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Topological conditions for bound-2 isomorphisms of C(X)
by

H. B. COHEN (Pittsburgh, Penn.) and C~H.  CHU (Londen)

Abstract. We establish the topological relationship between compact, Hausdorff spaces
X and ¥ equivalent to the existence of a bound-2 isomorphism of the sup norm Banach

spaces C{X) and C{Y).

1. Introduction. The Banach-Stone Theorem, which states that the
Banach spaces C(X) and C(Y) are linearly isometric iff X and ¥ are
homeomeorphic, has been generalized in a number of directions by Amir [1],
Belirends [2], Cambern [4, 5, 7], Jarosz {16], and others [11, 12]. See Jarosz
[16] for discussion and references. In this paper we consider the near home-
omorphic relationship between X and ¥ when C(X) and C(Y) admit an
onto isomorphism ¢ whose bound b= ||l {1 is sufficiently small. From
the seminal work of Amir [1] and Cambern [5], we know X and ¥ are home-
omorphic if the bound is less than 2. And from [10], homeomorphisin does
not follow from a bound of 2 or more. However, [11] showed the existence of
a relation on X X ¥ carrying topological properties when b < 3. The struc-
ture of this relation is unknown when 2 < b < 3. This paper determines its
structure when b = 2 and gives several applications. In particular, we are
indebted to Chris Lennard for suggesting our extension of the result in [3;
Theorem 2] and [6].

2. Examples. Throughout, given a compact Hausdorff space T, C(T') is
the Banach space of real-valued continuous functions on T" with the supre-
mum norm and M(T) = C(T)* the Banach space of regular (signed) real-
valued Borel measures on T7 with total variation norm. A continuous linear
operator ¢ from a Banach space B into C'(T') is determined by the action of
w* on the set §7 of all unit point mass measures &; on 7'; indeed, given any
weak* continuous function @ : T — B*, the transformation ¢ : B — C(T)
given by @(b)(t) = &(¢)(b) is linear with norm equal to sup{||®(¢)|| : £ € T};
furthermore, w*(§;) = &(¢) for all £ in T. The map & is called the dual

mw?l'érfffﬁ'* Secondary 54C08, 54C35.
£ ‘@‘ N ‘fvr\
G

19f)1 Mathematics Subject Classification: P




iom
2 H. B. Cohen and C-H. Chu -

representation of  and we will construct isomorphisms ¢ : C(X) ~ C(Y)
by defining dual representations @ : Y — M(X) and ¥ : X — M(Y) such
that w*¥(z) = 6, (x € X) and o*® (y) = &, (y € V). Given a matrix
M = (ey;) of scalars, | M| denotes max; 2, leiz], the largest 4, norm of a
row.

ExamPLE 1. Any continuous h : Y — X gives rise to the dual represen-
tation {y) = by, from ¥ into M(X). If w € C(Y), then &(y) = w(y)biy)
is a potni-mass representation with function A and continuons weight w. In
particular, if £ is a homeomorphism {onto) and w has ne zeros, ¢ represents
an isomorphism whose inverse is represented by

'If(m) == m&h 1

and whose bound is max jw|/min [2|.

ExaMpPLE 2. Construct each of X and ¥ as pictured from four pairwise
disjoint connected compact Hausdorff spaces, 4, B, €, D, two curves z, and
z, for X, and two curves y, and y, for Y. The four curves, homeomorphisms
defined on I = [0, 1], are disjoint from one another and from A, B, C, and
D except at their endpoints where y,(0) = 2,(0) in G, y.{0) = a:e(O) in A,
Yo(1) = 2(1) in D, and y.(1) = z,(1) in B.

@——® . W “~ (B
@ Yo C ' @ Ty @

There is no continuous extension H : ¥ ~+ X of the identity map on A U
BUC U D sinee, for example, H oy, would join 4 to B in X. Consegquently,
a continuously weighted identity map y — w(y)é, € M(X) defined on
AUBUCUD, with w(y) % 0 for all y in ¥, cannot be extended to a
point-mass representation &: Y — M(X).

There is an extension € : ¥ — M(X), however, if the measures $ly),
Y € Yol[I] U ye[T], are permitted to have two-point supports. For any w # 0,

we look for a matrix
C = Cee” Cap
Coe  Coo

of continnous functions on I for which

- | w(ze(0)) 0 0 wlya(l
co=["5D tap] e ew =], 0 e,
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then define

o]

Il

tcee(t) 1) + Ceo(t) 6y, (t)]
Coe(t) Te(t) +COO(t) #5(t)
)

= [ o] o] =ew [fee

With w = 1, the C with linear entries satisfying the conditions at 0 and 1 is

11—t t
t I—1]|’

but the continueous linear transformation represented is not an isomorphism
since ®(y.(1/2}) = Py.(1/2)) but y,(1/2) # y.(1/2). Setting w = 1 on
AUBUD and w= -1 onC,

C(t) = [1;t ——(1t~t)}

is invertible for all ¢ and provides the representation of an isomorphism
whose inverse is represented by the (same) weight 1/w = won AUBUCUD
and by

)| = e[

B 1 1—t ¢ 5yo(r)] for all ¢ in [
_(1__t)2+1;2[ i "‘(1”‘]&)] ]i&yg(ﬁ) e

Since |w(y)| = 1 for all g,
— - - th=1 d
1]l = max ICEI| = max (|1 — ] + ) an

0£iL1
1
_ - S U |
121 = goax €70 = mmax o

The isomorphism has bound 2. In this example, a reworking of [10], the
coefficients avoid discontinuity of the transformation by shifting weights as
t varies from 0 to 1. In the following we give one more example to illustrate
this idea.

ExaMPLE 3. Construct X and ¥ from six compact Hausdorff spaces A,
B, C, D, E, F, and the curves y1, ¥2, ¥3, &1, T2, £3 a8 shown:

x. ©———®
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with all the component parts disjoint except at the endpoints of the curves
where y;(0) = z;(0) for ¢ = 1,2,3 and y1(1) = 23(1), y2(1) = z,(1), and
y3(1) = z5(1). Suppose w is any non-zero continuous weight for AUBUC U
DUEUF and C(t) any 3 x 3 matrix of real-valued continuous functions c;;
onl,i,j=1,23, for which '

icm

rw('yl (0)) ] 0
C{0) = 0 w(yz(0)) 0
| 0 0 w(yz(0)) ]
and
[0 0 w(y1(1))]
C(1) = | w(y(1) 0 0
0 w(ys(1)) 0 ]
Then @(y) = w(y)b, forally € AUBUCUDUEUF and
¢(91 (t)) §url(t)
P(ya(t)) | =CL2) Sua(t)
P(ys(t)) Saatt)

agree at the endpoints of the curves y;, ¢ = 1, 2, 3, and define a representation
Y T M(X). ¥ C(t) is non-singular for each ¢, then & is an isomorphism and
$7" is represented by ¥(z) = (1/w(w))8, for allz € AUBUCUDUEUF, and

W1 (t)) bys(t)
(za(t) | =7 | byae
W (as(t)) bt
One such coefficient matrix is
(1-t)p 0 P
Ct)y=1 &  (1-bP 0
' 0 174 (1-1)?

for the weight function w = 1on AUBUCU DU E U F. Here p > 1, and
is fixed. We find det C{) = (1 — )% + 437 £ 0 on I and

1

=g ()

Consequently,

181} = poax @)} = max (1 - 67 +47) = 2177

and

Wl = max €7 ()| = max

0<t<1
so the bound is 3,

(L—¢)%r
—tp(l — -L-)P

t2r

g
(1 —¢)%
_1;;0(1 — -,5)11

—tF (L~ t)p

(1~ )%r

(1—-2)% 4420 4 4p(1 — g)2

0<t<1

(1—t)3p 4 ¢3»
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For the X and Y of this example, Lisa Koch has found an isomorphism of
bound 2+ 7/9 between C(X) and C(¥) and we wonder how small a bound
can be achieved.

3. Statement of main results

DEFINITION. A bridge in a topological space T" is a triple (F, W, §) where
W is an open set and F, § two disjoint closed sets such that bdry(W) =
OW = F U S (hence Wn(FUS) = 0). We will speak of the bridge W
with first endset F(W) and second endset S(W), and we will say that W
joing a set Ty to aset Ty in T provided WN(ThUTR) =0, FF C Ty, and
S C Ty. Here Ty may intersect T%; indeed, a bridge may join a set to itself.
In general, F U W U & is a regular closed set whose interior containg the
dense open set W.

The notation in the following main theorem is motivated by later con-
structions. In particular, eight bridges are distinguished by means of three
binary indices: " € {X, Y} indicating which space contains the bridge, the
sign § € {++,~} indicating whether the bridge is “positive” or “negative”,
and the parity p € {e, 0} indicating whether the bridge is “even” or “odd”.
For a particular value of T, s or p, the other value of the variable will be
denoted by T, §, 7, respectively. When s occurs as a factor in an expression,
it stands for +1if s is 4 and —1 if s is —.

THrEoREM. Let X and Y be compact Housdorff spaces. Then there is an
isomorphism from C(X) onto C(Y) of bound 2 or less if and only if

(1) Each T € {X, Y} is the disjoint union of siz sets: two closed sets T°
(s = +,—) and four bridges T, (s = +,— ond p = e,0) such that T joins
T® to T* and T2 joins T° to T and oll the endsets are pairwise disjoint.

(2) There is a homeomorphism H carrying XU X~ onto YT UY ™
such that H[X*] =Y*, H[F(X;)] = F(Yy) and H[S(X})] = S(Yy) for all
s and p.

(3) For each s, there is a family of four homeomorphisms hgpy, D, ¢ €
{e,0}, carrying ¢l X} onto clY; such that hepg = hapgOhiops O hapg, happ = H
on F(X}), and hepp = H on S{X5).

The Theorem is illustrated by the diagram on the next page.

The third condition in the theorem amounts to the existence of a family
of homeomorphisms, one between each pair of the four positive (negative)
bridges in X and Y, that preserve the orientation of endsets, left endset
to left and right to right, and that are compatible with one another in the
following sense, which we state in general terms. Given four homeomorphic
spaces T; (i = 1,...4), and a homeomorphism Tj; : Ty — T; for each i, 4,
we say these homeomorphisms are compatible if Ty is the identity on Tj,
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13 v X+

Yre -+

7 Yo

X

R |

_ —1 . . .
Ty = i’i“ , and Ty 0 Ty = Ty Such a family is obviously constructible
from any three homeomorphisms joining the four spaces or, in our condition,
from the four homeomorphisms postulated for a given s.
‘We see that Example 2 is a special case of the conditions in the Theorem
l})gsettangl" =X =AYt =Xt=BUCUD, and Y, =Y, = X, =
(2] = :

CoroLLARY 1. If C(X) and C(Y) are bound-2 isomorphic, and if X is
totally disconnected, then Y is homeomorphic to X .

Proof. We can disconnect each ¢l X » 10 its own topology into two clopen
sets: S(X}) containing its second endset and FI(X ») containing its first. This
shows that X is the disjoint union of the two clopen subsets

Cr=XTUSXNUSXSHUFXF)UF(XT) and
CT=X"USX)US(X)YUF(X)UF(X]).

Define 2™ : CF — ¥ to be H on X+, hyeo on S(X7F), hyoo on S(XH),h
on F(XT), and h_,, on F(X), and A~ : G~ — Y to be & on XQ_:hiZE
on F(X5), hese 0B F(X7),h 0 on S(X;), and hos, on S(X=). Then he
is continuous and 1-1 on the compact C*, hence a homeomorphiesm, for each
s; s0 the two maps carry X = O+ U (! homeomorphically onto V.

The following answers a question of Cambern 8], .

COROLLARY 2. For o-finite measure spaces (S5, Ziy pa)y 1= 1,2, if the
L1(S;, X, i) are bound-2 tsomorphic, then they are linearly isometric.

. Proof. Note that L1(S;, £y, pu)* (i =1, 2) is linearly isometric to C(X;)
.wmh ‘_X.',; hyperstonean [13]. By Corollary 1, X, is homeomorphic with X 2
implying that the X; are regular set-isomorphic in the sense of [19]. So thf:
L1(8i, 3%, ps) are linearly isometric. . I‘

COROLLARY 3. If C(X)

s bound-2 isomorphic with o I o
Py space. : more ith a Py space, it is a

Bound-2 isomorphisms of C'(X) T

Proof. The P space must be of the form C(Y) with ¥ extremally
disconnected {15, 18]. By Corollary 1, X is homeomorphic with ¥ Then X
is also extremally disconnected, and so C(X) is Ps.

CONJECTURE. The three corollaries hold lfor bound 2 < b < 3.

4. The topological conditions are sufficient. Suppose the topologi-
cal objects of our main theorem above are given. To mimic the construction
in Example 2, we index the bridges of sign s with the compact Hausdorff
space I(s). Indeed, we can suppose the existence of closed disjoint sub-
sets F'(s) and S(s) of I(s) and homeomorphisms h(T;) carrying I(s) onto
cl T, F(s) onto F(T}),S(s) onto S(T}), and such that H o h(X]) = h(Y,}
on F(s) and H o h(X}) = h(¥$) on S(s). Let W(s) = I(s)\(F(s) U S(s))
for each s so that I(s) = cl(W(s)). If each W(s) is disconnected or void,
then X and ¥ are homeomorphic, hence C'(X) and C(Y) are linearly ise-
metric. Assume then that at least one W(s) is non-void and connected, so
I(s) is also connected, and let f, be a continuous function on I(s) with
values in [0,1] which is 0 on F(s) and 1 on §(s). Define & : ¥ — M(X)
by

CB(z) =86y, H2eY’,s=+or—,

#[i600] = [ "Dl ]

The weak* continuity of @ on each of the six closed sets Y¢ and cl Y is
evident, so ¢ will be continuous on ¥ provided the defining formulas agree
where these closed sets overlap on the endsets. Consider, for instance, F'(Y,'),
which is contained in ¥'¢ because ¥ joins Y to itself. Let z € F(Y.?). There
is at € F'(s) such that z = h(Y)(£). Then fs(t) = o and the matrix equation
yields @(z) = ds(h(yes)(t)) = Sah(Xg)(t} = 36H'1oh(Y;)(t) —_ S(SH‘lz, which is
the value for & at z ¢ Y°.

Similarly, let » € F(¥*) be a subset of Y#. Again, there is a t € F(S)
guch that z = h(Y?)(t) and f(s(t)) = 0. From the matrix equation, &(z) =
@(H(Y;)(t)) = S("‘l)éh,(Xg)(t) = §5H~1Dh(yoa)(t) S g‘SH"lz is the value of &
at z € Y#. The calculation is similar for S{¥;’) and S(¥).

Thus & is the dual representation of a linear transformation ¢ : C'(X) —
C(Y") whose norm, sup{||®#(y}| : ¥ € Y'}, computes to 1 since (s(1— Fs ()} +
18] = L= £u(8) + fult) = L. For each ¢ € I(s), set D(t) = (1 - £,(£))% +
fs(t)? and define ¥ : X — M(Y) by

Uiw) = sbpe fwe X 8=+,

W{h(Xg)(t)}_ s [1"fs(t) £5(2) Hfﬁhw;)m]

RXDW | T DR L FE) —( = F) ] LB
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for all £ € I(s). Arguments similar to those for ¢ establish ¥ as the dual
representation of a linear operator ¢ : C(¥) — C(X). Moreover, ¢ = 1.
We have ||7|| < 2 because, e.g.,

1 1 1
W(ll = f O+ @) = OO AC)

For at least one s,I(s) is connected and so f, assumes the value 1/2 pro-
viding an @ in X for which [¥(x)| = 2. Thus ||¢| = 2.

S <2

5. The topological conditions are necessary. We are given an iso-
morphism ¢ : C(X) — C(Y) of bound 2 and inverse 4. Following [11], sup-
pose ||| = 2 and [|¢|l = 1. To smoothly expose the argument for necessity
we refer the reader forward to the Appendix and to [11] for all results that
depend upon isolated points in compact Hausdorft spaces T', in particular
in the spaces kT for which C(kT") represents C(T)**. We make immediate
use here of Lemma Al in the éppendix which states that the points of T
are in 1-1 correspondence, t — ¢, with the isolated points of k7.

DEFINITION. For z in X and y in ¥, write z « y when |1)**x;| assumes
its norm at z, where x; denotes the characteristic function of ¥, and write
y ~ = when |p**ys| assumes its norm at §. By [11; Lemma 2], «(z) =
{y € ¥ |z -y} has one or two points and =z is called simple or compound
accordingly; and similarly, y is simple or compound according to whether
«(y) has one or two points.

From [11] and the Appendix, »*6,({z}) = v™xa(§) and ¥*6.({y}) =
¥** x4 (£). Moreover, the following are equivalent:

gy |pyp®E) 2172 |9tE({y})]
vz pxa(@) 21 "8y ({=})]

We also know that for z «~ y, z is simple if and only if y is simple and 2 is
compound iff y is compound. Moreover, if 25 (resp. 1) is compound, there
are unique points xa, y1, y2 (resp. xy,2s,¥2) such that z1 £ @y, 11 # 1
and ~(21) = w(z2) = {y1,y2} and (1) = () = {21,3}. Let us vefer
t0 =1, T2, Y1, Y2 so related as a quadruple of compound woints. By Theorem
11 of [11], ~ is a homeomorphism between the open sets of simple points
simp(X),simp(Y) in X and Y respectively. Hence the compound points,
comp{X) and comp(Y}, are closed. Moreover, if there are no compound
points, X and Y consist of simple points and so are homeomorphic and
we are finished. In the remainder of this proof of necessity, we assume that
compound points exist.

From Lemma 7 and its proof in [11}, we have

> 1/2
> 1

Bound-2 isomorphisms of C(X} g

LeMMa 5.1. A quadruple of compound points can be ordered and then
relabeled (x%,2°,y°,y°) so that for each sign s,

I N I B | b o | Bze /2 1/2 e
olg)=l ] e e f]-0n SR ]

DEFINITION. If 2 € comp(X), then ¢*8, = (a/2)6,, + (8/2)6y, where
\a| = |8] = 1. We label z = 2° and say @ is even if @ = 3, and label z = z°
and say z is odd if & # 8. Similarly, if y € comp(Y'), then @*&y = @by, + F82,
where laj = |8] = 1; we then label y = y® and say y is even if a = 3, and
label y = y° and say y is odd if & # 5. A quadruple of compound points
and its entries are called positive if s is + in the matrix equations above,
negative if s is —.

For each choice of T = X or ¥, p = e or o, and s = + or —, we let
comp(7T’, 5, p) denote the set of compound points in T" with sign s and parity
p, and comp(T,s) = comp(T,s,p) U comp(T,s,p). We let Z denote the
set of all quadruples in the order (z%,2°, ¥% y°), Z4 the subset of positive
quadruples, and Z_. the subset of negative quadruples in Z. Note that the
three pairs of indices 7, s, p of Section 3 have now been defined in this proof
of necessity. The eight bridges we seek will emerge as neighborhoods of the
eight sets comp(T, s, p).

LEMMA 5.2. The sets comp(T,s,p) are pairwise disjoint, and each is
closed in T. Moreover, for each s, Z; defines a homeomorphism between
each pair of the four sets comp(T,s,p). '

Proof. We assume X and Y are disjoint from the outset. As t € comp(T")
is either positive or negative and not both, and even or odd and not both,
comp(T) is the disjoint union of the four sets comp(T’, s, p). Lemma 9 of [11]
states that Z is closed in X x X x Y x Y. The proof shows that if a net
(8, 22,v%,v0) in Z converges to (2°,27,9°% y°), then this point is in Z and

"8, ({77)) = lim 6,7 ({22])

for each of the four choices of {p1,pz). So if the net is in Zy (vesp. in Z_),
%0 is the limit. This shows both Z, and Z_ are closed sets; hence, com-
pact. The four sets comp(T,+,p) are the images of Z, under the coordi-
nate projections; hence, each is closed. Similarly, the sets comp{T, —, p) are
closed. For each s, Z, is compact, so the 1-1 map between comp(Ty, 8, p1)
and comp({Ty, 8,p2) provided by Z; has a closed graph and is, therefore, a
homeomorphism.

Example 2 has only one quadruple (z*f, z°,y%,y°) of compound points,
at ¢ = 1/2, and since {z°}, {z°}, {y°}, {y°} have void interiors, they can-
not serve as bridges. To obtain bridges, we now generalize our notion of
compound point.
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DEFINITION. Let v : C(S) — C(T") be a bound-2 isomorphism (onto),
lvli/4 < ¢ £ ¥|/2, 81,82 € 5, and t1,t2 € T We say {s7,89,8,12} is a
(7v,¢)-set if 8y 5 82, t1 # to, and [y*6,({s;})] 2 cfor all i, = 1,2. For
i € {1,2},7 denotes the other number. Note that since a. (v, |71l/2)-set is a
quadruple of compound points, we will be interested in ¢ < ||v|//2.

LEMmMA 5.3, Let {s1,82,t1,%2} be a (v, ¢)-set.

(1) For each i there is a § such that [[v| — ¢ = [v*6.,({s; 1) = v/
i.e., t; «» 85, Moreover, if s € S\{s1, 82}, then |v*8;, ({s}) < c.

(2) Bither 51,82, t1,ta form a quadruple of compound points, or they ure
all simple.

(3) If s1,82,t1,t2 are all simple and t; «~ s;, then s is the unique
element of § at which the function s — |v*6,({s})| assumes its second
largest value.

(4) If {51,531, 12} ond {31,%a,%1, 8} are (v, c)-sets and either {s1, 53}
N{FLFY) £ 0 or {ti, 12} N {f, T} # 0, then {s1,5} = {5,5} and
{t1,t2} = {1, o}

Proof. For (1), what if {v*6;, ({s;})] < ||v]/2 for both j?! Then since
there is an s « t;, we have |v*8;, ({s})| = llv)l/2 and s, 54, and s are distinct.
But then [[y|| = |y*6,| = |v* 6| ({81, 82, 8}) = 2e+|7]/2 > [|4]], impossible.
This, with {7"6,, ({s;1)| + ¢ < |78, ({s;D)]+ 78, ({83 )] < 7], proves the
first part of (1). If, in the second part of (1), |'y*5ti({s}§\ > ¢, then ||y > {|v||
as above, a contradiction.

To prove (2}, first suppose £, and tp are simple. Then ¢; v s; for some j
and tz «~ s;. The other possibility is that one of {t1, ¢2}, say ¢, is compound,
Then since |v*6;,({s})] < ¢ < ||7||/2 for all 5 € S\{s1, $2}, we must have
w(t;) = {s1,s2}. Then s; and sz are compound and ty v 85 for one of
J = 1,2. Consequently, t; is compound, so by the same reasoning used for
ts, m(‘lﬁg) = {81, 82}. Thus also V\(S]) = {151,'[.‘2} = M(Sz) and 81, 89,41, %2 18
a quadruple of compound points.

The result (3) follows immediately from (1).

To prove (4), suppose first that all the points are compound. If, say,
81 == 81, then {#,#3} = “(s1) = «(§) = {{1,7}. Then, say, 1) = 1] S0
{51_,32} = «{t1) = «(t1) = {31, 5} The other possibility is that all the
polnts are simple. Suppose first that two of the ¢'s are equal, say £ = £ = 1.
Then {s1,s2} = {s € §: |y &({sh 2 c} = {5, B} Say t s =& = §
(the argument is the same if s = 51 = 5y, 8 = gy = 8y Or 8 = 8y = 5). Then
since g is simple, neither 3 « s nor o v 3. Consequently, fo, %y « 8y = &,
Since 3 is simple, t3 = 5 as desired. If, second, two of the s's ave equal, say
8= 51 = 81, then for some i and 7, § « %, t;. Since 5 is simple, #; = 2} and
our prior argument applies.

icm
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LeMMA 5.4. If 4/5 < ¢ < 1, and if {z1,22,y1, 02} 48 a (p,c)-set, it
is also a (1, (5 — 4/c))-set. Furthermore, for each 4,7, 0*by, ({z;}) and
$* 6, ({y:}) have the same sign.

Proof. For each i there is a j such that z; «~ y; and consequently,
* 6, ({91 = 1/2 > 3(5 — 4/c) as well as

(*) o™ xz. (@)] = ™" xa. -
It remains to show [4*65,({y;})] > (5 — 4/c). By Lemma 5.3(1} and (),

" s ()] 2 0= 5= (2= 0) = "8 ({wi})]
= e )] = ol e

By Lemma A2, since 3/(2 — ¢) > 2/3,
2\ 1(, 4
s =Gz B (- ) = 5(s-3)

The second assertion follows from Lemma AT7.

LEMMA 5.5. If 68/T1 <c <1, a (p,c)-sel {z1,%2,y1, Y2} can be labelled
z°, z°, y%,y° so that either

(1) @6y ({2°}), %6 ({2°}), 0" 8o ({2°)) > 0 and 9"6,2({2°}) < 0,
whereupon we call the value of the foursome positive, or

(2) %6, ({7°)), 0*6ye ({2°)), 9" 8yo ({2°}) < 0 and 76y ({z°}) > 0,
whereupon we call the value of the foursome negative.

Proof. Since 68/71 < ¢ < 1, 5(5 —4/c) > 7/17 so {z1,%2,23,24} 15 2
(4, 7/14)-set and, by Lemma 5.4, for each 4, j, ©*6,,({z;}) and 9*Ex, ({2:})
have the same sign. For each i = 1,2, 9*8;, = ¥*&,({;n})éy, +
6, ({y2}) 8y, + vi where |v|({z1,22}) = 0 and | < 1-2.7/17 < 1/8.
Then |@*v;| < 1/4. Since

0 Ea, ({y1}) 1/)*6m1({y2})] V"’%({xl}) w*éyl({-’ﬂz})}

[“fl'*tsmz({yl}) ¥ ey ({12}) | @76 ({m}) @ éu({za]) _

1— ' n{{m}) —¢ n({za]) ]

N [ ~pn({z:}) 1-¢w{m)) ]’
the hypotheses of the following lemma are fulfilled, which completes the
proof.

DEFINITION. If the four numbers ¢* 6« ({z¢}), ¢* 6y« ({2°}), ©* 5},0 ({a:“}),
*6,0({2°}) consist of three positives (negatives) and one negatlve.(pgsm—
tive), we will say the magjority sign is positive (negat:we) and thg minority
sign negative (positive) and call {z%,3° 9% y°} a positive (negative) (@, c)-
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set. Note that z° and y° are characterized by ¢*6,0({2°}) having the mi-
nority sign.
LeMMa. Let &;; denote O if ¢ 3 j and 1 if © = §. Suppose A and B
are 2 x 2 malrices of real numbers and C' = AB with entries aij, bij, oy
respectively that satisfy the conditions |lag;| —1/2|, ||by| — 1, eij = 6i5| < 1/4
and signa;; = signby; for all i,7 = 1,2. Then either A and B each have
three positive and one negative entry or three negutive and one positive.

12 H. B. Cohen and C-H. Chu

Proof. If not, then several cases are possible:
Case 1: All entries are positive. Then

1 - 1,3
3> ciz=anbitanby > 5+

ENT
i
el

impossible.

Case 2: All entries are negative. Then 1/4 > ¢y5 = |aq,||bra] -+ [t |b2z]
> 3/8 again.

Case 3:ay1,a12 > 0 and 021, agy < 0. Then By, bar > 0 and by, by, < 0,
Hence

—% < c1a = anbio + anpbas <
impossible. (The other cases are similar.)

i
1'%

Case 4:a11,as1 > 0 and aia, asy < 0. Then by, byy > 0 and by1,bay < 0.
Hence :

1 _ P .
i > C12 = anbiz + e1obas = a11b1o + |ang|[be| > F - 2 4 L. 4=4
impossible.

Case 5:ai1,a20 > 0 and aya,a9; < 0. Then byy, bag > 0 and byg, bys < 0.
Hence

T < e =onbia + aisbs <-f;':§-|-:]f'%3: T

DeFINITION. Let 68/71 < ¢ < 1 so that any (i, c)-set is also a {4, d)-set
for d = (5 - 4/c) > 7/17, hence the conclusions of Lemmas 5.4 and 5.5
hold and we may use the notation z¢, 2%y, y° of Lemma 5.5. A (p,c)-
quadruple (a (1, d)-quadruple) is an ordered quadruple (2%, 2% y*, ") such
that {2, 2° 9% 4°) is a (p,c)-set (a (3,d)-set)); & (resp. %) shall de-
note the set of all (p, c}-quadruples (resp. (1, d)-quadruples), which is not
empty since it contains all quadruples of compound points. The rangos of
the canonical projections of ¢ onto its four coordinates are denoted by A,
Aoy Ve, Vo respectively. Let $°° denote the get of guadruples of sign s in %"
and let X2, X2, Vi, V2 denote the ranges of the coordinate projections of
$%°. We shall say that a set of ardered quadruples is 1-1 if two quadruples
in the set are equal whenever they agree at one coordinate.

LEMMA 5.6. 8¢ is 1-1 whenever 68/71 < e < 1.

Bound-2 isomorphisms of C{(X) 13

Proof If (z%2° 3% vy°) and (3°,7°,%°,§°) in &° agree at one coordi-
nate, then by Lemma 5.3(4), {24 2°} = {Z%,%°} and {y%,y°} = {¥°,%°}. If
they agree at an z-coordinate, then z® = Z¢ and z° = F°. If y* = 7° and
y° = ¥, then ¢*dye ({x°}), which has the minority sign of the (i, c)-set, is
equal to ¢*dz ({Z°}) which has the majority sign, a contradiction. Thus,
y? = §° and y° = §°. If they agree at a y-coordinate, we reach the same
conclusion because (2% 3% y%,9°) is a (9, d)-quadruple.

Remark. If $¢ were closed in X x X x ¥ x Y, the range of the natural
prajection of ° onto X, x X, would be a homeomorphism of A, with ;
indeed, the range of the coordinate projection onto any two of Xe, Ay, Ve,
¥V, would be a homeomorphism. We have not shown &° is closed, but we
can prove cl & C 7! for 2¢ — 1 > 68/71. Since 27! is then 1-1, cl$¢
provides a compatible family of homeomorphisms. See the remarks after the
main theorem in Section 3 above. We will need the following lemma, whose
proof, a slight generalization of the proof of Lemma 4 in [11], is omitted.

DEFINITION. In the sequel, ¢ is a fixed number satisfying 139/142 < ¢ <
1, hence 68/71 < 2¢—1 < L.

LEMMA 5.7. Let 1/2 < v < 1 and suppose T is compact Hausdorff,
to —x #EtinT, e anetin M(T) weak™ convergent to p, || < 2 for all
&, and pe({ta}) > r (resp. < —7) for all . Then p{{z}) > 2r — 1 (resp.
< —2r + 1). '

LEMMA 5.8, ¢l $° C &2°-1; indeed, for each sign s, cl&%* C $2°~ 15,

1

Proof Suppose (z%,22,%5,v5) is a net in %° coordinatewise conver-
gent to (z%,2°,9%y°) € X x X x Y x Y. What if 2 = 2°® = 2°?! To reach
a contradiction, let § > 0 be given and select an open neighborhood U of
x such that "8, |(U\{z}) < 6. Let f : X — [0,1] be continuous with
f =0 on X\U and f = 1 near z. For every o, ag = ¢*0, o ({23}) and
bo = *8ye ({z5)) have opposite signs and by Lemma 5.3(1), one of them,
S8y aq, satisfies 1 < jag| € 2~ c. Moreover, for large o, f(zg) =1= flze).
Consequently,

o™ bye ({z})i — 6

<lede(lepl—| [ Fde s,
U\{=}

< |ebuelel)+ [ Fd@8y)
UN{z}

=1im | [ f (de"8ye)

=| [ fdlp"sye)
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= tim [ f(8) ("6 (D) + FE) B (me) + [ o)
UN\{wgomt

il

dotbat [ Fd{ptEy)l.
o UMeL )
Also, for every o,

6ttt [ Fdle7b)
UN{=G 2o}

ot

lim
[+

< lan +bal + [0 6y

U\{=z5, 20

= [laa| = [ball + l8yg (TN {25, 25 })
<|(2~c)—e+2—(1+¢) =3(1~c).
Hence |p*6,0({2})| — 6 < 3(1—c) and since & is arbitrary, [¢* 8y ({z})| <

3(1 —¢) < L. Soif & «~ y°, then |*8y«({z})| = 1, a contradiction. If not
7w y°, then y° « & # x for some ¢ in X. For each o, let to € {2, 2} be
such that y2 « to, hence t, — = and |@*8ye ({ta})] = 1. By Lemma 4 of [11],
lip*6y= ({z})] > 1, impossible. Thus z° # . A similar argument applied to
Fds vields y® # y°. By Lemma 5.7, (z¢,2°,y%,y°) € $2¢~He,

For each sign s, c1$>* is 1-1 and therefore embodies a compatible set of
homeomorphisms between any pair of cl X5°, cl X5*, el Vg+*, cl V5", There-
fore $%° also embodies a compatible set of homeomorphisms between any
two of X&%, X&8, Y&&, Y&i, The key remaining step to our result is

ProPOSITION. A compound point in any one of the sets A5, XSS, Ybd,
Y58 ds interior to it

The proof of this proposition requires several auxiliary lemmas.

DEFNITION. Let H : X — Y denote the 1-1 onto map that associates
with simple z € X the unique ¥ € Y such that z - y, and with the even
(odd) compound point z® {resp. 2%} in X the unique compound point y*®
(resp. ¥°) in Y such that z® « y° (z° « y°). Recall that by Theorem 11
of [11], H is a homeomorphism of the simple points of X with the simple
points of ¥. We say a net converges to o set C iff it is eventually in every
neighborhood of C.

LEMMA 5.9. Let 2, be o net of simple points in X, yo = H(z,) the
corresponding net of simple points in'Y, and (2%, 2°,y%,y") o quadruple o
comnpound points. Then z, — {z¢,2°} iff v — {¥°, 4"}

Proof. Assume y, — {y% y°}. If z, does not converge to {z*,z°}.
then passing to subnets by compactness, we can suppose ¥ — ¥ € {y%, v°)
and 2, — 2 € {2° 2°}. Let A € C(X) have values in [-1,1], be 0 at z, and
sign p*8, ({x}) at 2P for each p = e or 0. For each @, let o = ©*6y, ({€a}) b,
and v, = ¢*6,, — pe = the restriction of p*4,, to X\{z.}, and note that
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p*by, is weak* convergent to ¢*6, = h(x®)8ze + h(2%)buo, 0 8y, ({za)) Is a
bounded net of scalars, and h{z,) converges to 0. Then v,(h) converges to
2, so for large o, 2 < L+ v4(R) < l*6y. ({za])| + va(R) < |pal + jval =
fw*by. | < 2, a contradiction. The converse argument is similar.

LeMMa 5.10. If x, is compound in X and & > 0, there is a neighborhood
U of m, such that 1/2 < |[¢*8,({Hz})| £ 1/2 +e forall z € U. If y,
is compound in Y and & > 0, there is u neighborhood V' of y. such thal
1< i 6, ({H Yy < 1+e forallye V.

Proof Let € > 0 be given and y, compound in ¥. We know 1 <
o6, ({H " y})! for all y € Y. What if every open neighborhood V' of y,
contains an element y for which |¢*8,({H ~'y})| > 1 + €7 Then there is a
net y, in Y such that yo — yo and |p*8,, ({H tya})} > 1 +¢ for all a. By
Lemma 5.9, o = H Yy, — {°, z°} where y° — x°,2°, and by passing to
a subnet, we can suppose &, converges to one of x%, x°, say z°.

Let W be an open neighborhood of 3° whose closure does not con-
tain z° and A : X — [0,1] continuous with A(z°) = 1 and A = 0 on
X\W. Let v, denote ©*§,_ restricted to X\{zs}. Then for large o, zo &
AW 50 |7a|(W) = |@*6y. [(W) = |¢*6,.1(h) and since lim, [p*8y, (R} =
l@* 6y, (h)] = | £ h(z®) £ h(z°)| = |h(z°)] = 1, we have |y.| = 1 for all large
. But then 2 > |p*6,, | = j¢*6,. {za}) |+ [Yal > (1+£)}+1 > 2, impossible.
The proof for z, is similar.

LeMMA 5.11. There is an & > 0 such that if H(z1) =y, with

(a) 1< g6, ({m})| S 1 +¢ and
(b) 1/2 < |¢"&e, ({y ] £ 1/2 +¢,

then there exist unigue To and ys such that Tz # ©1,ys # Y1, ond

(0) 12 [@"dy,({z1})] 2 ¢, (1) 172 2 |96z, ({ma ) 2 ¢/2,
(d) 1/2 = W6z, ({ped) 2 /2, (8) 1 < |6y, ({za})] 2 -
(&) 1= |@*8y, ({ma})] 2 ¢, (h) 1/2 < 9762, ({r2})| £ 1 - ¢/2.

Proof An immediate consequence of Lemma A8 (see Appendix) and
the relationships o*&y({z}) = ¢ xs(D) and 66, ({y}) = V™ xg(E).

We are now ready to prove the above Proposition. Let £ > 0 have the
properties of Lemma 5.11, From Lemma 5.10, we obtain the eight open sub-
sets U(T, s, p), each containing the set of compound points comp(7, s, p},
and such that 1/2 < |¥*6.({Hz})j < 1/2+ e ifz € U(X,s,p) and 1 <
o6, ({H"y})| € 1+eify € U(Y,s,p). Since the sets comp(T, s,p) are
closed and pairwise disjoint, we can and do suppose the eight open sets
U(T,s,p) have pairwise disjoint closures. From Example 2, we see that
H{U(X,s,p)] may not be open. Nevertheless, setting U(T,s)=U(T,s,e)U
U(T, s, 0), each H[U(X,s)] is open. For H{U(X, s)] is the disjoint union of
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the closed set comp(¥,s) = H[comp(X, s)] and the open set H[U(X, s)]\
comp(Y,s) = H[U(X,s)\ comp(X,s)]. If H[U(X,s)] were not open, then
some point of comp(Y;s) would not be in the interior of H[U(X, s)] and
consequently a net of simple points y, ¢ H[U(X,s)] would exist such
that ya — comp(Y,s). But then H 'y, ¢ U(X,s) and by Lemma 5.9,
H~ly, — comp(X, s), impossible.

Set W(Y,s,p) = U(Y,s,p) N HU(X,s)] for each s and p, an open set
containing comp(Y, s, p), and set W (X, s,p) = U(X,s,p)NH H{W(Y, )], an
open set containing comp(X, s, p). Given y; € W(¥,5,p), set w1 = H Yy
and note that both y; € U(Y,5,p) and 2, € U(X, s,¢) UU(X,s,0). Conse-
quently, both 1/2 < [v*6, ({11 })] £ 1/2+e and 1 < |p*6,({m})] £ 1 +e.
Let x5 and ys be the points given by Lemma 5.11. Then {z1,@2,¥1,%2}
is a (p,c)-set and consequently y; € V**. Thus WY, s,p) G Y. Given
21 € W(X,s,p),y1 = H(21) is in W(Y,s) so that z1 belongs to a (i, ¢)-set,
hence zy € X%, Thus W(X, s,p) C X%

Next, consider the directed set I'(T,s,p} of opensets ¥V in T = X or
V satisfying comp(T,s,p} € V C W(T,s,p). To be definite, set T' = X,
the discussion for Y being similar. If no V' € I'(X,s,p) is a subset of A5
then there is an element zy € V\X® =V N A" for each V in I'(X, s, p).
Then the net 2y converges to comp(X, s, p} and therefore has a subnet z,
converging to some z € comp(X, s,p). Let {2, 25,45, ya} be the (g, c)-set
to which z,, belongs for each «. Then

»* either Cﬁaxmg——)mo:m or g_ja:m:’xwm‘fzwl

Passing to subnets once more, we assume (2%,2%,y5,v5) converges to a
member of X x X x¥ x V¥ which, by Lemma 5.8, is a quadruple (2%, 2%, 4%, ¥°)
of compound points, incidentally, because z is compound. But then either
To = Tt — 2° = 2 or 2, = 2, — 2° = 2, contradicting . Thus we have
shown that comp(X, s, p) is interior to X>* and comp(Y’, 3, p) is interior to
Vg '

We will now complete the argument for the necessity of the three condi-
tions of our main theorem. For each sign s and pair of parity values p,q €
{e, 0}, let hgpy denote the homeomorphism A" — Yo deriving from &%
i.e. the homeomorphism whose graph is the range of the natural projection
of $%¢ into X x V. It is a simple exercise in topology to show the existence
of open sets X in X and ¥? in ¥ satisfying comp(X, s, p) € X} C A7 and
comp(Y, s,q) C Yy with hepe[X 7] = ¥'. We next show that these four open
sets X7, X7, Y2, Y7 are bridges. Their boundaries 8X) and Y, are closed
sets disjoint from them which we partition into two closed subsets:

F(X)) ={vedXs H(z) eV},  S(X)={zedX]: H(z)eVi},
F(Yp)={yedyy B y) e x5}, S(Y9) ={yedys: Hi(y) e A}
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The definition makes sense because if 2 € A;+® for instance, then z €
{z¢,z°} for some (x*,2° % y°) € % and H(z) is one of y°,y” and there-
fore H(z) € Y$ U VS, Since A%* is closed and contains X7, OXy C A%
Hence d.X3 is the disjoint union of F(X7) and S(X}). Since H is contin-
wous on X\ comp(X), F(XZ) = 8X; N HH[Y;\Y;] and S(X7) = XN
H™V5\Y{] are closed as well. We have Rapglcl X5] = clhsp [ X}] = 1Y)
and by their construction from $%°, the homeomorphisms h.ye are compati-
ble as required by condition (3) of the main theorem. Also, if x € F(X7) then
@ = zP where p = e or o and (z%, 2%,y y°) € $%°. Then H(z) = H(z?) =
Y = happ(x). And if 2 € S(X5), then H(z) = H(a?) = y¥ = hepp(). Thus
condition (3) holds.

For the second assertion of (2}, let z € F{X3) so that H(z) = happ(z).
Since hspp 15 a homeomorphism carrying X onto Y7 and X7 onto Yo,
we have H(z) € 8Y;, and of course H™'(Hz) = z € &7 Hence, by its
definition, F(Y;) contains the element H(z). Thus HIF(X)] € F(Y;)
and, since a similar argument yields H*[F(¥;)] € F(X}), we conclude
H[F(X$)] = F(Y;). Similarly, HIS(X) =8}

For each T, let W(T') denote the union of the four sets T}, and set

Xt = {z € T\W(X) : p*6,({Hz}) > 1/2},

X~ = {z e X\W(X) s ¢76.({Ha}) < ~1/2},

Y= {y eV\W(Y): 0 8({H "y}) 2 1},

Y~ ={y e V\W(Y): ¢*8,({H y}) < -1}
Evidently, each T is the disjoint union of the four open sets T and the two
gets T, hence TF U T~ is closed. '

LEMMA 5.12. T is closed and H[X*] =Y*.

Proof We give the argument for X 1. Suppose z, € Xt and 1, — z.
Then z € X+ UX~. What if z € X~ Let 0 < £ < 1/4. By regularity of
16, let V be an open neighborhood of Iz such that W* L |(V\{Hz}) <e
and W a closed neighborhood of Hz contained in V. There is an f € C(Y)
with values in [0,1] that is 1 on W and 0 on Y\V. Then |¢"fa,| < 1 and
Y*6,, ({Hza}) = 1/2 for all @, so

[ fa &)= -1/2
VA{Hzal}
hence %*6,, (f) = 0 for all c. From this,
0 < bmy b, (f) =9*6a(F) = [ fo(¥76a) +9"E:({He})
V\{Hza}
<e-1/2<1/4-1/2 <0,
impossible, so z € X as desired.
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From Lemma AT, ¥*6,({Hz}) and ¢*6y.({z}) have the same sign.
Also, HW (X)] = W(¥) so HIXTUX | =YTUY". But H{X*t] C V™
since if & € X, then ¢*6,({Hz}) > 1/2 and so @*p({H " (Hz)}) =
* 8z ({z}) > 1. Similarly, H[X~] C Y. Then H[X*®] =Y* for each s.

Tt remains to prove that for each T and s, I7 joins T to itself and
T¢ joins T% to T%; that is, F(T2),5(T%),S(T¢) C T¢ and F(T3) C T
We will demonstrate only one of thegse eight inclusions since the arguments
are similar. To prove F(X}) C X, for instance, let z € F(XJ). Then
z € 8X} and Hz € V. The four sets X are pairwise disjoint and open
so 2 € X gives us z € X\W(X), indeed, z € X>T\W(X). To show
P8, ({Ha}) < —1/2, let (2°,2°,y¢,3°) be the quadruple in ¢ for which
z = z° Since Hx € Y, Hz = y°. Then ¢*§,({Hz}) = v* b6, ({y°}) has the
minority sign, —, of the quadruple, and since = « y, [¢*6,({Hz})| = 1/2.
Thus ¥*6,({Hz}) < —1/2 as desired. Thus z € X .

Appendix on isolated points. We denote by 15 the set of isolated
points of a topological space T'.

Lemma Al Let T be compact Hausdorff and kT denote the compact
Hoawsdorff space for which C{kT) is linearly isometric with C(I**. Then
there is o 1-1 function t — 1 from T onto (KT)o for which

(i) given t € T, the action of x; € C(kT) upon a given n € M(T) is
n{{z}), -
{ii) given he C(kT) and teT, the action of h upon §;€ M(T) is h{t).

Proof. Theseresults can be deduced from the construction of H. Gordon
[14] or the Kakutani abstract L-space construction [17] applied to M(T").
Moreover, Cambern and Greim [8], [9] have developed these representations
and extended them to spaces of vector-valued measures.

Hence if ¢ : C(X) — CG(Y) is continuous and linear and if z € X and
y € Y, then p*6,({z}) = ¢**xs(¥), by (i) and (ii) above. For convenient
reference, we record in Lemma A2 the results of Lemmas 1 and 2 of [11]
specialized to bound-2 isomorphists.

LeMMa A2. (1) Suppose v : C(X) — C(Y) is an onto isomorphism
with o~Y| =1 and |lpl| = 2. Let y € ¥y and F = o™ (x,)/ |7 ()
and let 2/3 < © < 1. Suppose f,g & C{X) such that F = f + ¢ and
Olu| < || + pgll < lul if |p| 2 1. Then o{g)(y) = 3 - 2/86.

(2) If v: C(X) ~ CY) is bound-2 and onto, y € Yy, and 2/3 < © < 1,
then Xo(y,0) ={z € X 1 |(v Ix)(@)| 2 [ 1%, 1|OF consists of m isolated
points where 1 <m <2/(3-2/0).

Moreover, if & € Xo(y,0), then |(vx2)(y)| 2 (I7ll/2)(3 — 2/6). By
changing the roles of X and Y, we have similar results for Yo(z,®). -

icm
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In the following Lemmas A3 and A5, and their corollaries, we refine our
approach to Lemma, 5 of [11] in order to repair the proof given there. In the
sequel, v : C(X) — C(Y) is always an onto bound-2 isomorphism. Given
y € Yo, Xo(y) denotes Xo(y, 1), a single isolated point or a pair by Lemma,
A2. Forz € Xp and y € ¥y, let

Xz = (WX2)Xv\{y} = VX — (¥Xa) () Xy
s0 that vxz = (7X=)(¥)xy + 7%, Txe(y) = 0 and [yxz!| = max(|(vx=)(¥)];
i) Similarly, [lv~ x| = max(i(v " xy) (@)1, §7 Ty )
LEMMA A3. If y €Yy and = € Xo(y), then

e led
vl < —.
ST I I i I T |
Proof. If [7=Tx," || = 0, the right side of the inequality is 0 and vy, =
(v xw)(2)xe; hence xy = (v~ xy)(2)7Xz, from which FxY =

Now suppose ||'y“1xyw|| >0,and let v = [lfy’lxyH/H'y*lemH. Letw € Y,
w % y. Then

0= xy(w) = 7[00 ) (@)x= + 77 Xy J(w)
implies
()] - [k () = [v(7 iy ) w)],
Using this and one of o = =1 gives us
(1 + () (@)] - [(rxa) ()] = (v 5 ()] - | (k) ()]
+vlv(v Xy )(w)]
= (7" ) (@) (7xa) (W) + ey (v Ty )(w)]
< Il ™ ) @)xe + 00y T |
=7l v xe -
Strike (7" xy)(z)] = |7 xyll from the inequality to obtain |(yxa)(w)| <
I/ (1 +w).
COROLLARY A4. If y € ¥ and =z € Xo(y), then |[Fxz¥| < |v]l/2 <
[l(vxa)l = l{vxe)(v)|. Consequently, y & Yo(z). Indeed, for isolated x and
Y, ¢ € Xo(y) iff y € Yo(x).

Proof. Lemma A3 yields the first inequality since ||y 1y, || = ||f7—1xym II.
The middle inequality is just

1=l = v ()l < B - e ) = ﬁﬂnw-

Lemma A2 implies [{(vx.)(¥)| = [[7]l/2 so the last equality follows from the
first inequality.
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DErINITION. We say z € X is simple if ¥y(x) is a singleton, compound
if ¥5(z) is a doubleton. These are the only possibilities according to Lemma
A2

LEMMA AB. Suppose y € Yy and z € Xy(y).

(a) These are equivalent: y is simple; ||[¥xz7 || < iv]//2; = ds simple;
"ty < /2 .
(b) These are (.Llso equivalent: y is compound; |[FXzY| = |Efy!|/2 @ 18

compound; |7~ xy xy | = Ilv11/2, and when they hold, then |(vx.)(y)| =
71172 and (v~ ) x) = [l ] /2.

Proof. (a) If y is simple, this means ||fy”1xym\| < |l txy ||, which, by
Lemma A3, yields |[¥x%2Y|| < |lv]/2, hence |7%Y] < |vxs| by Corollary
A4, which means = is simple. Similarly, = simple yields 7%= < [vx«l,
whence [[77Ix," || < [|v~*I|/2 by Lemma A3, s0 [y T, " || < ll7~ x| by
Corollary A4, hence y simple,

The string of equivalences in {b) is a simple consequence of (a). Assuming
these, Xo(y) = {1, 22} where z = 21 # x5. By Corollary A4,

I71/2 < llvxall = [y @)] = 1" 8){=: )l (6= 1,2);

hence, |[¥]| < |(v*8,)({z1 )| +1(v*8,)({2})] < |l7]. Therefore | (7w, )(¥)] =
I711/2 (i = 1,2) and, similarly, (v~ xy) ()| = [y~*]|/2.

CorOLLARY A6. If © € Xy and |[{vx2) (%) = ||7]/2, then y € Yolz).

Proof. If z is simple, then |vx=| > [|7||/2 at a unique point ¢ in ¥ and
Yo{z) = {t}. By uniqueness, t = y. If z is compound, by Corollary A4 and
Lemma A5, [lvxz || = [17l/2, hence |(vxz)}(9)] = [vx=ll; te., ¥ € Yo(2).

In what follows, ¢ : C(X) — C(Y) is a bound-2 isomorphism with
loll =2 and 1 = ¢

LEMMA AT, Suppose y € Yo, [[Wxy (| = |(¥xy)(21)|, ond suppose the sec-
ond largest value r of [1x,| is such that @ = r/|Yxy| > 2/3 and is assumed
at z3 # @1. Then (¥xy) (1) (X )(¥) = 1/2 and (”‘f)Xy)(mQ)(‘PX")(?/) > 0.

Proof. First, set F = by, /|[vxyl, 9 = Fl@))xz, and f = F —g =
Fxx\{z,} 50 that 1 = [|Fl| = |ig]| = || Fll. Then ||f + pugll = lu| whenever
| = 1. By Lemma A2, with @ =1, :

1=3— % < e(9)(y) = p(Fle)xe )(y) =
hence (wxy)(ml)(soxm)( ) 2 Wyl = 1/2. Secondly, set o' = F(z3)xe,

and f'= F — ¢ = Fxx\(s} 50 [|[f'| = |[F| = 1 and ||g/]| = |F(ea}] 2
r/|[¥xyll = ©. For |p| > 1 we calculate |u|@ < || + ug'|| < |u| and hence,

wa)( 1)
Tl (1) (9),

icm

Bound-2 isomorphisms of C(X) 21
by Lemma A2,
(¢Xy)($2) 2
= oy >3- =2>0.
[yl (X0 )W) =)

Lemma A8. Let |lof =2, o™ =1, and 3/4 < o < 1. Then there is
an € > 0 such that if 21 € Xo(y1) and y1 € Yo(z1) are simple with

(@) 1 < {(pxe) (1) € 1+€ and
(b) 1/2 < [(ahxy, ) (z1)] < 172+,

then there exist unigue isolated points ©y and yo such that z, Fx, v F oy
and

(©) 12 (X, ) (w2)| = 0,
(d) 1/2 > |(¥xpa 1) 2 0/2,
(e) L= [(oxe. ) (1)l = o

(£) 172 2 |(dxy )(w2)| 2 0/2,
(g) 1< |(50X:c2)(92}| =2- g,
(h) 172 < [(xy,)(z2)| <1 - /2.

Proof If y» and 23 exist in ¥ with property (d) and y;,ys 5 29, then

12 [ 8en} 2 (9" ) ({3 D] + (9762, ) ({w2 )| + (762, ) ({22}
1 o 1
= l(wxyl)(wl)l + |(¢X?J2)("T1)| + |(¢’Xzz)(m1)| = 5 + E + % = '2' +o>1,
impossible. Thus ¥, is unique and similarly 2, is unique.
For existence, first fix 2/3 < o < 1 and pick € such that both

30 .o=2 1+¢ 1
0<s<—é-—l and - 1+2£+1_U <m1+1_0.
We now produce yz # yi satisfying (c). Set M = (1x,,)(z1) and N =
(X2, ) (1) and let F, f, g be as in Lemma A7, which implies MN > 1/2.
Setting p =1-1/(1 — o), simple calculations yield p < —1 < 1—1/(MN),
hence 1+ (p—1)M N < 0. There exists y2 € Y such that [(f + ug)(y2)| =
le(f + pg)| 2 || f + pgll = —p. What if yo = 317! Then

—p < ol f 4 pg)(y2)| = Iso( W) + (5= L)e(g) )]

1+ - 1MN
nw T e D
1
1 (1= @M N]) = — e (1= @) N
= (1 Q=M IV =~ (1= )i
-2 1+e 1
S1%—2&:4_ 1757 1+ e H

impossible. So, y2 # y1, whence

—p < Je(FYy2) + (1~ De(g)(y2)]| = (1 = @)l (exe, ) (y2)],

from which |(¢Xa, )(y2)| = 0. To see that 3 is isolated, note that o /(1 + &) >
2/3 and choose o/(1 +¢) > o1 > 2/3. Then |{pxaz, {y2)| 2 e > (1 +¢&) >
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o1 |ligxe, ||, from which y» € Yo(z1,01), a set of isolated points by Lemima
A2. Note that 1 > |(¢)z, ) (v2)| because z; is simple, by Lemma AB.

We now start over to find y2 satisfying both (c) and (d). Given 2/3 < o <
1, choose o < o1 < oz < 1 such that 3 — 2/01 > 0. By the above paragraph,
there is an & > 0, which we may take so small that (1 +€)o1 < o2, such
that if ©1,y; are simple isolated points satisfying (&) and (b}, there is an
isolated ys # y1 for which 1 > Hoxe ) (y2)] = o2. With such £, ¥1, ¥2,
21, We have |(pxa ) (w2)l > (1+8)or = o1l(@xe, )1)| = o1ll@Xa, [; hence,
ys € Yy(z1,01). By Lemma A2,

) (on)| > L2 (3 B, ;*”:) _ %(3 - %) >

If 1(¢’Xy2)($1)| = 1/2, then zy € Xo(yg) 80 Y1,Y2 € Yg(ml
simple. Thus yo satisfies both (c) and (d).

Given 2/3 < ¢ < 1, there is an £; > 0 such that if #y and %1 are
corresponding simple isolated points satisfying (a) and (b), then there exists
ya # yi such that (c) and (d) hold. For 2¢ and 3¢, there is an e3 > 0
such that if y; and 2, are corresponding simple isolated points satisfying
1< |29 ) (@1)] < 1+ 22 and 1/2 < (X ) (y1)] < 1/2 + €9, then there
exists zg # o1 such that 1 > [{2¢xy, )(z2)| 2 o and 1/2 > (X)) (n) =
/2. Let & = min(e1/2, £2/2). Let z; and y; be corresponding (for ¢ and 1)
simple isclated points satisfying (a) and (b):

() 1< |(pxa)) S 1+e and 172 <|(¢xy)(m)! S 1/2 4.

Then ys # 1y isolated exists satisfying (¢) and (d). From (x), 1 <
(20, ) (@ )] < 1422 < 1+ and 1 (b )0)] € 1/2+€/2 < 1/24 3.
This implies that z; and y; are corresponding isolated points for the maps
21 and -é—go, and if they were compound for 2¢» and %(p they would be
compound for ¢ and %, a contradiction. So they are corresponding sim-
ple points for 2 and %(,0. By definition of s, there exists xg # 2y such that
1> [(2¢xy,)(z2)] = & and 1/2 > |(39Xw,)(11)] 2 0/2. Then we have (f)
1/2 > [($xy: )(@2)] 2 /2 and (&) 1> |(pXz,)(y1)] = -

To complete the argument, suppose 3/4 < ¢ < 1 and ¢ > 0 has the
property that if z; and y; are corresponding simple isolated points satisfying
(a) and (b) for p and v, there exist isolated 2o # 1 and yp 7 y1 satisfying
(e)—(f). We will show that (g) and (h) also hold. Given such @y, 2y, ¥1,¥2,
it suffices to prove [(@xe, ){ys)| = 1. For then ya € ¥y(za), so 2o € Xolya),
from which |{xy,)(22)| = 1/2. Moreover,

(2o ) y2)] + 0 < 10} 12| + |00 (32)]
=) (e (@) ({za D) S 1e%hy| <2,
whence (X, )(y2)| < 2 — ¢ and, similarly, |(¢¥xy,)(22)] £ 1 —0/2.

— wfQ

, violating z,

icm

Bound-2 isomorphisms of C{X) 23

. What, then, if {(¢xe, ){y2)| < 17! Then yy & Yo(z2) so ze & Xolys), and
since |(thxy, 1)l < 1/2, 1 € Xo(y2). Then there is an 23 € Xp{ya) and
Ty, Ty, and za are distinct. We obtain

Hooxas ) (y2)] = (" 8y, )({ma )] <2 — (0”80 Y{{za )] — (" 8y ) ({1 1)
<2-1-0=1-06<30—2

because o > 3/4. We will reach the contradiction 30 — 2 < |(oXa, ) (y2)|. To
this end, define A € C(Y¥) by

h= ((PXM)XY\{'yhyg} = PXzy — (‘PXM)(W)XW - (SDsz)(yl)Xyz-
For suitable o, 8 = 1,

2 > 200y, + 28xy, + Rl = ¥ (20, + 28xy, + b))
2 [20(thxy, ) (21) + 28(¢xy. ) (21) + () (z1)]
= 2(|(¥xy )@} + [(xge) ()] + [ (R) (1)
2 2[1/2+ o /2] + [(h)(=1)];
thus
() WAz}l €1 - 0.

Applying ¢ to the defining equation of k, evaluating at 21, and using (x) we
obtain

{oxs) (y2)] = m[](‘mez)(yl)||(¢>cm)($1)l = [1p(R)(z1}]]

> 2{o(1/2) — [p(h)(z2)|] = o — 2|p(h)(z1)]
>o--2(1—g)=3c-2,

which completes the argument.
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Asymptotic expansion of solutions of
Laplace-Beltrami type singular operators

by

MARIA E. PLI§ (Krakéw)

Abstract. The theory of Mellin analytic functionals with unbounded carrier is devel-
oped. The generalized Mellin transform for such functionals is defined and applied to solve
the Laplace-Beltrami type singular equations on a hyperbolic space. Then the asymptotic
expansion of sclutions is found.

0. Introduction. This paper may be regarded as a sequel and correction
of [1], and we use similar notations.

In Section 2 we define directly the space of Mellin analytic functionals
with not necessarily bounded carrier, without using the notion of Fourier
analytic functionals.

Section 3 contains the definition of the generalized Mellin transform of
a Mellin analytic functional as some Fourier analytic functional. It is shown
in Theorem 2 that if the carrier of a Mellin analytic functional is compact
then its generalized Mellin transform is the boundary value (in some special
sense) of its ordinary Mellin transform.

In the next section we prove two Paley—Wiener type theorems for the
Mellin transform of Mellin analytic functionals. In the proof of Lemma 5 we
use estimates similar to those used in the proof of Theorem 3 in [1] but in
a corrected form.

In Section 6 we apply the theory of the Mellin transform of Meilin an-
alytic functionals to solve the equation Pu = f, where P is a Laplace-
Beltrami type operator. We find a solution in the space of Mellin analytic
functionals, by a method similar to that used in Section 7 in [1]. The es-
timate of Fj in [1], p. 274, is incorrect, because the “constant” A is not
constant (depends on Re z).

Here we find a correct but slightly worse estimate; thus the conclusion on
the Laplace--Beltrami operator in Section 8 of [1] is not true. The main result
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