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with {6.8) leads to
-1

(6.11) (221 - 1) + 2(2‘%’%—1 —22;) 4 < @y,
J=1

where t = ¢ if ¢t > 0 and ¢4 = 0if £ < 0. It remains to observe that (6.11)
is satisfied by {6.1°), (6.1").
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The Bourgain algebra of
the disk algebra A(D) and the algebra QA

by

JOSEPH CIMA (Chapel Hill, N.C.} and
RAYMOND MORTINI (Karlsruhe)

Abstract. It is shown that the Bourgain algebra A{D); of the disk algebra A(D) with
respect to H°°{D) is the algebra generated by the Blaschke products having ouly a finite
number of singularities. It is also proved that, with respect to H™ (D), the algebra QA of
bounded analytic functions of vanishing mean oscillation is invariant under the Bourgain
map as is A(D),.

Introduction. Let A C B be two commutative Banach algebras. The
Bourgain algebra (A, B)y of A with respect to B is the set of all f € B for
which dist(f f,, A) := infyea [[ffn + gliz — O whenever f, is a sequence in
A converging weakly to zero (i.e., such that @(f.) — 0 for every bounded
linear functional ¢ on A). In a recent paper [4] Cima, Stroethoff and Yale
characterized the Bourgain algebra (A(D), L*={I); of the disk algebra with
respect to the algebra L% (D) of Lebesgue measurable, essentially bounded
functions on the unit disk I. They showed that

(A(D), L=(D))p = (H=(D) n W(D)) + UC(D) + V,
where
WD) ={feL>D):
for every § > 0 the set {( € T : w(f,¢) = §} is finite}

is the set of all functions in L°°{[D) whose essential oscillations

W, 6a) = i esssup{Lf(2) — flw)] s 2,0 €D, |2 = Cal < 6, |w = ¢l < )
counverge to zero whenever (, € T is a sequence of different points of the
unit circle T. Moreover,

V = {f e L¥D): || fxoupllec = 0asr—1} (Y

1991 Mathematics Subject Clagsification: 46J15, 307305,
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(l) v g 19 the characteristic function of a subset & C I
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212 J. Cima and R.. Mortini

is an ideal of functions in L™ (I¥) which vanish in an appropriate sense near
the boundary of I and UC(B) is the set of uniformly continuous functions
on B. Restricting to H* (D), we see that the Bourgain algebra A(D), :=
(A(D), H>=(D)), of A(D) with respect to H°°(D} has the form

A(DY, = H(D) N W(D).

In another paper [3] Cima, Stroethoff and Yale show that A(D), con-
tains every Blaschke product whose zeros cluster only at a finite numnber
of points but, on the other hand, no Blaschke product with infinitely many
boundary singularities is contained in A(D),. At the AMS Summer Meeting
on Function Spaces in Orono (Maine, U.8.A., 1991), the following question
was asked: Does A(D), coincide with the algebra generated by the Blaschke
products which have only a finite number of singularities?

1t is the aim of the first section of this paper to give a positive answer
to this question. Moreover, we shall obtain a characterization of A(D); in
terms of the size of the cluster sets of functions in H®. Finally, we show
that A(IP), itself is invariant under the Bourgain map. The latter result has
also been proved by Izuchi [14] in the case A = A(T) and B = L°(T). For
related results see also [10].

In the second section of the paper we show that the algebra @A of
bounded analytic functions of vanishing mean oscillation is invariant under
the Bourgain map, i.e.,

(QA, (D)), = QA.

This result should be compared with a theorem of Izuchi, Stroethoff and
VYale [15] which tells us that

(QC, L=(T)) = QC,

where C is the algebra of quasicontinuous functions on the unit circle.

Recall that QA can be viewed as the set of all functions in QC whose
Poisson integral is analytic in [ (see {20], [8]).

Some results of this paper have alsc been proved by Pamela Gorkin and
Donald E. Marshall. We are deeply indebted to Donald Marshall for allowing
us to include his elegant proof of Lemma 1.1 in this paper. Our original proof
will be briefly sketched later.

1. The Bourgain algebra of A(ID). Let L™ = L*(T) be the space
of Lebesgue measurable, essentially bounded functions on the unit circle 7.
For a closed subset F C T, let L¥ be the space of all functions f in L™ for
which there exists a function ¢ continuous on T'\ F such that ¢ coincides

with f almost everywhere. If f € L, then ||f|c will denote its essential
sup norm.
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For a function f € H, let f* denote its boundary function, i.e.,
GO lim1 fre')  ae
e

Note that f* is defined almost everywhere and that f* & L. When it
causes no confusion, we will identify f* with f. As usual, the cluster set
Cl(f,¢) of a function f € H* at a point ¢ € T is defined to.be the set of
all points w € C for which there exists a sequence z,, in I converging o ¢
such that f(z,) — w.

LummA 1.1, Let f € H™ and let € > 0. Suppose there exisis a finile
subset F = {{y,...,{n} of T such that diam C1(f,{) < e for all ( € T\ F.
Then there exists g. € C{T\ F) such that

hae — flleo < 3e.

Proef (D. E. Marshall). For every A € T'\ F' choose a) € € and open
disks Dy centered at A with Dy N F = § and such that |f(z) — ax| < £ for
all z € Dy Let Iy = %D,\ N T, where %D;‘ is the disk centered at A
with half the radius of Dy. Choose a countable subcollection {1, }72, of
{I, : A € T\ F'} which still covers T'\ F. By deleting unnecessary ones, we
may assume without loss of generality that no [, is contained in U kst I,
Define a function f, : 7 — C by fe(Ag) = ay,, () =0(i=1,... ,NS and
extend f: to be linear between two adjacent A;’s. (Note that (1,...,(n are
the only cluster points of the Ay and that U;";l I,, =T\ F.) More precisely,
if there is no A; within the arc (Ag, Ar), let

fs(C) = (/\Cki);l\l)aw\k + (fl:/:k]ﬂ)&)\; for ¢ € (/\k,)\l)-

Obviously, f. is continuous on T \ F. Because the radius of Dy, is twice
that of the arc Iy, , at least one of D, or Dy,, say D,,, contains the whole
arc (Mg, A7) Let z € Dy, N Dy, NI Then

1a’)\k - G“M\ < Ia/\k - f(ZN + |f(Z) - a‘)\zi < 2e.
Hexnce for ¢ € (Mg, A;) and 7¢ € D, (0 < r < 1) we have
1£(r¢) = £(Q)] £ 1£(rd) — an,] + lan, — f(O)] < 3e.

Therefore |f*(¢) — f:(¢)} < 3¢ for a.e. { € T'. This implies that lF*— Felloo <
de.

Remark. The assertion of the lemma also follows from the proof of a
general result of Helmer and Pym [12] on the approximation by bounded
functions having only a finite number of discontinuities. We have just to
define a suitable boundary function of f € H by puiting

F(¢) = ac,
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where a¢ is any (fixed) point of the radial cluster set of f at ¢ (note that
Zermelo’s axiom of choice is needed here), and to realize that for any ¢ €
T\ F the oscillation

osc{f*, () = lil;lsltjlpﬂf*()\) — B ANBET, [N~ <8, |8~ < b}

of f* at ¢ is less than € whenever f satisfies the assumptions of Lemma 1.1.
Let A denote the set
A={fe H® foreverye >0
the set {¢ € T : diam Cl(f,{) > &} is finite}

endowed with the sup norm || - ||, where, as usual, diam E = sup{|e — B| :
a,b € E} is the diameter of a bounded subset F of C.

ProprosiTioN 1.2, A is a closed subalgebra of H*.
Proof. Since

diam CI(f + g, {) < diam CI(f, <) + diam Cl{g, ¢)
and

diam C1(f - g,¢) < [|g/|diam CI(£, ¢) + [ fildiam Cl(g, ),
it is easy to see that A is an algebra.

"To prove that A is closed, let fr, € A and f € H* be such that || f,, — f||
< e. Then diam CI(f, {) < 2¢ + diam CI(f,,, ¢). Hence

{¢eT:diam Cl(f,() > 3e} C {¢ € T : diam CI(f,,,¢) > ¢},
from which we conclude that f € A. w

THEOREM 1.3. A is the smallest closed subalgebra of H* containing the
set of all Blaschke products with a finite number of singularities.

Proof In what follows let

B=clos{ > A\B;: ) €C, B; aBP, SingB; finite, n € N}

F=1

be the uniform algebra generated by the set of Blaschke products which
have a finite number of singularities. We have to show that 4 = B.
Obviously, 5 C A. (Note that d := diam Cl(B,¢) = 2 whenever ¢ €
Sing B and d = 0 otherwise.) :
Now let f € A and let £ > 0. By definition, there exists a finite set
F={G,....{x} € T such that diam CI(f,{) < ¢ for all ¢ € T'\ F. Choose
a function ¢. € C(T'\ F), according to Lemma 1.1, such that

(1) lge — 7 lloo < 3e.
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Obviously, g- € L% Because H® + L¥ is a closed subalgebra of L™ (see
[7] and [8, p. 399]), a theorem of Davie, Gamelin and Garnett yields that
dist(ge, H™) = dist{g., H> N LY)
(see also [8, pp. 386, 399]). Hence, by (1), there exists h. € H> N L with
lge — Relloo < 3e.
Therefore || f* — he|low < 62 from which we conclude that

rfe |J HenLy),
FCT
F finite

By [1] or [7] we have
[
H*N L =clos{ 3 AB;: % €C, B; aBF, Sing B C F, n e N}
J=1

Hence ff € 5. w

Remark Theorem 1.3 has also been proven by P. Garkin and D. Mar-
ghall.

We are now in a position to prove the result on Bourgain algebras. '

THEOREM 1.4. The Bourgain algebra A(ID), := (A(D), H*(D)), of the
disk algebra with respect to H*(D) is generated by the set of Blaschke prod-
uets which have only o finite number of singulorities, i.e.,

AD)y = A= B.
Proof. 1) Let B be a Blaschke product such that Sing B is finite. Then

by exactly the same arguments as in [3], B € A(D),. Since A{DD), is a closed
algebra, we obtain

(1) B C A(D),.

2) Assume that f & A. Then there exist £ > 0 and ¢, & T such that
diam CI(f, ¢,) = e for all n. Without loss of generality, let {, — ¢ € 7"

Deline .
2+ ¢\
I (z) = (—2_) .

Then f.{¢y) = 1 and f, — 0 weakly in A(D) for &, sufficiently large (e.g.,
by = [1/lan| + 1)2, an = log|(¢ + €u)/2]). Let gn € A{D). Then

2||f fo — g0/l 2 diam CI(f fr. — gn, Ca)
=dlam Cl(f fn, (n)} = diam C1{f, () = .
Thus f & A(D),. Consequently, we have
(2) A(D), C A
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By Theorem 1.3, we can conclude from. (1) and (2) that A(D), = A= 5. =

Tn order to determine the “bi-Bourgain® algebra A{D)y, of A(D), we shall
first prove the following lemma.

LemMma 1.5. Let {; € T be o sequence of different points converging lo
¢ € T. Then there exist funclions [, € A converging weekly o zero such
that fn(Cj(-:)) =1 for some subsequence (Cf;t));\ of (¢;); depending on n.

Proof. Let G be the slit domain G = {2 € C: [z < 2} \ [¢,2¢] and
let @ be the Riemann mapping of G onto I with #(0) = 0, #'(0) > 0.
Let w, = P((,). By taking a subsequence, we may asswne without loss
of generality that (w,), is an interpolating sequence for H® (D). Take Per
Beurling functions F,, € H°(ID) such that Fy(wi) = Gui, 3orey [Fulw)] €
M, we D (see 8, p. 294]). Let G, = Fr, 0 ®. Then G,, € H®(G), G () =
S and Yoo [Gn(2)| < M for z€ G

Let {I,}55., be any partition of N into infinite subsets. Let f, =
¥er, G4 Then f, € (D) and f, € C(D\ {¢}). Hence f, € A More-
over, 3_, [fal = ;1G] £ M in D. By [2] (see also [11]), fr. — 0 weakly
in H>(D)}, hence in .4, and f,((;) = 1 whenever § € I,,. Letting (q};")),ﬂ =
(¢i)jer, gives the assertion of the lemma. m

TaeorREM 1.6. The Bourgain algebra A(D), of the disk algebra with re-
spect to (D) ‘is invariant under the Bourgain map, i.€.,
A(D)py, = A(D)y.
Proof. In view of Theorem 1.4, we have to show that (A, H>), = A;
that is, Ay = A. Since A is an algebra, we trivially have A C A;. So let
[ € Ap. Assume that f € A Then there exists, by the definition of 4, g5 > 0

and a sequence (, € T such that diam C(f, () = &q for all n. Without loss
of generality, let {, — (€ T

Let fr, be the functions of Lemma 1.5. Becauge f,, — 0 weakly and since
f € A, there exists g, € A such that

L [ £fa + gnll — 0.

Because A == B, we may assume without loss of generality that Sipg g, is
finite. Fix n. For k > k(n) sufficiently large we then have

2|1 f + gull 2 diam CUf fn + g, €)= diam CI(f £, ¢I)
= diam C1(#,{{™) > eo.

This is a contradiction to (1).
Hence f € Aand so A = A;. m

Remark. It has been communicated to us by D. Marshall that the
result also follows from Izuchi [14].
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We shall now prove that the corona theorem is true in A(DD),. The idea is
to reduce the problem to the investigation of a certain Douglas algebra. To
this end, let I be the Douglas algebra generated by H® and the complex

conjugates of all Blaschke products with only a finite number of singulari-
ties, i.e.,

T
D =cios{ 3" hB; : B; a BP, Sing By finite, h; € H*, n € N},
j=t
and M (DY) its gpectrum. As usual, we shall identify a function in D with its
Gelfand transform f: M(D) — C, defined by f{m) = m(f) for m € M(D).
Along the same lines as in [16, p. 147} we first prove the following lemma.

LeMMA 1.7. An inner function I is invertible in D (i.e., I € D) if and
only if Sing I is finite.

Prool. 1. Let I be an inner function such that Sing I is finite. By Frost-
man’s theorem, there exists a sequence (@,) in I converging to zero such
that the B, = (I — an)/(1 — @,I} are Blaschke products for all » € N.
Obviously, Sing B, is finite. Hence B, € D. Since B, tends uniformly to I,
we conclude that T ¢ D.

2. Suppose that T is an inner function invertible in D. Then there exist
Blaschke products b; (7 = 1,...,n) with Singb; finite and f; € H> such

that
I— '6“ < e
-3 <

Let F = (Jj_, Singb;. Then E is a finite set. Suppose that A &€ T \ E. Then

w
1 =3 5], ey <
(1) ;fumm)

where M, (L™®) = {m € M(L*) : m(z — A) = 0} is the fiber over the point
A of the spectrum M (L) of L2,
Since b; is analytic at each of those A’s, it follows that bilnay L=y i8

constant. Suppose By|ur, (ne) = a5, where |a;| = 1 (a; = a;(A)). Thus we
obtain from (1) the estimate
7
1~ I( ‘a') “ <€
) ERR{ONELY

(Note that [ is unimodular on My(L®).) Because 0 € Cl(I,A) whenever
A € SingI, we conclude from (2) and [13, §10] that T has no singularity
at A. =
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For a Douglas algebra D, let CD denote the C™-algebra generated by
the set of all invertible inner functions in D. These algebras were studied
in 1] (see also [8]). We recall that B is the smallest closed subalgebra of
H®® containing the set of all Blaschke products with a finite number of
singularities.

THEOREM 1.8. Let [} be the Douglas algebra generated by H™ and the
complex congugetes of oll Blaschke products with a finite number of singu-
larities. Then

H*NCD = A(D);.
In particular, the corone theorem holds in A(D),,.

Proof By [1] the closed unit ball of H* N CD is the convex hull of
the Blaschke products in H°° N CD. Moreover, by Lemma 1.7, any Blaschke
product in C'D has at most a finite number of singularities. Fence H ™ N
C'D = B. Theorem 1.4 now implies that A(D}, =B = H* N (D,

Since by a result of Chang-Marshall [1] the corona theorem is true for
any algebra of the form H* NCD, we conclude that it also holds in A(D);. =

2. The Bourgain algebra of QA. Let QA be the algebra of hounded
analytic functions in b with vanishing mean oscillation on the boundary (see
(8], [18]). Associated with @ A is the algebra QC of quasicontinuous functions
on the unit circle (see [18]). Let ¢ = C(T') be the space of contimions
functions on 7' It is well known that QC = (H> + C{T))n{H> + C(T))
and that QA = QC N H™, From the work of Wolff [20] we know that
the algebra (A behaves in many cases like the disk algebra. It is therefore
quite surprising that, in contrast to A(D}, the Bourgain algebra of QA with
respect to H° is not larger than QA itself.

We first present some auxiliary results.

For a point { € M{QGC) let

Ee ={me M(L*®): fim) = f({) for every f € QC}
be the QC-level set of { in M (L>). Obviously, the level sets form a partition
of M(L>) into closed sets. By Shilov’s decomposition theorem [9, §44], a
function f € L belongs to (QC if and only if f is constant on every QC-level
set in M (L>).

Finally, we recall that a Blaschke product b is said to be thin if its zeros
2y in I satisfy

11

nF#k

LemMa 2.1 Let f € H™\ QC. Then there exist uncountably many
QC -level sets on which f is not constant.

Zn —
i Bl as k — oo,

1- Epzy
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Proof By our assumptions we see that f ¢ H> + C. Thus H*=[f] #
H>+C, where [ f] is the Douglas algebra generated by H> and f. Hence
by the Chang-Marshall theorem (see [8, §9]), there exists an interpolating
Blaschke product b with b € H>[f]. Let b; be a subfactor of b such that the
zero sequence of by is a thin sequence. Now by € H*[f], and it is easy to see
that if f|E; is constant, then by|E; € H>|E.. By Clancey and Gosselin’s
theorem [6], by | B¢ is also constant.

Let {z,} be the zero sequence of b, in D. By [19] and [20] this is an inter-
e M(QA
polating sequence for QA. Hence by [13, p. 205] the closure § = {=z,} (@A)

of {z,} in M{QA) is homeomorphic to the Stone-Cech compactification
of the integers. This implies that S is uncountable. Because M (QC) =
M{QA)\ Ib, the @C-level sets corresponding to points ¢ € §\ D are pair-
wige digjoint. Now by is not constant on any Q@ C-level set where it has a zero,
and we have just seen that there are uncountably many such sets. Hence, by
the considerations above, f is not constant on uncountably many QC-level
sets. m

THEOREM 2.2, The algebra QA s invariant under the Bourgain map, i.e.,
QA == (QA, H™), = QA.
Proof. For a function f € L™ and a point { € M(QC) let

w(f,¢) =sup {{f(z) — F{y)| - =,y € B}

Now let f € @Ay. Assume that f & QA; thus f € H* \ QC. By Lemma
2.1, f is not constant on uncountably many QC-level sets in M (L>). Hence
there exists gg > 0 such that w(f, {,) > o for infinitely many ¢, € M(QC)
(n=1,2...) '

Without loss of generality let {; & clos{{, : n * k}. Since QC is a C*-
algebra, we have QC ~ C(M(QC)). Thus there exists f, € QC, fr.(Cn) = 1,
., invertible in QC, such that f,, — 0 weakly in QC. (Note that the latter
is equivalent to pointwise and bounded convergence on M (QC).)

Since QA is strongly logmodular on M (QC) [17], there exists g, € QA
satisfying log |g,.| = log|f.|. Hence |gn((e)| = 1 and g, — 0 weakly in QA.
The latter holds becaunse |gn| = |fa| on M(QC) and f, — 0 on the Shilov
boundary M(QC) of QA.

Let b, € @QA. Then

2”ng + hn-” z mg:g% |(f9'ﬂ -+ hn)(m) —(fon+ hn)(ﬁ")!

1

= max |fim)— f(m)| =w(f () > eo.

m, & B,
Thus f € QA w
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Remark. Lemma 2.1 also yields another proofl of the fact that
(QC,L>(T)), = QC (see [15]).
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