\zeta \) of \(X \) which is regular for \(T \). Let \(E \) be an element of \(\zeta_\xi \) and let \(\mathcal{C}_E (E) \subset X/\xi \), \(\mathcal{C}_E (E) \subset E \) denoting the beginning of the trajectory of \(T_\xi \) included in \(E \). We denote by \(\zeta \) the partition of \(X \) consisting of the following intervals of trajectories of \(T \):
\[\{T^t x : x \in \mathcal{C}_E^{-1} (E)\} \]
where \(E \subset \zeta_\xi \).

It is easy to check that \(\zeta \) is regular for \(T \) with the same lengths \(p \) and \(q \) of trajectories.

Now we construct the desired probability space \((Y, \mathcal{C}, \nu)\) and the automorphism \(\tau \) of \(Y \) in the same way as in the proof of the AKR theorem. Recall that \(Y \) is the set of left ends of elements of \(\zeta_\xi \), i.e. the points belonging to \(H_\xi^{-1} \mathcal{C}_E (E) \), \(E \in \zeta_\xi \).
Let η be the measurable partition of Y whose elements are the sets $H_{\xi}^{-1}C_{0}(E), \ E \in \xi$, and let \mathcal{F} be the σ-algebra of η-sets.

It is clear that \mathcal{F} is a factor σ-algebra of τ. For every $y \in Y$, $y \in H_{\xi}^{-1}(C), \ C = C_{0}(E), \ E \in \xi$, the length $f(y)$ of the trajectory of y is equal to $\widetilde{f}(C)$. Hence f is \mathcal{F}-measurable.

Denoting by φ the isomorphism between X and Y defined in [CFS] we obtain the equality $\varphi(\eta) = \mathcal{F}$.

Let T be a measurable flow on a Lebesgue space (X, B, μ) and let \mathcal{H} be a factor σ-algebra of T.

Definition 2. A sub-σ-algebra $A \subset B$ is said to be relatively perfect with respect to \mathcal{H} if

(i) $A \supseteq \mathcal{H}$, $T^{t}A \supseteq \mathcal{H}$, $t > 0$,
(ii) $\bigvee_{t \in \mathbb{R}} T^{t}A = B$,
(iii) $\bigcap_{t \in \mathbb{R}} T^{t}A = \pi(T \mid \mathcal{H})$,
(iv) $h(T^{t} \mid \mathcal{H}) = H(T^{t}A \mid A)$, $t > 0$.

In the case $\mathcal{H} = \mathcal{N}$ the concept of a relatively perfect σ-algebra reduces to the concept of a perfect σ-algebra ([B1], [G2]).

Theorem B. For every ergodic flow T and a Lebesgue space (X, B, μ) and every factor σ-algebra \mathcal{H} of T there exists a relatively perfect σ-algebra with respect to \mathcal{H}.

Proof. We may assume that \mathcal{H} is nonatomic. Indeed, in the opposite case, due to the ergodicity of T, \mathcal{H} is finite, therefore $\mathcal{H} \subset \pi(T)$. Then it is easy to show, using formulas (1) and (2), that any perfect σ-algebra A for T (such σ-algebras exist by [B1], [G2]) is also relatively perfect with respect to \mathcal{H}.

Suppose now that \mathcal{H} is nonatomic. Due to Lemma 8 we may assume that $X = Y_{f}, \mathcal{S} = \mathcal{C}_{f}, \mu = \nu_{f}, T^{t} = \tau_{f}$ and $\mathcal{H} = \mathcal{F}_{f}$, where \mathcal{F} is a factor σ-algebra of the automorphism τ of (Y, \mathcal{C}, ν) and f is a \mathcal{F}-measurable function with two values. We put $\alpha = \min\{f(y) : y \in Y\}$.

In view of the corollary to Lemma 5 there exists a relatively acceptable α-algebra $D \subset C$ for τ with respect to \mathcal{F} such that f is D-measurable.

We put $A = D_{f}$. The D-measurability and the conditions (5) and (6) of relatively acceptable σ-algebras imply that

$$A \supseteq \mathcal{H}, \quad T^{t}A \supseteq A, \quad t > 0, \quad \bigvee_{t \in \mathbb{R}} T^{t}A = B.$$

Applying Lemma 3.1 of [G1] and the equality (9) we get

$$h(T^{t} \mid \mathcal{H}) = t \cdot (E(f))^{-1} \cdot h(\tau \mid D) = t \cdot (E(f))^{-1} \cdot h(\tau \mid \mathcal{F}), \quad t > 0.$$

On the other hand, Lemma 3 gives

$$h(T^{t} \mid \mathcal{H}) = h(\tau_{f} \mid \mathcal{F}_{f}) = t \cdot (E(f))^{-1} \cdot h(\tau \mid \mathcal{F}), \quad t > 0.$$

Therefore we have

$$h(T^{t} \mid \mathcal{H}) = H(T^{t}A \mid A), \quad t > 0.$$

It follows from Lemma 7 that \mathcal{A} is relatively excellent for $T^{\alpha} = \tau_{f}$ with respect to \mathcal{H}. Applying the equality (8) to T^{α} we get

$$\bigcap_{t \in \mathbb{R}} T^{t}A = \bigcap_{t = -\infty}^{\infty} T^{t} \mathcal{A} = \pi(T^{\alpha} \mid \mathcal{H}) = \pi(T \mid \mathcal{H}),$$

which completes the proof.

5. **Principal factors and an axiomatic definition of entropy.** Let $T = (T^{t})$ be a measurable flow on a Lebesgue space (X, B, μ).

Definition 3. A factor σ-algebra \mathcal{H} of T is said to be principal if every increasing σ-algebra $A \supseteq \mathcal{H}$ is a factor σ-algebra.

Definition 4. A factor flow $S = (S^{t})$ of T is said to be principal if every factor σ-algebra \mathcal{H} of T such that the flows $T_{\mathcal{H}}$ and S are isomorphic is principal.

Lemma 9. If a flow S is a principal factor of T then $h(T) = h(S)$. Conversely, if $h(T) < \infty$ then the reverse implication is also true.

Proof. Let \mathcal{H} be a principal σ-algebra such that S and $T_{\mathcal{H}}$ are isomorphic. It follows from Theorem B that there exists an increasing σ-algebra $A \supseteq \mathcal{H}$ with

$$h(T^{t} \mid \mathcal{H}) = H(T^{t}A \mid A), \quad t > 0.$$

It follows from the assumption that $h(T^{t} \mid \mathcal{H}) = 0, \ t > 0$. Therefore the formula (1) implies

$$h(T) = h(T_{\mathcal{H}}) = h(S).$$

Now suppose $h(T) < \infty$ and $h(T) = h(S)$. Let \mathcal{H} be a factor σ-algebra such that S and $T_{\mathcal{H}}$ are isomorphic. Therefore we have $h(T) = h(T_{\mathcal{H}})$, i.e.

$$h(T \mid \mathcal{H}) = 0, \text{ let } A \supseteq \mathcal{H} \text{ be increasing. Since}$$

$$H(T^{t}A \mid A) = H(A \mid T^{-t}A) \leq h(T^{t} \mid \mathcal{H})$$

we have $H(T^{t}A \mid A) = 0, \ t > 0$, and so A is a factor σ-algebra.

Let now τ be an automorphism of a Lebesgue space (Y, C, ν) and $f : Y \to \mathbb{R}^{+}$ a measurable function with $\inf(f(y) : y \in Y) > 0$. From Lemma 9 and Abramov's formula ([A]) for the entropy of a special flow one obtains at once the following
Corollary. If an automorphism σ of (Y, C, ν) is a principal factor of τ then the special flow σ_f is a principal factor of τ_f.

Let X denote the set of all ergodic flows on Lebesgue probability spaces. We denote by T_0 the flow defined as follows (cf. [O2]). Let τ be a Bernoulli 2-shift which acts on a Lebesgue space (Y, C, ν). Let $P = \{A, B\}$ be an independent generating partition of Y for τ and let

$$f = pA + qB,$$

where p and q are positive reals such that $p + q = 2$ and pq^{-1} is irrational.

We define $T_0 = (T_0)^{\#$} as the flow built under f with base automorphism τ. It follows from [O1] that T_0 is a Bernoulli flow. The Abramov formula implies

$$h(T_0) = (E(f))^{-1} \cdot h(\tau) = \log 2.$$

Applying the Ornstein isomorphism theorem for Bernoulli flows ([O2]) and Lemma 9 one may prove, using Rokhlin’s idea (cf. [Ro]), the following

Proposition. Let $H : \text{Act} \to [0, +\infty]$ be a function such that $H(T_0)$ = $\log 2$ and for all $T, S \in \text{Act}$ the following conditions are satisfied:

(i) if S is a factor of T then $H(T) \geq H(S)$,

(ii) if S is a principal factor of T then $H(T) = H(S)$,

(iii) $H(T \times S) = H(T) + H(S)$.

Then $H(T) = h(T)$ for all $T \in \text{Act}$.

References

Centre National de la Recherche Scientifique
Laboratoire de Mathématiques d'Orsay
UMR 8628
Université Paris-Sud
91405 Orsay Cedex, France
E-mail: BLANCHARD@LMD.UNIV-MNRS.FR

Received March 18, 1994
Revised version December 10, 1994

(3245)