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Adjoint characterisations of unbounded
weakly compact, weakly completely continuous
and unconditionally converging operators

by
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Abstract. Choracterisations are obtained for the following classes of unbounded lin-
ear operalors hetwoen normed spacos: weakly compact, weakly completely coutinnous, and
uneanditionally eonverging operators, Examples of closed unbounded operators belonging

to these clusses ave exlibited, A sufficlent condition is obtained for the weak compactness
of T to tmply that of 7,

1. Introduction and preliminaries, In this paper we shall be consid-
ering a linear operator 70 X D D(T) — ¥ where X and ¥ are normed
Spaces,

Lt us first recall sowe facts about bounded operators. Let T be bounded
aud everywhere dofined and let X and ¥ be Banach spaces. Then 7' is weakly
tompact iF it transforis hounded sequences into sequences having a weakly
convergent subsequence; 7' is weakly completely continuous if it transforms
weak Cauchy sequences into weakly convergent sequences; and T' is uncondi-
tonally converging 16 it transforms wealkly unconditionally convergent series
into unconditionally convergent series. In order to characterize these classes
of operalors we futroduce, for a given normed space £, the following subsets
of 1"

BOEY - e ¢ B there exists v soquence (e,,) in £ such that

o e (B B -l J ey, b

NI A ¢ 17 there exists o weakly uneonditionally Cauchy

saries 7 ep in I such thai
L (J‘(ib‘”, Z!j’)"lilll E;?I -]f’-w,i}
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(throughout this paper J denotes the canonical injection of a given normed
space into its second dual). Clearly J(E) C N(E) C K(E)C L.
We have the following theorem of J. Howard and K. Melendez:

1.1. THEOREM [HM]. Let T : X — Y be a bounded lincar operator, where
X and Y are Banach spaces, and let A denote X" (resp. K(X}, N(X)).
The following properties are equivalent:

(i) T is weakly compact (resp. weakly complelely continuous, uncondi-
tionally conuerging),

(il) T"(A) C JY,

(iit) 77 is o(Y",Y)-0(X', A)-continuous.

The unbounded analogues of these operators will now be defined.

Throughout the remainder of the paper T will denote a linear operator
T:X 5 D(T) — Y, where X and ¥ are normed spaces, unless otherwise
specified. The domain, null space and range of T are denoted by D(1), N(T)
and R(T) respectively. The operator .J % (or simply Jg) denotes the natural
injection of the subspace E into X.

The adjoint (or conjugate) of T' is the operator T defined by

D(T"y={y €Y' :4'T is continuous on D{T"},
T'.Y' 5 D) — D(TY, (T'y)e’ =¢(Te) (€ D(T)).

Given a linear subspace M of X, Ji5 (or simply Jar) will denote the
operator that is the natural injection of M into X. Then T’ is the adjoint
(or conjugate) of TJpry in the usual sense (see e.g. [G, T1.2.2]).

We write By = {z € X : [|z|| < 1}.

The operator T is called

s weakly compact if TBpry is relatively o(Y, D(T"))-compact,

» weakly completely continuous if T' transforms o (D(T), D(T)")-Cauchy
sequences into (Y, D(T'))-convergent sequences,

o unconditionally converging if whenever ) z; is weakly uncondition-
ally convergent in D(T), each subseries Y Tay, of > Ta; is o(Y,D{(1"))-
convergent.

The corresponding clagses of operators will be abbreviated WC(X,Y),
WCC(X,Y) and UC(X,Y) (or simply WC, WCC and UC). Evidently
Wc ¢ WCC ¢ UC.

Let @ denote the canonical quotient map of Y/ onto Y/ D{T")*. Then,
with the usual identification, QY = D(T)" and thus the second adjoint of
T presents as an operator T" ; D(T)" D D(T") — QY.

In Section 2 we ghall obtain characterisations analogous to those of The-
orem 1.1. The properties corresponding to (ii) and (iii) are:

(1) T(A) C QJY,
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'(i?i)”"l" 14 ”{_D’(T’),'5’)—0(19('1‘)’,A)~continum1s, where 4 = D(T)",
KDY or N(DUTY). (However, other subsets of D(T)" can be consid-
eredd (see Proposition 2.2).)

L shoukl be noted that the topology o (D(T"),Y) is Hausdorff if and
only i7" s elosable (soe [G, T1.2.11]).
In Section 3 we deseribe examples and investigate special cases; in par-

ticalat, the upper-seti-Fredholin operators (F.-operators) (Definition 3.4),
and the Tanberian operators (Definition 3.3).

Section 4 investigates the connection between weak compactness of T
anel that of 17,

The attthors are gratefnl to Professor V. Fonf who read the wanuscript
atel maude several suggestions contributing to an improved set of results.
[n particular, Corollavy 2.8, and the observation (ili)’ immediately preced-
g i, are die to V. Foufl e has provided us with independent proofs of
Theorem 2.4, and of (1)= (i) of Theorem 2.7.

1.2, PROPOSITION. If o & D{T) then T" Jx = QJTx.

Proof. For y' ¢ DO} and y"€Y", we have (Qy")(v'") = (| D(T)) (%)
= 'y’ Henee
(1.2.1) Gy = ;z/”.f};z<1,,).

Now }l,vt w ¢ D) and ' € D). Then JaT'y' = ¢y'Ta = (JT)y =
(.}’T;rr).l}”,,‘,)y’ = QT by (L2.1). Therefore (J2)T' is continuous on
DT, whenee Juw ¢ D) and T Je = QJTx. w

L3, ProvosrrioN. I is the only o(D(T"), D(TY Y- (DY, D(T"))-

conbinuous operator from DY into D(T) such that T" ’Jg((;f))” =QJY'T.

Proof. Suppose § : DY 2 D) — DT s a o(D(T"), D(T)')-
e(D(T'), D{T")}-continnous operator satisfying S.Ilg((%)” = QJyT. Let
o ¢ DU By Goldstine's theorem there is a net () in D(T") such that
a(DCPY, DUMYlim Ja,, = 2", By assumption Jz, — Sz’ with respect
o el DCPY, D). Thug Sa? = o(DCPY, DII)lim Ja, = o(D(T'Y,
DI Y-lioa @13 T = o (DT, D)) T S = T2 m

2. Characterisations

2.1, PROPOSIION, Let 1Y be continuous and (et T (A)Y © QJY, where
A= DY (regp, K(DTN,N(DITY). Then T € WC (resp. WCOC, UC),

Proof. Sinee 77 is continuons, we have (7Y = D(T)" [G, I1.2.8].

Clage LMY ¢ QJY. Let (z,) beanet in Bpepy, Then (Jx,) is a
tel i 83y which Ix a(D(T), (1) )-compact and accordingly has a sub-
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net, assumed for simplicity to be itsell, which is (D(T)", D(T))-convergent
to some point 2" € Bpryr. Now by the o{D(T"), D(T))-o (DY, D(1"))-
continuity of I (Proposition 1.3) we have

T2 = o(D{TY, DITY)-Lm T Ja,.

By hypothesis T"2" = QJY where y € V. But T"Jx, = QJTz, by
Proposition 1.2. Hence @Jy = o(D(T"Y, D(T"))-lim QJ T, Therefore g =
o(Y, D(T"))-lim Tz, showing that 7" € WC.

Case 2: TV(K)CQJY (where K = K(D(T))). Lot (@) be a o(D(T),
D(T)')-Cauchy sequence. Then by the nuiform boundedness principle, the
sequence of norms (}|z,||) is bounded. The rest of the prool is now similar
to that of the preceding case.

Case 3: T(N) C QJY (where N = N(D(T))). Let 3" 2; be a weakly
unconditionally convergent series in D(T). Then Y |Ju;(2')| < oo for each
z' € D(T). It follows that the sequence of partial sums of 3> a; is norm
bounded. The proof now proceeds as in the previous two cases. m

2.2. PROPOSITION. Let B be a linear subspace of D(T"). Then the fol-
lowing properties are equivalent:

(iy T"(B) c QJY,
(if) T/ s o(D(T"), QY )-0(D(TY, B)-continuous.

Proof. The proofis exactly analogous to that of the bouncled case [HM],
making the appropriate changes for the general case.

()=(ii). Assume T"(B) C QJY and let /, be a net in D(T") which
is o(D(T"), QJY)-convergent to 3. For b € B we have T"b € QJY and
thus (T78)(y") = Um(T"d)(y.), i.e. B(T'y') = lmb(T'y!). Thus Ty =
o(D(T), B)-lim T'y,,. Hence T" is o{D(T"), QIY)-o(D{TY, B)-continuous.

(ii)=>(i). Assume (ii) and let b € B. We shall verify that the linear funec-
tional 10 is o (D(T"), QJY)-continuous. Let (y}) be anet in D(T") which is
a(D(T"), QJY }-convergent to 3. Then by (ii) we have B{Ty) = lmb(T"y’),
Le. (T"b)(y") = Lim(T"b)(4,), as required. Hence TBYCQJY. m )

2.3. Prorosition. Let §:V o D(S) = Z be a continuous operalor,
let T € WO(X,Y) (resp. WCCO(X,Y), UC(X, Y)) and let R(T) ¢ D(5).
Then ST € WC (resp. WCC, UC).

Proof Case 1: T € WC. Let (2.} be a hounded net in DSTY =
D(T) Then (T'z,) has a subnet, for simplicity assiined to be itself, which
is a(}:", D(T"))-convergent. Evidently (ST) = T"§", by the hypothesis on S.
Let 2 € D((ST)') = D(T"5"). Then 2’ € D(S') and 5’7 ¢ D(T") whence

im 2 (§T2,) = lim &2 (Tzy) = §'2'y = 2 (Sy)
for some y € V. Therefore ST ¢ W( .
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Case 27 € WOC. Lot (z,,) be a o(D(ST), D{ST)")-Cauchy sequence,
Then () is a(D(T), D(T)")-Canchy and hence (Ti,,) is o (Y, D(T"))-con-
vergent, The proof now proceeds as in the previous case. .

Jase BT € UC. Let 372 be a weakly unconditicnally convergent
series n D(ST'), hence in D(T7). Then for each subseries 3 Tiry, there exists
y € Y such that y = o(Y, D(T"))-lim 37| Tzp,. The rest of the proof now
follows as iu the previous two cases. m

2.4, Trusonem. Leb T be o elosable unconditionally converging operator
and Lot Y e complete, Then T ds contsnuous.

PProof. We may clearly suppose that X is complete and that 7 is densely
delined and von-zero. Since T' is closable, D(I) is a total subset of ¥’
(G, IL.2.11] and aceordingly the functional

, ly'y|

S Y o e
defines a renorming of Y. Write Y1 = (¥, - |l1) and let J; denote the
identity from ¥ into Yy, Write Ty = ;7. Then 7} is a continuous operator,
Let Ty be the closure of Ty. By Proposition 2.3, Ty € UC. Let W denote
the injective operator J;fll J1. We shall verify that R(ﬁ_) C Jy, Y. Indeed,
let # € X = D(T}) and select a sequence (2,,) in D(T) such that [lz —
Yoy @il| = 0. Then ¥ @, is weakly unconditionally convergent. Since Ty €
UC there exists y1 € ¥; such that y] >0 Thws — yly; for every y| €
Y!. But ’f’;(}: @) = ﬁr Therefore Jy,y1 = Tiz a8 required. The pjoof
is completed by showing that D(W='Ty) = X for then, since W17} is
evidently a closed operator, W‘l’fl will be bounded by the Closed Graph
Theorem and the continuity of 7' then follows since T = w =1 | D(T).
We have D(W 1Ty} = T-YD(W 1)) = T7Y Iy, V1) = D(T1) = X since
R(’f‘l) C Jy, Y1, as required. =

(yet)

Examples 3.13 show that completeness of ¥ is essential in Theorem 2.4.

An example of a natuwrally arising closable operator with incomplete
range space is the following: Let T be the inverse of a continnous or closable
operator §: ¥ ¢ D(S) — X (where Y may be complete). Then the operator
Ty : X o DT — R(T) defined by Ty =T (x € D(T"}) is closable.

2.5, COROLLARY. If T 15 an unconditionally converging operator then
T 48 continuous. :

Proof. We may clearly suppose that ¥ is complete. Then if 5 is the
regular contraction of T' (see [K]), defined by § = Qpry, T, it follows from
Theorem 2.4 that &' is continuous. Hence 7' is continuous (see e.g. [C5,
3.3]). =
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2.6. LEMMA. T Bpruy is conteined in the o(D(T"Y, D(T")) -closure of

QITBp .

Proof. Let 2" € Bpery. By Goldstine's theorem there is a net (z,,)
in Bpery such that Jz, - 2" in the o(D(T}", D(T)}-topology. Since
T is o (D), D{T) }-o(D('Y, D{T"))-continuous, T"2" = lin 1" Juv, =
im QJTz, convergence being in the ¢(D{T"), D(T")}-topology. m

2.7. THEOREM. Let A = D(T)" (resp. K(D(T)), N(D(T))). Then the
Jollowing properties are equivalent:

(1) T is weakly compact (resp. weakly completely continuous, uncondi-
tionelly conwverging).
(if) 7" is continuous and T"{A) C QJY .
(iii) T" ds both norm-norm continuous and o(D(1"), QJY ) -o(D(TY, A)-
continuous.

Proofl (i):}(") Case 1: A = D(T)". Let T be weakly compact.
Then J(T Bpr)) is relatively o(JY, D(T")}-compact. Let 2 € D(T"). By
Lemma 2.6 there is a net (z,) in Bpery such that Q(JTz,) — T"e" with
respect to o(D(T")', D(T")). By hypothesis (z,) has a subnet, which for
simplicity we assume to be itself, such that J7Tz, — Jr Y Wllh respect
to o(JY, D(T")) for some y € Y. Hence QJTz, — QJy with respect to

o(D(T"Y, D(T")). Since o{D(T")', D(T")) is a HavsdorfF topology, it follows
that 77" = QJy € QJY.

Case 2: A = K(D(T)). Assume T € WOC. Let 2" € K(D(T) and let
(zn) l.ae a sequence in D(T') such that 2" = J(D(T)” D(TY)-lim Jz,. Since
(zn) is thus o(D(T), D(T)")-Cauchy, (T'z,) is a(Y, D(F’)) -convergent. Lot
y = o(Y, D(T"))-lim T,. We have

(2.7.1) (Jzn)z' —a"(z")  (z' e D(T)).

Hence by the continuity of 7", D(T") = D(T)" and

(2.7.2) (T2l = {(QITa)y — (T'"y (4 € D(T))
since o' € D{T""). But since

(2.7.3) (Tzn)y' —y'y (v € D(TY)

it follows from (2.7.2) and {2.7.3) that
(T2 = (QIyy' (v € D)),
Since the topology o(D(T'Y, D(I")) is evidently Hausdori we have 7" " ==
QJY . Hence (ii) follows.
Case 3: A = N(D(T)). Assume 7' € UC and let 2 € N(D{TY). Then
there exlsts:. a weakly uncondmonally convergent series > w; in D(T') such
that =" = o(D(T)", D(T)")- -lim 307 Ty Since T € UC, for cach subseries
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2 Ty, there exists y € ¥ such that y = ¢(Y, D(T"))-lim 3 T'zs,. The rest
of the prool now proceeds as for the previous case.

By Corollary 2.5, T" is continuous for each of the three cases considered.
The proof of the implication (i)=-(ii) is now complete.

The remajning hmplications are covered by Propositions 2.1 and 2.2 since
the continuity of 77 ensures that D(T") = D(T)" (see [G, 11.2.8]). =

In the particular case of weakly compact operators, V. Fonf [F] has ob-
served that condition {iil) of Theorem 2.7 can he simplified as follows:

({1i0)" T ds o (D), Y- (DY, D(TY")-continuous (see Corollary 4.7).

2.8, CorOLLARY [F]. Let K denote the class of operators T' such thet T'
i continuous, and lel Y be reflegive. Then WO = WOC = UC = K.

3. Examples of weakly compact, weakly completely continuous
and unconditionally converging operators. Let X be a Banach space.
It is shown in [HM] that X is weakly sequentially complete if and only if
K(X) = JX, and that X contains no isomorphic copies of ey if and only
if N(X) = JX. Combining this ohservation with Proposition 2.1 yields
immediately the following:

3.1, Prorostion. Let T X D D) = Y be a bineor operaior,

(a) If D(T) is reflexive then T 1s weakly compact,

(b) If D(TY 45 weokly sequentially complete then T is weakly completely
continuous.

(¢) If D(T) is o Banach space containing no isemorphic copies of cy then
T is unconditionally converging.

We may relax the completeness condition on D(T) in Propesition 3.1,
substituting an alternative assumption. Thus we have: '

3.2. PROPOSITION. Let T be continuous and let Y be a Banach space.

(a) It D(T) is reflexive then T is weakly compact.

(b) If D(T) dis weakly complete then T s weakly completely continuous.

{e) If DT conlaing no ssomorphic copies of cq then T s unconditionally
£ONVETFING. _

Proofl (a) Since 7' is continuous we have D(T") = D(T)". Let D(T)
be reflexive. Then D(T") = JD(T'). Hence R(T") = T"((JD(T))~) C
(1.7 D(T))™ (by the continuity of 7)) = (QJR(T))~ = QJR(T) C QJY =
QJY. Therefore T' is weakly compact by Proposition 2.1. _

(b) Let D(T) we weakly complete. Then I (D(T)) = JD(T) (see [HM])

and Lence 77K (D(T}) C C T"(JD(TY) C @JY as in the proof of (a). There-
fore T is weakly completely continuous by Proposition 2.1.
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{c) Let D(T") contain no isomorphic copies of ¢y. Then N (13(’1")) ==
J(D(TY)) (see [HM]) and the proof proceeds as in (a) and {(h) above. m

We recall the definitions of unbounded Tauberian and upper seini-Fred-
holm eperators:

3.3. DEFINITION [C5, C6]. The operator T : X D D(T) — ¥ is called
Tauberian if (T")~(QJY) C JD(T).

3.4. DerintTION [C1, C2]. The operator T': X D D(T7) - ¥ is called up-
per semi-Fredholm (or an F-operotor) if there exists a Anite-codinensional
subspace E of X {or of D(T)) for which (T1E)~! exists and is continuons.

It was shown in [C3] that F_-operators are Tauberian. We shall oblain
partial converses to Propositions 3.1 and 3.2.

3.5. PROPOSITION. Let T be a Tauberian operator.

(a) If T is weakly compact then D(T) is reflexive.

(b) If T s weakly completely continuous then D{T) is weakly complefc.

(c) If T is unconditionally converging then 1’5(T) containg no isomorphic
copies of ¢g.

Proof. (a) Let T be weakly compact. Then T (D(1")) € QJY by The-
orem 2.7, Since 7 is continuous, D(T") = D(T)". The Tauberian property
now implies that

TD(Ty ¢ D(T") = D(TY" ¢ JD(T),
whence D{T)" = JE(T), as required.

(b) Let T € WCC. Then T"K(D(T)) C QJY. Now JD(T) ¢ K(D(T))
C JD(T), whence (KD(T))~ = K(D(T)) = JD(T). Therefore D(T) is
weakly complete by [HM, 1.4]. :

(c) Similar to (b) above, using [HM, 1.3]. w

As an immediate consequence of Proposition 3.5(a) it foliows that the
spectrum. (and in fact the essential spectrum) of a weakly compact operator
with non-prereflexive domain contains the zero vector,

Propesition 3.5(a) also shows that a weakly compact operator defined
on a normed space with non-reflexive completion must have an infinite-
dimensional precompact restriction [C1, 2.2].

The operator T is called nowhere continuous [C'1] if there is no infinite-
dimensional subspace M of its domain for which the restriction T|M is
continuous.

3.6. EXAMPLE. On every separable reflexive Banach space X there exists

an everywhere defined weakly compact and nowhere continuous operator
from X into #;.
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"I'his follows immediately from Theorem 2.7 combined with [BKS, Propo-
sition B,

Ou the other hand, if Y is reflexive, T € L(£y,Y) and D(T) = £, then
T is weakly compact, and a dense subspace E of ¢ exists such that T|E is
continuous, by the proof of [BKS, Proposition 2].

3.7. ExAMPLE. A wealdy compact operator hetween Banach spaces hav-
ing a non-weakly compact restriction:

Lot X == Ly[0,1], Y = L,J0,1], 1 € ¢ £ oo, aud define T by D{(T) =
{f & 1.[0,1])  f7 exists almost everywhere and [/ € L,[0,1]}, TF = f/
(f ¢ D(1), where [’ is the derivative of f. Then D(T”) = (0) (see e.g.
[CL2]). Henee T is weakly compact. Now let M be the dense subspace of
Ly[0, 1] congisting of the absolutely continuous functions, Then, as is well
known, T'|A is a closed Fredhohn operator and hence not weakly compact
by Proposition 3.5.

While F-operators are Tauberian, Proposition 3.5(b) can be sharpened
in this special case (see Proposition 3.12). First we prove a lamma.
3.8. LuMMA. Let E be o closed finite-codimensional subspace of the nor-
med space X. Then D(T") = D((T|EY).
Prool. Let P be a bounded projection defined on X with range F, and
let y' € D((TIE)Y). Then
() [y'Tel < [y'T|E|l[e]l <00 (e € E).
We have, for z € D(T),
' T < |y TP+ |[yT({I - Pl
< |l TIE||P=]| + [y TI(I - PYX|[[|(Z — P)z|| by (%)
< ' TIB)| (2 + 1= Przll) + ly T = PYXN| (2] + 1 P=i])
S ' TIE| 1+ 1T = Pzl + [y T~ PXQ+ 121l
< ozl
for some ¢ > 0 depending on ¢/, since diw(! — P}X < oo, Hence we have
DTEYY ¢ D). Obviously D(T") < D{(T|E)"). Therefore D(T') =
D{(TIEYY). w '
3.9. COROLLARY. Let T' e WC (resp. WOO, UC) and let E be a closed
Jimite-vodimensional subspace of D(T). Then T|E is WC (resp. WCC, UC).

3.10. DErFINITION. We say that a subclass A. of the class of all Banach
spaces has the three-space property if it satisfies the following condition: If A4
is a closed subspace of a Banach space X such that X/M € A and M € A,
then X € A,
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3.11. PROPOSITION [AQ]. The classes of reflerive spaces, weakly sequen-
tially complete spaces and Banach spaces confaining no isomorphic copy of
eg, are spaces with the three-space property.

3.12. ProrosiTion. Let T be a weakly completely continuous Fy-opera-
tor. Then D(T) is weakly compleie.

Proof. There exists a closed finite-codimensional subspace & of D(T7)
such that (T|E)~! exists and is continuous [Cl, 2.2]. We write Ip =
(TVE)(T|&).

Let 7€ WCC. Then T|E € WCC by Corollary 3.9. Hence I'p € WOC
by Proposition 2.3. Consequently, every o(E, E')-Cauchy sequence in F is
o(E, E")-convergent, i.e. £ is weakly complete; in particular, E is complete.
It follows that D(T) is complete and hence by the threec-space property
(Proposition 3.11) weakly complete. w

3.13. ExaMprLEs. We construct a closed unbounded operator defined
everywhere on a Banach space of each of the following types:

(i} weakly compact,
(ii) weakly corpletely continuous but not wealdy compact,
(iil) unconditionally converging but not weakly completely continuous.

Let X be an infinite-dimensional Banach space. Let Tp be a restriction of the
identity on X to a dense subspace of codimension one. Put ¥ = R(Ty) and
select a point zp € X\ D(Tp}. Define T &€ L(X, Y} by Tz = Tpx (x € D(1h))
and Tzg = 0. Then T is an everywhere defined unbounded F,-operator
with one-dimensional null space. We shall verify that T' is closable, hence
closed. Let P, @ be complementary linear projections defined on X such that
R(P) = sp{ao}, R(Q) = D(Ty). Then T'z = Qxz. Let (z,,T2,) — (0,y)
(y €Y = QX). Then (2n,zn — Pay) — (0,y), whence Pz, — —y € PX.
But PX N QX = (0). Hence y = 0 whence T is closable as claimed. By
Propositions 3.1 and 3.5, T has the property (i), (ii} or (iii) stated above for
the following respective choices of X:

(i) X a reflexive space,
(ii) X a weakly complete non-reflexive space (e.g. €1 or Ly),
(iii) X a Banach space containing no isomorphic copy of ¢ which is not
weakly complete {e.g. the James space [LT, p. 25]).

4. Adjoint weakly compact operators. Here we investigate the rela-
tionship between a weakly compact operator and its adjoint or preadjoint.
We find (Corollary 4.3 below) that Gantmacher’s theorem [DS, p. 485] holds
for the Kothe “regular contraction”™ of JYT described in the proof of Corol-
lary 2.5,
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4.1 PROPOSITION. The following statements are equivalent:
(1} T ds continuous,
(ii) T 4s mnnmrom and D(T") 3 = 0.

Proof. Recali that T’ is continuous if and only if D(TV) is o(¥Y",¥)-
closed ([L}; sec also [O5]). Assume (i). Then 7" is continuous, and since
JyT' Is continmous and thus closable, D(T) is o(T", ¥ )-dense [G, I1.2.11] as
(Jy ) = 1", Hence D(T') ¢ = 0. Thus (1)=>(ii). Converscly, assume (ii).
Then DY is both a(Y!, ¥ )-dense and closed in ¥, and thus DT =Y".
Therefore T is conthmous by [G, 11.2.8]. =

The following corollary can be viewed as an extension of the Closed
Grraph Theorew for Banach spaces. The operator T will be called completely
clogable it JET' i closable.

4.2, COROLLARY. Let T' be completely closable. Then T is confinuous if
and only 4 17 is continuous.

An equivalent restatement of Corollary 4.2 is the following: For an arbi-
trary operator T, TV is continuous if and only if the regular contraction of
Jy T is continuous.

4.3. CoroLLARY. Let ¥V be complete and T closable. Then T is weakly
compact if and only f T is weakly compact (and then T' is continuous).

Proof. Let T be weakly compact. Then T is continuwous by Theorem 2.4
and hence 7" is weakly compact by standard results. Conversely, let T be
weakly compact. Then 77 is continuous by Corollary 2.5. Hence 7' is contin-
nous by Corollary 4.2. Now the continuous extension T of T in L(D(T)Y)
is continuons and has weakly compact adjoint T Therefore T is weakly
compact by Theorem 1.1, »

4.4, ConoLLary. If T is weakly compact then so is T".
Proof. Consider the regular contraction of 7.

Suppose that T is an F_-operator [CL2] (i.e. TV is a ¢.-operator) having
a continuons adjoint. Then 7 cannot be weakly compact uvless D{T} is
refllexive. This follows from combining Proposition 3.5 with Corollary 4.4.
For example, if T is a linear surjection of €3 onto ¢y then D(T"} is finite-
dimensional; in partienlar, T cannot be partially continuous [CL1, Cor. 4].

Further conditions for the implication T' weakly compact = T weakly
compact to hold will now be derived. We shall do this through first general-
ising the notion of weak compactness by replacing the topology o(T', D(T))
by o E, D(T")) for an arbitrary linear subspace F satisfying JY C E C Y
(ef. [CI6]). Our results combine those of the thesis [Gv] with earlier sections
of the present paper.



204 T, Alvarez et al

4.5. PROPOSITION. Let JY C E C Y". Then the following proprrlbics wre

equivalent:

(i) T"D(T") < QE,

(1) TV is c(D(T"), E)-o{D(TY, D(T"))-continuous.

Proof. (i)=-(ii). Assume (i) and let (y;) be a net in D(T") such that
yr, — ' with respect to o(D(T7), E). Let 2" € D{T). By assumption there
exists yh’ e E SUCh thaﬁt Tﬂ'mfﬁ — Qyﬁ' NOW a:f/T/:Uf r .F”(I?”’,U, o ,!/H;Ul' v

lmy"y!, = UmT"z"y!, = lima"T'y!,. Heuce Ty, — Ty i o(D{TY,
D{T"M).

(if)=>(1). Suppose T" is o (D{T"), E)-a(D(T), D(T")}-continunous, Lot 2
€ Bp(rvry. By assumption there exists a finite subset F' < E such that
Fy c (T 1{{2"}y). We claim that

(4.5.1) ﬂ ker(z') < ker(T"z").
2 EQE

Le,f; 1;;/ re D(T’)\ker(T”m”). Put w' = Z(T”ﬂ:‘”y")wlyj. Then \:‘1:”7"1:1)’{ —
[T 2" w'| =H2 > 1 so0 ?”w’ ¢ {z"}o. Thus @' & (T)'({x"}) > Fy 2
MNyre F_ker(gl; ). Hence ' & (yep ker(y"”). Consequently, there exists y” ¢ If
for which y"y’ # 0. Since 3" € D(Z"), this means that Qy"y’ # 0, proving
(4.5.1). It now follows from (4.5.1) that 72" € sp{QF} C QE. m

4.6. COROLLARY. Let JY € E C Y". Then the following propertics are
equivalent:

@) T"D(I") C QE and T' is continuous,

(it) T is o(D(T"}, B)-o(D(T)', D{T)"}-continuous.

Pro o?. ‘Since D(T") = D(T)" if and only if T' is continuous {G, I1.2.8],
by Pr(f)/posmon 4.5 it only remains to verify that (ii) implies D(T") = D{T)".
I_f_et € D(TY an’d let |i.y,iL = y'| — 0 where y/,y' € D(T). Assuming
(1{1/),lwe have o(D(T"}, E)-limy;, = 1/, whence 2" T"y!, — 2"T"y’. Therefore
"T" e D(T'), i.e. 2 € D(T") as required. w

4.7. COROLLARY. The following properties are equivelend:

(1) T is weakly compact,

(11) T'D(T") C QJY and T' is continuous,

(ili) T7 is o (D(T"), ¥)-o(D(T), D{T)"}-continuous.

Proof. Put E = JY in Corollary 4.6 and use Theorem 2.7. =

4.8. PROPOSITION. Let JY C E C Y. Consider the Jollowing properties:

(1) JTBp(ry is relatively o(E, D(T'))-compact,
(i) T D(T") C QE.

Then (1)=>(il), and if T" is continuous then (i) and (if) are equivalent.
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Prool. Suppose JT Bpepy is relatively o(E, D(T”))-compact. Let & €
By, By Lemia 2.6 there exists a net (z) in Bpepy such that QJ Tz, —
T An the o{ DT, D(T"))-topology. By assumption (z.) has a subnet,
for simplicity assmned to be itself, such that J7w, — y” with respect
W o(E, D) for some y"' €- B, Now QJTz, — Qu’ with respect to
a (DY, DY), Since o(D(2Y), D(T')) is Haunsdorfl, T"x" = Qy”. Hence
(1} (ii).

Now stuppose that 77 is continuous (so that D(1) = D(T')") and that
TDUTYY ¢ QF. Let (wa) be a net in Bpepy. Then (Jw,) is a net in
Bpyepery and sinee B3y s o (D(T)", D(TY )-conpact, (z.) has a subnet,
assumed for shimplicity to be itself, such that Ja, — =’ with respect to
a( DT, DY) for some @ € Bpepye. By bypothesis there exists y' e E
sueh that 1" == Qy". Now TJax, — T"2" in the a(D(T"), D(T"))-
topology. For all y' € D{T') we have "'y’ = Qy"y' = Um(T" Jza )y =
i J Ty’ Thas JTx, — 3" with respect to o{E,D(T")). m

4.9. DrrINITION. On Y define the seminorm || || p¢rry by

Iyl iy = sup{ly"y'| - 4" € D(T)}.
Note that ||y | pery € [lv7]] (" € Y''). For the D(T")-seminorm topol-

ogy to coincide on JY with the norm topology it is necessary and sufficient
for D(T") to have positive Dixmier characteristic ([D]; see e.g. [C4]).

4.10. NOTATION, Let JF be a subspace of Y and F a subspace of Y.

EPU will denote the || || perr) seminorm closure of £

JF|E will denote the set of functionals {Jy'|E : y & F},

Epyrsy will denote B equipped with the ||| p(z/) seminorm restricted
to E.

411, PROPOSITION. Let E be a subspace of Y". Then JD(INE C
(Epern)

Proof Let v’ € D(I7), ¥ # 0. Let (y},) be a sequence in D{T"} such
that 3/, # 0 and y), — o'. For each y" € Y we have (Jy'/|y'Ny" =
tinn (o /D SNy gy Thus for all ' & B, [Ty "€y 1y loern,
so JY'|E € (Bper) . w

4,12, Proposirion. Let JY ¢ BECY”,

() If JD(T)|E = (Epra)’ then T' ds continuous.

(b) Let Y & B € TP, Then JD(T)E = (Eprn) if and only if
T 48 continuous.

Proof. (a) Suppose JD(I')E = (Ep)- By Proposition 4,11,

JD(T)|E = JD(T")|E. Since JY C E, D(T") = D(T") and so T' is contin-
wous [G, 11.2.15].
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(b) Let JY ¢ E  JYPT"). Necessity follows from (a). For the converse,
assume that 7" is continuous. Let 2’ € (Epqn)’ and define ¢ by y'y = 2'Jy
(y €Y). For y € ¥ we have [y'y| = |2/ Jy| < ||| |Tullpery < 12| v, so
y' € Y'. For each & € D(T), ly'Tz| < | 2| |[TT=l pery = |l2'|| sap{ly' T -
y' € Bpern} < |Z N 1T =il so ¢ € D(T'). Now let y” € E. Since y' e
TY 2T {here is a sequence (y,) in Y such that [|Jy, — ¢"|pery — 0.
Now y'y' = limy'y, = limz'Jy, = z'y’. Therefore 2’ = Jy'| L. Hence
(Epry) < JD(T')|E. The reverse inclusion is clear. w

4.13. PROPOSITION. Let JY C E ¢ TYP) and let 1" be continaous.
Then Bpry is a(D(T"), E)-compact.

Proof. By Proposition 4.12, (Ep¢py)' = JD(T")|E. We first show that
B(ppeny = JBp|E. Let ' € B(gy, )+ Then iz"l] € 1 and there cxists
y' € D(T") such that 2/ = Jy'|E. Let y € By. Then |Jy{lpepy £ 150
lv'y| = |2’ Jy| < 1. Thus y' € Bpry. Let 2 € JBppn|E. Then there exists
y' € Bpere such that 2’ = Jy'|E. For each 3 € Bpiray, |2y = 1"y £ 1,
50 HZ"H < 1. Thus B(ED(T'))’ = JBD(Tf)IE as claimed.

By the Banach-Alaoglu theorem, Big, .y i o((Epim)s Epgpg) -com-
pact. From the preceding discussion, Bpry 18 o{(D(1"), E)-compact.

4.14. COROLLARY. Let JY C EC IV PI) If T is a( D(T"), E)-o(D(TY,
D(T)")-continuous then T'Bp gy is o(D(TY, D(T)")-compacit.

Proof. By Corollary 4.6, T” is continuous. Hence Bp(y is o(D (1), E)-
compact by Proposition 4.13, and the result follows. m

4,15, THEOREM. Let E denote the subspace JY 2(T"). Then the following
properties are equivalent: .

(1) JT Bpry is relatively o(E, D{T"))-compact and T" is continuous,
(i) " D(T") C QF and 1" is continuous,
(i) T s o (D{T"), B)-a(D(TY, D{TY")-continuous,
(iv) T'Bp(ry is o(D(TY, D(T)")-compact.

Proof. We have (1) = (ii) {(Proposition 4.8) = (1il) (Corollary 4.G) =
(iv) (Corollary 4.14). It only remains to prove that (iv)=-(i). Assme (iv).
Write § = 7' and By = JD(T). By Theorem 2.4, § is coutinuous,
and then by Theorem 2.7, §”D(§") < Ei. By Proposition 4.5, 9 is
o(D(8"), By )-0(D(S), D(5)")-continuons. By Corollary 4.14, S/ Bp(g is
a(D(SY, D(5)")-compact, i.e. T Bppny is o(D(T), D(T’)”)—compacE. Lel;
(z) be anet in Bp(py. Then there exists a subnet of (x,,), assmmed for sim-
plicity to be itself, and a point 2" € Bpry such that T Jr, — TV with
respect to o(D(T"), D(T')"). Now T"x" is thus in the o(D(T"Y, D(T')")-
closure of QJY, which coincides with its norm closure. Hence there is a
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secpence (g, ) in Y such that |Gy, — 172" - 0. Let y” € Y be a Hahn-
Banach extension of 770", We have | /i, — " pern = $uPyen 0 [t Y —
vy | = Qg ~ @yl -~ 0. Hence " € 1. Now for y' & D(T") we have
gy e Tty e o JTway, so Yy = o(B, D(T'))-lim JT2,. Therefore
STy is relatively o(F, D{T'))-compact, showing that (iv)=(). =

1.16. COROLLARY. Let JY be DU -seminorm closed. Then T is weakly
rompaet if and only 4f 17 is weakly compact.

W cite two casos in whicl JY is D{T)-seminorm closed:

(a) il ¥ is relloxive,
(b) I DY haw positive Dixmier characteristics ] and ¥ is complete.
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