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Singularities and normal forms
of generic 2-distributions on 3-manifolds

by

B. JAKUBCZYK (Warszawa) and M. Ya. ZHITOMIRSKIT (Haifa)

Abstract. We give a complete classification of germs of generic 2-distributions on
d-manifolds. By a 2-distribution we mean either a module generated by two vector fields
(at singular points its dimension decreases) or a Pfaff equation, i.e. a module generated
Ly a differential 1-form (at singular points the dimension of its kernel increases).

1. Introduction. The aim of this paper is to give a description of generic
singularities of 2-distributions on 3-manifolds. In particular, we give a com-
plete classification of such singularities and a list of local normal forms,

By a smooth 2-distribution on a differentiable 3-manifold M we mean
an object which is more general than the usually considered field of planes
{4, C TyM}yen, dim4, = 2, depending smoothly on p (a distribution
of constant dimension 2). We allow the dimension to vary and, in generic
cases considered further, the dimension can drop by one or increase by one
outside a dense open subset of Af. More precisely, our 2-distribution @ on
Af will be described by either of the following two objects:

(1) a module (X,Y) of vector fields (over the ring of smooth functions)
generated by smooth vector fields X and ¥,

(2) a Pfaffian equation w =0, w € AY(M), which will be represented by
the module (w) of differential 1-forms generated by a smooth 1-form w.

The latter description means that we actually have in mind the field of
kernels of the differential l-form w.

We shall use the term “2-distribution” in this general sense, i.e. by a
2-distribution we understand either (1} or (2).

A generic 2-distribution at a generic point is equivalent to the Pfaff-
Darboux normal form. Such points are called nonsingular.
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First classification results on singularities of distributions were obtainad
by Jean Martinet [M] who identified singularities of codimension one. Fur-
ther, singularities were studied in [JP] (using the language of vector fields),
in [P], and in [Z1], [Z2] (using the language of Pfaffian equations). In all those
papers the main emphasis was put on obtaining general results concerning
most regular singularities in dimension n.

In this paper we are able to complete the study of generic singularities of
2-distributions in dimension 3 and give a complete classification and a list
of normal forms corresponding to all typical singularities. In particular, we
describe completety the most complicated generic singularity of 2-inodules of
vector felds (the normal form (3.6) in Theorem 3.3, and case (e) in Theorem
8.1). It was this singularity which was missing in the complete clagsification
of generic 2-distributions on 3-manifolds.

Below we informally describe the contents of the paper. We agsume all
objects considered in this paper to be smooth (of class C°°).

For a 2-distribution @ we denote by Q{p) the subspace span(X (p), Y (p))
C TpM or, if @ is a Pfaffian equation, the subspace Kerw|, C T,M. The
number dim @Q(p) is called the dimension of @ at p. For a 2-generated module
of vector fields it may be either 2, 1, or 0, for Pfaffian equations (w) it is
either 2 (if wl, # 0) or 3 (if w|, = 0).

DEeFINITION 1.1. Points at which the dimension of a 2-distribution is
not 2 are called degenerate points of this distribution. The set of degenerate
points is dencted by D.

DEFINITION 1.2. A point p € M is called a singular point of a 2-
distribution Q if either it is degenerate, or dim @(p) = 2 but the field of
planes which () defines in a neighbourhood of p is not a contact structure.
The latter means that w A dw|p, = 0, or, equivalently, dim span(X(p),¥ (),
X, Y](p)} < 3. The set of singular points is denoted by S.

. The Darboux theorem says that the germs of 2-distributions at nonsin-
gular peints are all equivalent to the germ at zero

(1.1) (dz + zdy)
or, equivalently, to the germ at zero

o 9 B
1.1/ —y T .
(L.1) (8:17’ By "“'az)

The normal forms (1.1) and (1.1') are called the sfandard contact struc-
ture on R® or the Pfaff Darboux normal form.

In Section 2 the natural local equivalence of fields of planes, 2-generated
modules and Pfaffian equations is defined. We give complete lists of lo-
cal normal forms of generic fields of planes, Pfaffian equations and mod-
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ules of vector fields in Section 3 {Theorems 3.1-3.3). In this section results
about stability and finite determinacy are also formulated {Theorems 3.4
and 3.5).

In Sections 4-5 we explain the word “generic” in the formmulation of the
theorems of Section 3. The results of Section 3 hold true for 2-distributions
satisfying two genericity conditions. The first of them, condition (4.GQ), is
given in Section 4. This condition guarantees that 5 is a smooth surface, the
set D of degenerate points of the 2-module is a smoeoth curve in S, and a
few more geometric facts (Propositions 4.2—4.4). One of them is the so-called
“typical nongenericity” (this term is taken from [JP}): Q(p} C TS for any
degenerate point of the 2-module Q.

The second genericity condition, condition (5.G}, is given in Section &.
In order to state it we introduce a vector field Z on the surface § which is
invariantly assigned to any 2-distribution, up to multiplication by a nonva-
uishing function. Condition (5.G) concerns the linear approximation of Z at
the singular points of Z. The vector field Z is connected with the following
natural distribution on S: d = {dy, = Q(p)NT,S},es. Namely, d is a smooth
field of lines near nonsingular points of Z (and in this case d, is generated
by Z(p)), and d is singular at the points where Z is.

Singular points of Z are called irregular, and nonsinguiar points of Z are
called regular points of the 2-distribution (Section 6). Nondegenerate points
might be both regular and irregular, the same is true for degenerate points
of 2-modules; all degenerate points of Pfaffian equations are irregular. We
also give another, equivalent definition of regular and irregular points in ge-
ometric terms {Proposition 6.1). Under genericity condition (5.G) irregular
points are isolated (in particular, degenerate points of a Pfaffian equation
are isolated).

In Section 7 we define types of irregular points in terms of the eigenvalues
of the linear approximation of the vector field Z. Nondegenerate irregular
points are divided into two types {hyperbolic and elliptic points), and degen-
erate irregular points are divided into three types (node, saddle and focus).
The topological behaviour of the distribution d defined above, near its singu-
lar point, is determined by the type of this point. As already noticed in [JP],
near a hyperbolic irregular point, d is topologically a saddle; near an elliptic
irregular point it is a focus (the latter fact is nontrivial). The geometry of
singularities is “richest” near irregular degenerate points of the 2-module
@ (which are isolated points of the curve D) of node or saddle type. Ifp
is such a point then there are four invariant directions in T},5: Qlp), T,D
and the eigenspaces of the linear approximation of the vector field Z. All
these directions are fi,i‘fferent. A numerical module in the classification of
4-tuples of straight lines in R®2 corresponds to the parameter in the normal
form (3.6).
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In Section 8 we give the main classification result of this paper (The-
orem 8.1); its formulation contains all typical singularity classes and the
correspondence between a singularity class and a normal form. Theorem 8,1
and the results of Sections 4-7 imply the results of Section 3. The normal
forms (3.1)-(3.3) and {3.5) were obtained in [M] ((3.1)), [JP] ({(3.5)), and
[Z1, Z2] ((3.3), (3.4)), but the genericity conditions in these articles were
different. Ours are more effective (they are more explicit and formulated in
the same terms for both Pfaffan equations and 2-modules of vector fields
for all possible degenerations), We show that the genericity conditions (4.G1)
and (5.G) imply those of [M], [JP] and [Z2]. After proving this fact the re-
ducibility to the normal forms (3.1)--(3.3) and (3.5) follows from the results
of these papers.

Local normal forms near degenerate points of Plaffian equations were
obtained in [L] for the even-dimensional case (in this case degenerate points
correspond to singularities of first order partial differential equations), and
in [Z1, Z2} for the odd-dimensional {in particular, 3-dimensional) case. The
normal form (3.4) given in this paper is similar to those obtained in [Z1, Z2],
but the advantage of the normalization (3.4) is that it is a 1-parameter family
of germs (in [Z21, Z2] a germ reduces to one of two l-parameter families), and
any two different real values of the parameter correspond to nonequivalent
germs. Nevertheless, the reduction to (3.4) is proved in almost the same
manner as in [22].

The principally new result of this paper is the normal form (3.6) for
germs of 2-modules at irregular degenerate points (the most difficult case).
Though this degeneration was also considered in [JP], the authors of [JP]
only managed to normalize the 2-jet of a germ (under more complicated
genericity conditions). We prove (Section 9) that the normalization (3.6)
holds using the homotopy method. This reduces the proof to solvability of
a singular system of partial differential equations. We succeed in reducing
this system to a single equation and prove its solvability in formal series.
We use the results of [B] (on the relation between formal and smooth solv-
ability of certain partial differential equations) in order to complete the
proof.

2. Equivalence. We consider the following natural local equivaleuce of
fields of planes, 2-generated modules of vector fields and Pfaffian equations
defined on a manifold A1,

We call two germs at p € M of modules (X,Y) and ()Z', 17') eguivalent if
there exists a germ of a diffeomorphism ¥ : (M,p) — (M, p) and a germ at
phof a 2 x 2 matrix H = H(z) = {hy(2)}, @ ¢ M, H(p) nonsingular, such
that

X = hll}? + hlg?, vY = }Lgljz ~+ hggi}.
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Using the fact that the ring of germs of smooth functions is local it can
be easily proved that this definition is independent of the choice of the
generators of the modules (cf. also [JP], Appendix). Similarly, two germs at
n € M of Pfafian equations (w), (3) are said to be equivalent if there exists
a germ of a diffeomorphism ¥ : (M, p) — (M, p} and a function f, f(p) # 0,
such that
w = fa.

Finally, two germs at p € M of fields of planes A and A are equivalent if
the corresponding germs of modules {or of Pfaffian equations) are equivalent.
Equivalenee at different points p,g € M can be defined analogously.

Remark. A field of planes can be represented, at least locally, by either
a 2-generated module of vector fields or a Pfaffian equation. On the other
hand, a 2-distribution @ defines a germ at p € M of a field of planes if
and only if dim@Q(p) = 2, for all p. In this case the passage from any of
the two descriptions to a field of planes is given by @ — {Q{p)}pens, and
the correspondence between a 2-generated module V' of vector fields and a
Pfafian equation P = (w) is established by the duality between 1-forms and
vector flelds, namely: V. — P =V+ ={w | w(Z)=0,Z € V}, and P —
V s Pt o= {Z | w(Z) = 0}. If the distribution is not of constant dimension,
then the above correspondence V +— P still makes sense except that the
number of generators may be different from two and one, respectively. For
example, il P = (w) and w = #dz + y dy+ 2 dz, then the corresponding V' is
3-generated, V = Pt = (28/8y — y8/0x,yd/0z — 20/8y,28/0x — xd/Iz).

In the space of all 2-generated modules of vector flelds on A and in
the space of all Pfaffian equations on A we can introduce the Whitney
topology (see e.g. [AVG] or [GG]) using the generators of the corresponding
modules. Then we can use usual notions and results of singularity theory,
in particular the Thom transversality theoremi. In the formulations of our
results wa will say that a property holds for generic objects if it holds for
objects in a sufficiently large set, namely, a countable intersection of sets
open and denge in the Whitney topology.

3, Normal forms, stability, and finite determinacy. We begin for-
nitlating our results with listing normal forms for generic fields of planes,
maxlules of veetor fields, and Pfaffian equations. This means that the classifi-
cation results of this section hold for 2-distributions which form a countable
intersection of open dense sets. This set of distributions is described in Sec-
tions 4 5.

TueorREM 3.1. The germ of a generic field of planes on M at any point
p € M is equivalent to one and only one of the germs (1.1}, (3.1), (3.2),
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and (3.3) (or, equivalently, the germs (1.1'}, (3.1), (3.2), (3.3"}), where

(3.1) (dz + z*dy),

, a 0 g 0
(31) (3:1:7_52; €T 8;’1),

(3.2} (dz + (zz + a?y + b’y dy),

, 0 2 sy L)
(3.27) (E’By (zz+ y+bﬂ:y)az ,
(3.3) (dz + (zz + 2% /3 + zy? + by )dy),

g @ 2 N

¢ e — (22 3 /8 ",2_132__'

(3.3") (am’(')y (zz+a”/3+ 2y -Iba‘y)az)

Here z, y, z are coordinates on R*, the germs are taken at 0 € R®, and
b € R is a parameter (an invariant distinguishing nonequivalent germs).

THEOREM 3.2. The germ of a generic Pfoffian eguation (W) on M ol
any point p € M is equivalent to one and only one of the germs (1.1), (3.1),
(3.2), (3.3) (if w|p # 0) or (3.4) (if wip = 0), where the germ (3.4) is defincd
by

(3.4) (2d2 ~ fzdx + (Oz + y)dy).

Here, as before, we consider the germs at 0 € R3. The real parameter 0 is
an invariant distinguishing nonegquivalent germs.

THEOREM 3.3. The germ of a generic module (X,Y) on M at any point
p € M is equivalent to one and only one of the germs (1.17), (3.1, (3.27),
(3.3) (f dimspan(X(p), Y(p)) = 2), and (35, (3.6) (¢f dim span(X(p),
Y(p)) < 2), where we define (3.5) and (3.6) by

' a 0 ad
(3.5) (ﬁ’mﬁ_y-i_y%)’

‘ a .9 o, 9y 0
(3.6) (%,m@+(z+Ax —|—y)$).

The real parameter X is an invariant distinguishing nonequivalent germs.

We postpone the explanation of the genericity conditions, the geometry
of the above singularities and the characterization of the equivalence classes
of (3.1)-(3.6) to Sections 4-8. The main result describing the geometry of
the above normal forms is Theorem 8.1, Here we only mention that for a
generic module or Pfafflan equation the normal forms (1.1) and (1.1°) hold
on an open set in M (which is the complement of the smooth surface 5),
the normal forms (3.1) and (3.1') hold at generic points of the surface S,
the normal form (3.5) holds at generic points of a smooth curve D € 8, and
the other normal forms hold at isolated points (see Fig. 1).
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M

: M
() (1.1

(a) Pfafian equation () 2-medule of vector flelds

Frig. 1. The set of points at which a generic 2-distribution is equivalent to one of the normal
forms (1.1) and (3.1) (3.6)

To describe structural stability and finite determinacy of the singularities
(3.1)(3.6) we recall the usual definitions. Let Q be a 2-distribution on M,
and let p € M. The germ of Q at p is called stable if for any close element
() there exists a point ¥ close to p such that the germ of Q at P is equivalent
to the germ of @ at p.

A germ u at p is k-determined if any germ [ at p satisfying jg,u = j;fﬁ
is equivalent to . Here j;f denotes the kth jet at p.

THEOREM 3.4. Let @) be o generie 2-distribution on a 3-manifold M.
There exists a set X C M consisting of isolated points such that the germ
of @ al any point p € M\X is stable and equivalent to one and only one of
the germs (L.1), (3.1), (8.5). The other germs (3.2), (3.3), (3.4) and (3.6)
are not stable.

THEOREM 3.5. Let @ be a generic 2-distribution on a 3-manifold M.
Then the germ of @ at any point p € M is 5-determined. Moreover,
the germs (1.1), (3.4) and (3.5) are l-determined, (3.1) and (3.6) are 2-
determined, and (3.2), (3.3) are 5-determined.

Stability and finite determinacy of differential 1-forms (not Pfaffian equa-
tions) are more restrictive properties and hold for Darboux and Martinet
normal forms only (see [GT] and [Z3]). _

In the following four sections we describe the geometry of our singu-
larities, including the genericity conditions, and we establish preparatory
facts needed for proving the main classification result (Theorem 8.1). The
theorems stated in this section are consequences of this result.

4. The first genericity condition. Basic geometry of singulari-
ties. To explain the word “generic” in the formulations of Theorems 3.1-3.5
we have to formulate genericity conditions under which the classification re-
aults of these theorems hold true. In this section we give the first genericity
condition (4.G) (the other is given in Section 5). We also describe the basic
geometry of singularities (Propositions 4.2-4.4) of a 2-distribution satisfying
(4.G) and we present preliminary normal forms.
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To formulate the frst genericity condition we take a nondegenerate vol-
ume form £2 on M {local if M is not orientable) and any generators X, Y
or w of a distribution @ (here, as in the previous sections, @ is cither a
2-generated module (X,Y) of vector fields, or a Pfaffian equation (w)). We
introduce a function H on M by

(4.1} H=00XY,[X,Y]) Q= (X)Y),
(4.2) H=whdw ifQ=(w).
Notation. The set of all singular points of € is denoted By S or S(Q),
and the set of all degenerate points by D or D{(Q).
Clearly, & is the O-level set of H:
(4.3) S={pe M| Hp)=0}.
The first genericity condition says that the 1—_)et of H is nonzero at any point
of M:
(4.G) JsH#0, peM (equivalently, H(p) = 0= dH|, #0, p € M).

Note that the function H depends on the choice of 2 and the generators, hut
the condition (4.G) is invariant {changing the volume form or the generators
leads to multiplication of H by a nonvanishing function).

PropOSITION 4.1. In the set of all 2-distributions the subset of those
distributions setisfying (4.G) is open and dense in the Whitney topology.

Proof. Condition (4.G) can be checked in terms of the 1-jet of a 2-
distribution at p. The l-jets violating (4.G) form a codimension 4 subman-
ifold in the space of all 1-jets, and the proposition follows from the Thom
transversality theorem. m

The following three theorems give basic information about the local ge-
ometry of singularities of a 2-distribution satisfying (4.G).

PROPOSITION 4.2. Let @ be a 2-distribution satisfying (4.G). Then §

15 a smooth surface (unless § =0). If Q is a 2-module then the set D of

degenerate points of Q is a smooth curve in S (unless D = (); the dimension
of Q{p) is equal to 1 at any point p € D. '

Proof. The set § is a smooth surface by (4.G3) and (4.3). In the case
where Q is a 2-module (X,Y) and X(p) = ¥(p) = 0 the 1-jet of H {defined
by (4.1)) at p is zero. Therefore dim Q(p) = 1 at any degenerate point p,
and the germ of @ at p € D is reducible to a normal form
(4.4) X =08/0z, Y =A8/by+ BO/dz,

where A and B are some function germs vanishing at p. Condition (4.G)
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implies
0B oA
AZZ
( Ox B ) 7 0.
Since A(p) = B(p) = 0 this means that elther

84, 0B
PG ) - S S ) 0

e
or

d
) - 2w 2 ) 40

therefore D = {(z,y,2) | 4 = B =0} is a smooth curve. m

PI{._OPOSITION 4.3. Let Q = (X,Y) be o 2-module of vector fields satis-
Tying (4.G), ond let p be a degenerate point of Q. Then

(a') Q(p) C TpSQ

() Qp) + LD = T,5;

{c) dimspan(X (p),Y(p), [X,¥](p)) = 2,

(d) the germ of @ af p is reducible (equivalent) to o normal form at
p=10,

aC

Clp) = 5 (p)=0.

Prool (a) As in the proof of Proposition 4.2 we can reduce the germ
at p to the normal form (4.4). The surface 5 is given by the equation H =
A%% - B% = 0. Since p iq a degenerate point of Q, it follows that A(p} =
B(p) =0, Q(p) = (8/8z), 3L (p) =0, and so we get (a).

(c) This statement is a direct consequence of (4.G).

(d) We can use the normal form (4.4), where A(p) = B(p) = 0. By
( ) either & o ;ré 0or 52 2 # (0. We assume, without loss of generality, that

g4 £, Introduc111g a new coordinate ¥ = A and multiplying the first
generator of @ by a nonzero function we obtain the normal form (4.5) with
some function germ C vamshmg at p. The condmon aC %= (p) = 0 can be met
on replacing z by 2 =z — (p)

() We use the normal Form (4.5). The surface S and the curve D are
given by the equations

(4.5) (X.Y) = (8/0z, zB/dy + C8/dz),

(4.6) 5= {(m,y,z) ¢ — 9,%% = 0}
(@7 D={(zys)es|z=0}

and {b) follows. m

PROPOSITION 4.4. Let (w) be a Pfaffian equation satisfying (4.G), and
let p be a degenerate poini. Then the space Kerdwl|, C TpM is invariant
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(does not depend on the generator w) and 1-dimensional {i.e. dwl|, # 0); the
germ of (w) at p is equivalent to the germ at 0 € R? of the form

(4.8) (w) = (zdy + dR(z,y,2)), JoR=0.

Proof. The invariance of Ker dw|, follows from the relation d(fw)|, =
f(p)dw|, which is true for every point at which w vanishes. The nondegen-
eracy of dw follows from (4.G): if w, = 0 and dw|, = 0 then j} (w A dw) = 0.
By the Darboux theorem for closed 2-forms the germ at p of the 2-form dw
is equivalent to dx A dy, therefore the germ of w at p s equivalent to the
normal form (4.8). u

5. Dynamical systems on the surface of singular points. The
second genericity condition. In this section we introduce a 1-distribution
d = {dp}pes (with singularities) on the surface S of singular points, which
is canonically defined by any 2-distribution @ on A satisfying the first
genericity condition. There exists a smooth vector field Z on § such that
span(Z)|, C d, at every p € § and equality holds except at isolated points.
The module of vector fields generated by Z is also invariantly assigned to
Q. We shall formulate the second genericity condition in terms of Z.

We define a distribution on § as the intersection of @ with S

d= {dp = Q(p) M ‘-—[}DS}QJES'

‘This distribution is smooth at nondegenerate singular points p € § such
that the 2-dimensional space Q(p) is transversal to 73,8 in T,M (then, near
p, d is a nonsingular field of lines); it is singular at the other nondegenerate
points (the dimension of d,, increases from 1 to 2 if Q(p) and 7,8 coincide).
The dimension of d, also increases from 1 to 2 when passing from a generic
point of a Pfaffian equation to a degenerate one. On the other hand, it
follows from Proposition 4.3(a) that if @ is a 2-module of vector fields, then
the dimension of d,, at a degenerate point p is equal to 1 (i.é. it is the same asg
at a generic point). We will show in this section that for generic 2-modules
of vector fields the distribution d is smooth near a generic degenerate point.

There exists another, dynamical invariant which is “stronger” than the
distribution d. It turns out that there exists a smooth vector field Z on §
which defines the distribution d at every point where d is of dimension 1
and which is singular at the other points.

To construct Z for the case @ = (w) we take a volume form {25 on §
(the construction is local if S is not orientable), and define Z by

(5.1) Z10g = w|s.

The construction of Z for the case where @ = (X, Y) can be done in two
steps. First, we pass from (X, V) to a differential 1-form w using a volume
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form {2 on M: w= .Q(X,Y,‘),@i.e.

w(Z) = Q(X,Y, 2"
(for any vector fleld Z' on M), and define a vector field Z; on S by
(5.2) 71 105 = w|s.

Note that Z; vanishes at every degenerate point of ¢ (since so does w). Using
the fact that the set D of all degenerate points of @ is a smooth curve (see
Proposition 4.2) we take a function f on § defining D, i.e. D = {f = 0},
and such that df|, % 0 for any p € D, and obtain the vector field Z on
dividing Zy by f: fZ = Z,. It is clear that Z is a smooth vector field.

Thus, we have defined a smooth vector field Z on S both for Pfaffian
equations and for 2-modules of vecter fields. Note that Z is not an invariant
of @ and it is defined up to multiplication by a nonzero function. However,
the 1-generated module (Z) is invariant, i.e. {£) does not depend on the
choice of the volume forms 2 and g and of the choice of the generator(s)
of @. The same is true for the vector field %; and the module (7).

In the following section we will use the vector field Z in order to define
singularity types of distributions. In fact, our definitions will depend on the
module {Z) only, and so they will be invariantly given.

PrROPOSITION 5.1. Under the genericity condition {(4.G) the veclor field
7 defines the distribution d, i.e. span(Z(p)) = dp of every p € § such thal

Z(p) #0.

Proof. In the case of a Pfaffian equation (w) we have w]g(Z) = 0,
therefore span(Z(p)) C Kerw|,. If p is a nonsingular point of Z then p is a
nondegenerate point of (w}, and Kerw|, is transversal to 7,5, i.e. dimdy, =1
and the theorem follows.

In the case of 2-modules (X,Y) and a nondegenerate point p the kernel
at p of the 1-form w = 2(X,Y, ) coincides with span(X(p),Y (p)), and
(Z(p)) = (Z1(p)), i.e. the proof reduces to the case of Pfaffian equations.

It remains to prove the proposition for a 2-module {X,Y’) and a degen-
erate poiut p. In this case we use the normal form (4.5). Let j;G = ay -+ bz.
The surface 9 is defined by the equation H = C - ’n%% = 0. This equa-
tion can be written in the form gy -+ bz + (z,y,z) = 0, where j;(p =0
Taking 2 = da A dy A dz, we get w = 2{X,Y,") = zdz — Cdy. Il a # 0
then (x,z) is a local coordinate system on S near p, and jzl, (wlg) = xzdz.
We take 2|g == dz A dz. Then j;Z1 = z8/0z. The curve D is {z = 0},
and so Z(p) = 0/8x. Therefore Z(p) € dp, and the conclusion follows from
Propositions 4.2 and 4.3.

In the cage where a = O the surface S is given by the equation z =
¥z, y), where jitp = 0. Choosing (z,y) as local coordinates on 8 and taking
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into account that C{p) = 0 = %—g we get jﬁn this case ji(w|s) = 0, and
consequently Z(p) = 0. w

Proposition 5.1 shows that the distribution d, corresponding to 2-mod-
ules, remains smooth near those degenerate points at which the field 7 does
not vanish.

As a byproduct of the above proof we obtain the following lemma.

LEMMA 5.1. Let @ = (X,Y") be o module satisfying (4.G), and let p be a
degenerate point of Q. Assume that X and Y have the normal form (4.5)

in coordinates (x,y,z) near p. Then Z(p) = 0 if and only if ?}f (p) = 0.

Now we will formulate the second genericity coudition for a 2-distribu-
tion ©Q:
(5.G) Let p € S be asingular point of the vector field Z. Then the linear
approximation of Z at p is nondegenerate. If p is a degenerate point
of (7 then, additionally, the linear approximation is nonresonant.

By a nonresonant linear operator we mean here a linear operator whose
eigenvalues Ay, A have the following property:

myAr + maky £ 0 for any integers m > —1, mq > —1.
The following statement shows that (5.G) is a genericity condition.

PROPOSITION 5.2. In the set of all Pfaffian equations (respectively, 2-
modules of vector fields) the subset of those satisfying conditions (4.G) and
{5.G) is a countable intersection of sets which are open and dense in the
Whitney {opology. Additionally, (5.G) is a condition on the 3-jet at p if p is
a nondegenerate singular point, i concerns the 1-jet at p if p is a degenerate
singular point of o Pfaffion equation, and it concerns the 2-jet at pif pis
a degenerate point of a 2-module.

Proof. Let us introduce the following singularity classes of germs at
0 € R* of 2-distributions satisfying (4.G):

® the singularity class P of germs (w) such that 0 is a singulaxr point,
wip # 0 and Z(0) =0; .

» the singularity class W of germs (w) such that wjy = 0 (and conse-
quently Z(0) = 0); .

» the singularity class E' of germs (X,Y) such that the origin is a degen-
erate point and Z{0) = 0.

Denote by P* the subclass of P consisting of germs for which the linear
approximation of Z at 0 € R? is degenerate. Let W, and E. bethe subclasses
of W and E respectively consisting of germs for which either the linear
approximation of Z at 0 € R? is degenerate or the ratio of the eigenvalues
of Z at the origin is equal to r (r is a fixed real number).
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Proposition 5.2 is a corollary of the transversality theorem and the fol-
lowing statement.

PROPOSITION 5.3. The codimension of each of the singularity classes P,
W and E is equal to 3 (in the space of all germs); the codimension of each
of the singularity classes P*, W, and E, in P, W and E, respectively, is 1.
The condition (w) € P (resp. (w) € P*) concerns the 2-jet (resp. the 3-jet)
of w at 0. The condition (w) € W {resp. (W) € W,) concerns the 0-jet
(resp. the 1-jet) of w at 0. The condition (X,Y) € E {resp. (X,Y) € E,)
concerns the L-jets (resp. the 2-jets) of X and Y at 0.

Prootl. First consider the singularity class P. Any germ at a nondegen-
erate point of a Pfafian equation is equivalent to a germ of the form

(6.3) (w) = {dy + C{z,y,2)dz), C0)=0

(this follows e.g. from. the fact that its kernel contains a nonzero vector field
which can be taken in the form 8/82). Then the condition “0 is a singular
point” means that %%(O) = () and the singular surface S is given by the
equation & = 0. The condition Z(0) = O is equivalent to Kerw|, C T,5.
For the germ (5.3) this means that
C a%c

b, —==(0) = == (0) = 0.
(5:4) 50 = 578, 0
Therefore the singularity class P is distingunished by a condition on the 2-jet
of a germ, and it has codimension 3 in the gpace of all germs.

Under the degeneration (5.4) condition (4.G) for p= 0 € R*® implies

B°O
5.t 0

It is shown in [Z2, p. 69] that the 3-iet of the germ (5.3) satisfying (5.4)

and (5.5) is reducible to a normal form

(w) = (dy + (wy + (2, 2))dz),
where f is a homogeneous polynomial of degree 3, and the matrix of the
linear approximation at the origin of the vector fleld Z has the form

( AwEéx a;fazz) (0)
gy i
E_g 828z

(up to a nonzero numerical factor). Therefore the condition (w) € P* con-
cerns the 3-jet of w, and the singularity class P* has codimension 1 in P.
Consider now the singularity class W. It is clear that it is distinguished by
a condition on the O-jet of a germ and has codimension 3. By Proposition 4.4
any germ (w) € W is reducible to the normal form (4.8). Denote by Wt the
subclass of W consisting of germs for which Ker dwjo € TuS. For the germ

(5.6)
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(4.8) this degeneration means that d' (1) = 0, therefore the codimension
of Wl in W equals 1. Let W° = W\W?'. Any germ of W' is equivalent to
a germ

(5.7) (w) = (k2dz +ady +dT(z,y)), AT =0

(the reduction of (4.8) to (5.7) follows from the Morse lemma with param-
eters we introduce a new coordinate 7 instead of 2 and use the condition
—a;g-({]) # 0). Now § = {z = 0} and it is easy to compute the matrix of the
linear approximation of Z at the origin: it has the formn

n2r
(H LE0) 250 )

na
~210)  —ZL0)

(5.8)

(up to a nonzero numerical factor). Therefore the singularity class W, is
digtinguished by a condition on the 1-jet of a germ (the 2-jet of R depends
on the 1-jet of w), and the codimension of W, N W° in WY equals 1. Conse-
quently, the codimension of W, in W is also 1.

Consider now the last case—the singularity class F. Tt is a subelass of the
singularity class 7 consisting of germs for which the origin is a degenerate
point and condition (4.G) holds true for p = 0. We have already proved that
G is distinguished by a condition on the 0-jet of a germ and the codimension
of G in the space of all germs is 2 (see the proof of Proposition 4.2). By

Proposition 4.3 any germ (X, V) € G is equivalent to a germ
ac
E(O) = 0.

By Lemma 5.1, ((X,Y)) € E if and only if ac( ) = 0. Therefore the singu-
larity class E is distinguished by a condition on the 1-jet of a germ and has
codimension 3 in the space of all germs.

Assume now that {X,Y) € E. Then 22(0) = (O) = 0 and by condition
(4.G), {0) # 0. In this case (5.9) can be eamly 1educcd to a normal form
(5.10) (X.Y) =(0/0x,20/0y + (z+ flx,y,2))8/82), jif=0.

Let fx, g, 2) = f(z,9,0)+2f1(z,y, z). Dividing ¥ by 1+ f; and introducing
a new coordinate Z = x/(1+ f1) instead of z we reduce (5.10) (after a simple
change of the generators) to a normal form

(X,Y) = (8/02,20/0y + (= + g(z,y) + q(x,v, 2))8/0z),
j09 =0, j3g = 0.

Let j2g = az? + by? + cxy. The change of the coordinate z to 2 =
z— (e/ 2)y reduces c to 0, and we obtain a normal form

(5.11) (X,Y) = (8/0z,28/8y+ (2 +ax?+ By +h(z,y,2))8/8z2), joh =0

(5.9) (X,Y) = (3/0z,28/8y + CB/8z), C(0) =
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Now it is easy to compute the linear approximation of the vector field Z: its
matrix is

(5.12) (3 g)

Therefore the singularity class B, is distinguished by a condition on the
2-jet of a germ and it has codimension 1 in E. The proof of Proposition 5.3
is complete. o

6. Regular and irregular points. In this section we agsume that our
2-distribution satisfies the genericity conditions (4.G) and (5.G). We define
regular and irregular points in terms of the vector field Z introduced in the
preceding section, In fact, these definitions depend on the module (Z) only,
and so they are invariant. We also give equivalent definitions of these types
of points in geometric terms.

DEFINITION 6.1. A singular point p € S of a 2-distribution € is called
regular if Z(p) 0 and irreqular if Z(p) = 0.

It follows from the definition of Z that oll degenerate points of o Pfaffian
equation are irregular, For 2-modules this is not true: degenerate points may
be both regular and irregular.

EXAMPLE 6.1. For the distribution (3.5) we have
S={y=0}, w=deadyrdzX)Y,)=2de—ydy,
wlg =wde, (Z))=(x0/0z), D={zs=y=0}, (Z)=(8/0z),
therefore every degenerate point (0,0, 2) is regular.
ExaMPLE 6.2. For the distribution (3.6) we have
§={z- " +y* =0},
w=de Ady Adz(X,Y,) = adz ~ {z + Ae® + % )dy.
One can take the coordinate system (z,y)} on S. In this coordinate system
we have
wlg = zd(Aa? - y?) — 2Azdy,
(Z1) = ((wy + Az*)3/02 + AzB/dy),
and D = {& = 0} N §. Therefore, we obtain
(Z) = ((y + Mz}3/0z + Azd/Dy),
and 80 the origin is an irregular degenerate point (the other degenerate
points are regular).
The nondegenerate points may be regular or irregular for both Pfaflian
equations and 2-modules.
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ExaMPLE §.3. For the field of planes {3.1) we have
S={z=0}, wls=ds, (2)=(Z)=(0/dy),

therefore all singular points are regular nondegenerate.

ExaMPLE 6.4. For the feld of planes (3.2) we have
S = {z+ 2y +3b2*y* =0}, wls = —d(2zy+ 3bz’y) - (z%y + 22y )dy.
After choosing the coordinate system (x,y) on S we obtain

(Z) = (Z1) = ((2z + 3bz” + 2y + 202%y*)0/ 0z ~ (2y + 6bzy)d/y),
therefore the origin is a nondegenerate irregular point.

The following theorem gives geometric characterizations of regular and
irregular points. Recall that a degenerate point of a Pfaffian equation is
always irregular.

PROPOSITION 6.1. For any 2-distribution satisfying (4.G) and (5.G) the
following holds.

1) A nondegenernte point p of a 2-distribution Q is irregular if and only
if Qlp) CT,5.

2) A degenerate point p € 5 of a 2-module Q = (X,Y) is irregular if
and only if

(6'1) spa.n(X(p),Y(p),[X, YM}J)) - T:US

Remark. For 2-modules of vector fields the two statements of Propo-

sition 6.1 can be replaced by one: a singular point is irregular if and only if
(6.1) holds.

Proof of Proposition 6.1. The first statement follows from the
definition (5.1) of the vector field Z. To prove the second one we use the
norial form (4.5) (Proposition 4.3). By Lemma 5.1, p is an irregular point
if and only if %(p) = 0. This condition is equivalent to (6.1) since X (p) =

8/8z, Y(p) =0, [X.¥](p) = 8/8y and T,,8 = Ker (4C(p)dy + 4 (p)dz). w

by Bz
PROPOSITION 6.2. 1) For any Pfaffian eguation satisfying (4.G) and
(5.G) degenerate points and irregular nondegenerate points are isolated points
in 5,
2) For any 2-module of vector fields salisfying (4.G) and (5.G) irregular
degenerate points are isolated points of D, and srregular nondegenerate points
are solated points of S\D.

Proof Ivery irregular point of a 2-distribution is a singular point of 7,
and by condition (5.G) singular points of Z are isolated. m
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If pis a degenerate point of a Pfaffian equation then the direction
Ker dw|y, is invariant (see Proposition 4.3). Under the genericity condition
(5.G) it has the following important property.

PROPOSITION 6.3. Let (w) be a Pfaffian equation satisfying (4.G) and

(5.G), and let p € § be o degenerate point. Then Kerdw|, ¢ T,M is
transversal to T),5.

Proof. By Proposition 4.3 we may assume that
(6.2) () = (ady + dR(z,5,5)), LR =0.

Theu dw = daAdy and Kerdwl|, = 8/8z. On the other hand, § = {%? =0}.
If Ker dw|, is not transversal to 7,5 then %%?(p) == (), and so we can take
the coordinate system (2,1) on S, where + is either x or 5. Then it is easy
to show that the 1-jet at p of the restriction of w to § has the form gdi,
where g i3 some linear function. It follows that the vector field Z has a
degenerate linear approximation at p. The contradiction with (5.G) shows
that the transversality holds. m

7. Types of irregular points. In this section we study the eigenvalues
of the linear approximation of the vector fleld Z at irregular points. We
divide irregular nondegenerate points into hyperbolic and elliptic ones, and

Jrregular degenerate points into node, saddle and focus points. We continue

the study of the geowmetry of singularities.

ProrOsSITION 7.1 ([M]). If p s a nondegenerate irreqular point then the
sum of the eigenvalues of Z at p is 0.

Proof. It suffices to give the proof for a Pfafflan equation (w), w|, #
0. The relation w A dw(p) = 0 means that (dw[p)|kerw), = 0. If p is an
irregular point then Kerwl|, = TS5, therefore (dw|g)|, = 0. This implies
that div Z|, = d(2(Z,-))|, = (dw|s)|p = 0 for any volume form 2 on S,
hence the sum of the eigenvalues of Z at pis 0. m

DurINTTION 7.1. A nondegenerate irregular point is called hyperbolic
{(resp. olliptic) il the eigenvalues of Z at this point are real and nonzero
(resp. purely imaginary, ie. Ay = —Ay = at, & # 0).

The paraholic case (A = Ay = 0) does not occur for generic 2-distribu-
tions: it is exeluded by the genericity condition (5.G).

For degenerate irregular points there are no restrictions on the eigen-
values Ay, Ay of Z. This follows from the formulas (5.8) (resp. (5.12)) for
the matrix of the linear approximation of Z at degenerate points of a Pfaf-
fian equation {resp. at irregular degenerate points of 2-modules) in suitable
coordinates.
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DEFINITION 7.2. A degenerate irregular point is called a node (resp.
saddle, focus) if the eigenvalues Ay, A2 at this point are real nonzero and
of the same sign (resp. real nonzero and of different signs for a saddle, and
Ap=oa-+ib a#0,b#0, for afocus).

From (5.G) it foliows that the other possibilities for the eigenvalues at
degenerate irregular points are excluded.

ExaMpPLE 7.1. We have shown (see Example 6.2) that the matrix of the
linear approximation at 0 € R? of the field Z corresponding to the 2-module
(3.6) is (i é) Therefore the origin is an irregular degenerate point of (3.6)
of saddle (resp. node, focus) type if A > 0 (resp. A < —4, A € (—4,0)).

ExampLE 7.2. Tt is easy to compute the matrix of the linear approxima-
tion at 0 € R? of the field Z corresponding to the Pfaffian equation (3.4): the
result is (§ ). Therefore the origin is a degenerate point of {3.4) of saddle

{resp. node, focus) type if # > 0 (resp. # < —4, 0 € (—4,0)).

The topological behaviour of the field d of lines (defined in Section 5)
near an irregular degenerate point depends on the type of the point: d has
the topological type of a node, saddle or focus in a neighbourhood of a
degenerate point of the type with the same name. The topological behaviour
of d distinguishes also irregular nondegenerate points, It follows from the
definition that d is of saddle type near a hyperbolic nondegenerate singular
point. The topological type of d near an elliptic nondegenerate singular point
cannot be defined in terms of the linear approximation of Z (since at these
points the eigenvalues are purely imaginary). Nevertheless, the following
statement holds.

PROPOSITION 7.2. Let Q be a generic (satisfying (4.G) and (5.G)) dis-
tribution, and let p be an elliptic nondegenerate irreguler point of Q. Then
@ has the topological type of o focus in a neighbourhood of p.

The proof can be found in [JP] and [Z2].

The local geometry of singularities is “richest” near an irregular degener-
ate point p of a 2-module Q) of vector fields (Fig. 2). Assume that p is either
a node or a saddie. Then under condition (5.G) the linear approximation of
Z has two different eigenspaces: the lines E1(p) and Ey(p) in T},S. Thus, we
have four invariant directions in 73,5: Q{p), 7,12, E1(p) and Ea(p).

PROPOSITION 7.3. Let Q be o generic (salisfying (4.G) and (5.G)) 2-
module, and let p € § be an irregular degenerate node or saddle. Then the
directions Q(p), TpD, Ei(p) and Es(p) are different.

Proof. In Section 5 we have shown that the germ of Q at p is equivalent
to the germ (5.11) at 0 € R3. The matrix of the linear approximation of Z at
p has the form {5.12) (in the coordinate system (z,y) on §), TS = Ker dz,
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Fig. 2. Local geometry of a generic 2-module (X, Y) near an irregular degenerate point p

Q(p) = (8/8x), therefore to prove the theorem we have to show that neither
the vector {1,0)" nor (0,1)! is an eigenvector of (5.12). This follows from
(5.G) as v #0and B#0. w

8. Singularity classes. Main classification theorem. The following
theorem may be considered as the main classification result of this paper.
The classification results of Section 3 are corollaries of this theorem and of
the results of Sections 4-7.

THEOREM 8.1. 1) Any singular point of a generic (satisfying {(4.G) 'cmd
(5.G)) Pfaffian equation on a 3-manifold M is of one of the types listed
below, and is equivalent to one of the normal forms (3.1)(3.4) according to
the following rule.

(a) A regular nondegenerate singular point is equivalent to the normal
form (3.1}, '

(b) Irregular nondegenerate singular points are either

(b1) hyperbolic points, equivalent to the normal form (3.2), or
(b2) clliptic points, equivalent to the normal form (3.3).

(¢) Irregular degenerate singular points are either

(c1) node points, with normal form (3.4), 8 < —4,
(c2) saddle points, with normal form (3.4), 6> 0, or
(¢3) focus points, with normal form (3.4), 8 € (—4,0).
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2) Any singular poini of a generic (satisfying (4.G) and (5.G)) 2-module
of vector fields on M is of one of the types listed below, ond each of the
types is equivalent to one of the normal forms (3.1'Y-(3.3'), (3.5), or (3.6)
according to the following rule.

(a’) A regular nondegencrate singular point is equivalent {o the normal
form (3.2).
(b") Irregular nondegenerate singular points are either

(b1") hyperbolic points, equivalent to the normal form (3.2'), or
(b2") elliptic points, equivalent to the normal form (3.37).

{d) A regular degenerate singular point is equivalent to the normal form
{3.5).
(e} Irregular degenerate singular points are either

(el) node points, with normal form (3.8), A < —~4,
(e2) saddle points, with nermal form (3.6), A >0, or
(e3) focus points, with normal form (3.6), A € (—4,0).

The classification results of Section 3 (Theorems 3.1-3.5) are corollaries
of Theorem 8.1, Propositions 5.2, 5.3 and the fact that the parameter b
in (3.2) is defined by the 5-jet {the latter is proved in [22]). The set X
in the formulation of Theorem 3.4 consists of all irregular points of the
2-distribution @ (by Proposition 6.2, X' consists of isolated points).

In this section we show how all the statements of Theorem 8.1 follow from
the results of the preceding sections and from the preceding work, with one
exceptionn. Namely, the proof of the fact that the germ of a 2-module of
vector flelds at an irregular degenerate point is equivalent to the normal
form (3.6) is given in Section 9.

The fact that under (4.G) and (5.G) every singular point has one of the
listed types has already been proved in Sections 6 and 7.

The reducibility of a germ at a regular nondegenerate point to the normal
form (3.1) follows from Proposition 6.1 and the results of [M] for Pfaffian
equations where the reducibility to (3.1’) was proved under (4.G) and the
transversality of Q(p) and 7,5, The reducibility of a germ of a 2-module
at a regular degenerate point to the normal form (3.5) follows (in the same
way) from Proposition 6.1 and the results of [JP] (in [JP] condition (4.(})
and the condition span(X (p),Y(p),[X,Y](p)) + T, = T,M were used).
Finally, the equivalence of the germ of a 2-distribution at a nondegenerate
irregular hyperbolic (resp. elliptic) point to the normal form (3.2') (resp.
(3.3")) follows from Proposition 6.1 and the results of [Z2, Ch. 4, Section 19]
for Pfafflan equations.

Now we will prove the redncibility of the germ of a Pfafian equation at
a degenerate (and consequently irregular) point to the normal form (3.4).
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By Proposition 4.3 we can use the normal form (4.8). It follows from

. L n2 .
Proposition 6.3 that %;?(0) # 0, therefore the germ is equivalent to (5.7)
(see the proof of Proposition 5.3). We can rewrite (5.7) in the form

(8.1) (w) = (F2dz + Az, y)dz + Bz, y)dy),

where A4 and B are some function germs vanishing at p (see the proof of

Proposition 5.3). Then § = {z = 0} and, in the coordinates z,y on S we
get

(8.2) Z = B(x,y)0/0z — A(z,y)d/dy.

Condition (5.G) makes it possible to reduce Z to a linear normal form
Z = (0x + y)0/0x + 02:0/8y, therefore (w) reduces to

(3.4 (fadz — Ozdz + (0z + y)dy).

It can be directly shown that both normal forms with the plus and minus
sign are cquivalent, therefore we obtain the normal form (3.4). This also
follows from the fact that the classification of Pfaffian equations of the form
(8.1} is equivalent to the orbital classification of vector fields (8.2) (see [Z2],
Ch. 3, Sect. 13). Example 7.2 explains how the saddle, node and focus cases
are digtinguished in terms of 4.

9. Reduction to the normal form (3.6). In this section we complete
the prool of Theorem 8.1 by showing that the germ of a generic {satisfying
(4.G) and {5.GQ)) 2-module @ = (X,Y) at an irregular degeneraie point is
equivalent to the normal form (3.6). The proof is based on the homotopy
method.

In proving Proposition 5.3 we have shown that () is equivalent to the
following germ at 0 € R%:

(90)  (8/0n, 208y + (s + 0a® + B + Wz, 3, 2)8/02),  j3h =0,
where o # 0 and 3 # 0, Introducing a new coordinate Z = z/f we reduce
(9.1) to

(0.2) (X,V) = (0/8z,20/0y+ (z+ 2> +y7 + flz,u, 2))8/0z),

We have to prove that the germ (9.2) is equivalent to the germ
(9.3) (X,Y) = (8/Bz,28/0y + (2 + Aa® +4%)0/0z),

fe. that we can reduce f to 0.
Proving this we shall use Pfafflan equations rather than modules of vector
fields (to reduce computations). Let 2 = dz A dy A dz and

(9.4) w= XY, ) = pdz — (z+ Az® +y)dy,
(9.5) =X, ) =ads — (z+ X2 + 97 + fz,y, 2))dy.

if=0
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LEMMA 9.1. The germs (9.2) and (9.3) are equivalent if and only if the
germs of the Pfaffian equations (w) and (&) ore equivalent.

Proof. The proof can be easily reduced to the following property of
the modules (9.2) and (9. 3y if X, Y,U) =0, then U belongs to (X,¥),
and if Q(X Y,U) =0, then I/ helongs to (X,¥) (for arbitrary vector fields
U and U). We will check this property for the module (9.3) {for (9.2) the
arguments are similar).

Let 7 = U418/ 0z + Uy8/0y + Uz 3/8z. Then the equality 3(X,Y,U) =0
implies that xUs = (2 + Az? 4 y*)Us. The functions = and z 4+ Az? 4 y? are
differentially independent at 0, therefore there exists a function g such that
Uy =g and Uz = (z + Az® 4+ 4%)g, hence U = U1 X +gY. »

Remark. The above fact is not necessarily true for nongeneric germs
(X,Y) and (X,7) (take for example a nonsingular vector field X and a
singular vector field X, and pat ¥ = X, ¥ = X ). On the other hand, this
fact is true for a large set of (n — 1)-generated modules of vector ﬂeld:, in
R"™ which can be effectively described ([MZ]).

By Lemma 9.1 it remains to prove the equivalence of the germs (w) and
(), where w and & are given by (9.4) and (9.5) respectively.

In the proof of this equivalence we shall use the homotopy method. Let
wy be the family of 1-forms

wy =2dz — (z+ Aa* + 2 +tf)dy, tel0,1]
Consider the homology equation Lg,w; + hywy = fdy, £(0) = 0, i.e.
(9.6) € I dwe + d(& S we) + hwy = fdy,  &(0) =0

with the unknown pair (hy, &), where hy is a family of germs of functions
and &; is a family of germs of vector fields (L¢,wy is the Lie derivative of the
I-form w; along the vector field ;).

ProposITION 9.1 (the homotopy method). If the homology equation
(9.6) is solvable, then the Pfaffian equations (w) and (3) are equivalent.

Proof Let (k&) be a solution of the homology equation (9.6). Define
a family of diffeomorphisms &, by d@®,/dt = &(P,), By = id. From (9.6) it
follows that

d . duw; .
dt@ Wy = @ (LgtWﬁ + mi) = @t (—-hg,wt).
Write Qf‘:‘wt = gt, ht(@t) = 7‘;4, Then d&it/dt = -:.';t&t, and so LTJf, = H@() =

Hyyg, where Hy = exp(— féﬁsds). This means that $jwy = Hiwg, i.e. w;
and wp are equivalent.
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Now, to show the reducibility of a germ at an irregular degenerate point
to the normal form (3.6) it is enough to prove the solvability of the homology
equation (9.6). We shall do this below by reducing the problem to solving a
single singular partial differential equation.

Let

a
&= +1/), ‘i'??ta up = & A wy.

Equation (9.6} can bc rewritten as a system of equations for ¢, ¥, 1, s
and wg:

-
Zh g+ (2,\r+t‘)—f)1p, =0,

i

0;; ( )@ (1+t"5£>7?t—h:(2+)\$2+y2+tf) =,
'r')u.«,

af
E + @y (1 +£“5;) Yy + zhy =0,
uyg = ane — (2 + A+ + )

After the elimination of m, and ¢; we obtain the following equivalent system
of two equations for wu,, ¥, and hy:

]
e +8 + 22 Ou t+Vt(ut)_f=htCh
Ox Oy Oz
(9.7)
R CRN
Uy -’Bam = iCts

where V; is a vector field such that ji¥; = 0 (here and below we use the
condition j2f # 0), and ¢; is the function

c,;=z~)\cc2+y2—|—t(f—$g—£—>.

Changing the coordinate # to Z = ¢; and leaving the other two coordinates
unchanged we reduce (9.7) to a system with unknowns %, (z,y, 2), h:(z, ¥, 7)
and a0y (e, 9, 7). This system has the form (we omit the tildes)

ix 7, By
S B (4 +2’U)—— + Vi) — fre = hez,
(0.8) dz Oy dz

ur . .
W“m§j+f@A+hﬂ5fm“%a

where Vi, is & vector field, fi; and fz, are functions, and Vi =0,
J2fis = 0, f2.{0) = 0. Write the above equations as L, = heiz, Ly =
—fz. Since hy and 4, are arbitrary unknown functions which appear on
the right-hand sides of the equations only, it follows that solving this system
is equivalent to solving the system Li|.=o = O, Lg|:=0 = 0, where these
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unknown functions do not appear any more. The only unknown left i wu,.
However, on the surface {z = 0} its derivative du;/0z can be considered ag
a separate unknown, We shall look for a solution of the form

,

t|=0 = Ty and f)ﬂ = [,

0% |,
where o; and f; are unknown functions of = and y. Having vy and /3, we
can extend u,; outside the surface {z = 0} (not uniquely).

Our further considerations are restricted to the surface {z = 0}. The

gystem Li|;=0 = 0, L3|z=¢ = 0 now takes the form

Sy O .
—CEt—:ETCﬁ‘}'ZIT‘*a—ﬁ‘i‘ (4)\(13 + QU)ﬁ{'I—Wf(m) ""Aﬁ(lff, - .B{ﬂr LS (],
(9.9) Ox Oy
0
— et (204 g2) =

where W, is a vector field on the surface {z = 0}, 4, By, g1, and gg; are
functions of = and y, and jiA; = 5B = jAW, =0, j2g1. = 0, g2,(0) = 0.

From the second equation we compute G = (2 + go;) " day [z and
plug it into the first. We obtain an equation for o; of the form

(9.10) Yilou) + Cron = dy,

where Y} is a vector field on R%(z,y), and C, and d; are functions of & and
y such that

BYi=Y =Mz +1)8/8z + Azd/dy,
C’g(O) = —)\, jgdt = 0.

Thus, we have reduced our problem. to solving the singular partial dif-
ferential equation (9.10). It is easy to see that the condition £,(0) = 0 (see
(9.6}) holds true if a solution v of (9.10) has zero 2-jet at the origin. Let us
first prove that (9.10) has a formal solution (a formal series &; with coeffi-
cients depending smoothly on t) with zero 2-jet. To show this it is enough
to check that the equation

(9.11) Yia)-da=d

has an r-homogeneous solution a for every r-homogeneous function d and
any r > 3. '
Recall that the 1-jet of the vector field Z corresponding to the module
¢ = (X,Y) is defined by the 2-jets of X and Y. Therefore j/Z can be
computed using the normal form (9.3) (which coincides with (3.6)). Now
note that j§Z = Y (see Example 6.2) up to multiplication by a nonzero
factor. Therefore the eigenvalues A; and Ay of ¥ satisfy the genericity con-
dition (5.G). The solvability of {9.11) with an r-homogeneous polynomial d
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is equivalent to the condition
(912) M1AL + Modg — A %0

for all nonnegative integers my and my such that mq; + ms = r. Since
AL+ Az = A, (9.12) follows from (5.G).

Thus, we have proved that the equation (9.10) has a formal solution
&, such that j5@, = 0. The vector field Y} is hyperbolic at 0 € R? (i.e.
its eigenvalues lie off the imaginary axis; this also follows from (5.G)). To
solve (9.10) in smooth germs we shall use a result of G. R. Belitskit [B] (an
extension of a theorem by R. Roussarie [R]). One of the versicns of his result
says that if the differential equation V(u) = h(z) in R™ with fixed vector
fiold V' hyperbolic at 0 € R™ and any fixed function germ h = h{z), z € R",
has a formal solution ¥ = T(z) then it has a smooth solution v = wu(z)
such that the formal series of u coincides with %. Using this result we can
conclude that (9.10) has a smooth solution o; with zero 2-jet at the origin.
The proof of the reducibility of {X,Y") to the normal form (3.6) is complete.
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Property (wM*) and the unconditional metric
compact approximation property

hy

ASVALD LIMA (Kristiansand)

Abstract. The main objective of this paper is to give a simple proof for a larger class
of spaces of the following theorem of Kalten and Werner,

THEOREM. Let X be a separable or reflesive Banach space. Then K(X) is an M-ideal
in L(X) if and only if

{(a) X has property (M™), and

(h) X has the metric compoct npprorimation property.

Our main tool 18 a new property (wdf*) which we show to be closely related to the
nnconditional metric approximation property.

1. Introduction. We shall give characterizations of Banach spaces X
such that K(X), the space of compact linear operators on X, is an M -ideal
in £(X), the space of bounded lincar operators on X. We shall give a new
argument for the known fact that such spaces have the metric compact
approximation property.

A closed subspace M of a Banach space X is called an A -ideal if there
exists a projection P on X* such that ker P = M+ and

la*| = e — Pe*| + |Pa*|  for all 2* € X*,

Such a projection is called an L-projection. M-ideals were fivst defined and
studied by Alfsen and Effros in [1] in 1072,

Many authors have tried to characterize those Banach spaces X such that
K(X) s an M-ideal in £(X). Finally, Kalton succeeded in [15] by ntroducing
property (M) and showing that it plays a koy role. But he had to assume
that X satisfies a very strong form of the metric compact approximation
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