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Some remarks on the asymptotic behaviour of
the iterates of a bounded linear operator

by

ANATOLII B. ANTONEVIGH {Minsk),
JURGEN APPELL (Wirburg), and PETR P. ZABREIKO (Minsk)

Abstract. We discuss the problem of characterizing the possible asymptotic be-
haviour of the norm of the iterates of a bounded linear operator between two Banach
spaces. In particular, given an inereasing sequence of positive numbers tending to infinity,
we construct Banach spaces such that the norm of the iterates of a suitable multiplication
operator between these spaces assumes (or exceeds) the values of this sequence.

In this paper we discuss the problem of characterizing the possible
asymptotic behaviour of the norm of the iterates A™ (n = 1,2,...) of a
bounded linear operator which acts between two Banach spaces X and Y.
Here we assume that both spaces X and Y are continuously imbedded in
some topological linear space S, and hence the domains of definition

(1) D(A) 2 D(A*)2...DD(4™) D...

form a decreasing sequence of linear subspaces of S. The Banach spaces X
and ¥ are required to satisfy

(2) DA™MD X, R(AMCY (n=1,2,...),

where R(B) denotes as usual the range of B. In particular, in the case
X =Y = § the operators A" are simply the usual iterates of A, considered
in one and the same space. '

Classical examples of operators which will be considered in what follows
are the maultiplication operator

(3) Az(t) = a(t)z{t) (t€ ),
the shift operator (or composition operator)
(4) Az(t) = 2(6(2)) (t € 12),
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and the integral operator

(5) Az(t) = [ k(t,8)z(s)ds  (t € £2).
£2

Here a suitable choice for S5 is the metric linear space of all (classes of)
measurable real functions on (2. Similarly, for X and ¥ one may chooge
Lebesgue spaces, Orlicz spaces or, more generally, arbitrary ideal spaces
[8, 12] of measurable functions over 2. Using well-known mapping anc
boundedness criteria for the operators (3), {4) and (5) between these spaces,
one can find conditions on the functions e : 2 — R in (3}, 0 : 2 — 2 in
(4), and %k : 2 x 2 — R in (5), respectively, under which the iterates A"
are defined and satisfy (2); sometimes it is even possible to find conditions
which are both necessary and sufficient [6, 7].

The problem of studying the asymptotic behaviour of A™ plays an im-
portant role in several fields of mathematical analysis. Here we recall some
variants of ergodic theory (see e.g. [4]), where, by the way, the classical case
X =Y = S is commonly used. Moreover, the asymptotic behaviour of A™ is
also of interest in approximation theory (see e.g. [11]}, in various branches
of fixed point theory (see e.g. {15]), and in its applications to Banach space
geometry (see e.g. [3]).

The purpose of this note is two-fold. On the one hand, we shall show
that the asymptotic behaviour of the norm of the iterates A™ may be in fact
almost arbitrarily prescribed. On the other hand, we shall describe some
situations where the knowledge of the asymptotic behaviour of the norm of
A" gives useful information on the operator itself. For example, it turns out
that the choice of the space containing the multiplicator function a in (3)
determines the growth of the iterates of the corresponding operator A, and
vice versa.

In the classical case X = Y = 9, the sequence of iterates A™ has a well-

known algebraic property which is trivial but useful, and which we state for
further reference as

LEMMA 1. Let A be o bounded linear operator in o Bonach space X.
Then the sequence a, = ||A™|| sotisfies

(6) Qingn S GO,
i.e. it is (logarithmically) sublinear.

Lemma 1 states, loosely speaking, that the sequence || A™] behaves like

a geometric progression. The ratio of this progression is, of course, nothing
else but the spectral radius

o(4) = lim A" {1/ = inf | A" = sup{|A] : A € o(4)}.
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We also mention the interesting formula,
o(A) = mf{[|All. < || - f= = | -1},

where the infimum is taken over all norms on X which are equivalent to the
original norm.

It is natural to ask whether or not, apart from (6), the sequence a, =
|| A™] has other general properties. The following proposition shows that the
answer is negative.

ProrosiTION 1. Let an (n = 0,1,2,...) be an arbitrary increasing se-
quence of positive real numbers satisfying ag = 1 and (6). Then one can find
a Banach space X and o bounded linear operator A: X — X such that

(7) 1A% = ap (n=0,1,2,...).

Proof. The proof is almost obvious. Choosing X == [, {or any other i,
space for 1 < p < 00), and defining A: X — X by

al ag as
Alry,T0,53,04,...) = | 0, —x1, —23, — 23, ...
(8) ( 1502, 434, ) 160 1s ay aa2 s ’

we have for n=1,2,...,

Gn Gntl An+2
(9) A?l(wl,mg,ﬂ?g,xm...): (O)"'aoazgmlv T2, s T3y )

a1
n times
Consequently,
A™|| = sup{ap+n/as k= 0,1,.. .}
But (6) implies that agen/ar < axon/ak = an, and hence ||A™]| = a, as
claimed. =

A trivial example for Proposition 1 is a, = ™ with a > 0 fixed; here the
operator A is simply given by

Az, 29,23, %4, ...} = (0, a1, axy, 0zy, . . .).

Of course, if one imposes additional conditions on the operator A, more
can be said about the sequence ||A™||. For example, in {13] the problem is
studied under what conditions the sequence || A™|| is weakly equivalent to the
sequence n® g™ (A) for some exponent cv. Results of this type have impor'tant
applications in the theory of approximate solutions of operator equations,
but they are far from being complete.

We now pass to the (more interesting) case X # Y. Here it turns out
that the sequence ||A"|| may have arbitrary growth. We state this as follows:

ProPOSITION 2. Let My, (n = 0,1,...} be an arbitrary increasing se-
quence of positive real numbers satisfying Mo = 1 and My — oo asn — co.
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Then one can find two Banach speces X and Y and o bounded linear oper-
ator A: X — Y such that

(10) A% 2 Mn (n=0,1,...).

Proof We choose X = Ly = L (0,00), ¥ = L1 = L1 (0, 00}, and
(11) Az{t) = a(t)z(t + 1),

where the function a will be specified helow. (In other words, the operator
A is a combination of (3) and (4).) An iterated application of (11) gives

(12) Atz(t) =a,(Dz{t+n) (m=12..),
where
(13) _ a,(t) = a(t)alt + 1) . ..a(t+n —1).

Caonsequently, if we ensure that a,, € Iy forn=1,2,...,
(12) will be bounded from X into ¥ and

then the operator

[oe]
(14) 4% = llanlle, = [ lan(2)]dt.
0
Now let v and o (B =:0,1,...) be sequences of positive numbers such
that
o0
(15) 1>%Zm2 . 2n2o., 3 %<
k=0
and
Yo YoYL- - Ye=1 0 YOY1e.- Yk
16 ag=1——, o= — .
( ) 0 Ml’ k M, -[ka-}-l

Observe that the conditions (15) and (16) imply that

Zcxk-—l

Now we define the weight function a in (11) by

(17) a(t) = i Teip(t - k)
k=0

ap =0 (k=

where () = 1/t for 0 < ¢ <1 and (¢) = 0 otherwise. By (13) we have

(18) . a,n(t) Zi’yk...
k=0

Tetn-ap(t = )bt
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We claim that an € Ly (n = 1,2,...). In fact, from (18) it follows that

o0

f ‘LLﬂ ] dt < Z T Viebn1 f (P(t _ k)ak+...+ak+n-1 At
k==0) 4]
o i < Vk4+n—1
k=0 1 [C]fk + + ak+n~—1]

IA

< 00,

where « denotes the decreasmg rearrangement of the sequence oy, (see [5]).
New we prove the estimate (10). Again from (18) it follows that

%‘]‘ +ak+n 1]

At} Z Yov1 .. Yu—1p(t)He T TR
hence
llan|lz, > oYL - Tnd
¥ 1 = X
1_IO‘0+041+ A+ an-1]
From this and the fact that
L—[og+ay oo ] = lfﬁlT%iﬂ,
T

by (16), we conclude that |la,| 1, > M, as claimed. m

Here is an elementary example for Proposition 2. Let M,, =n and v, =
217" (n=0,1,...). Then

2 2
Qi = — .
R /2= (k1) (k + 1)v20—1)F

In this case the multiplicator function (17) is given by
alt) =2""P—k)"  (k<t<k+1),

i.e. e(t) congists of infinitely many decreasing hyperbola branches such that
limy g alt) = 22=% and lim,— 4+ a(t) = co.

We point out that one can also choose X =Ly and Y =Ly for 1 < g <
p < oo in Proposition 2. The requirement a,, € Iy has then to be replaced
by n € Lpgjp—y); and (14) holds with the Ly norm of an replaced by the
Lipg/ (p—q) DOTIO; the rest of the proof remains unchanged.

In view of Proposition 2, the problem arises to find classes of operators A
hetween two Banach spaces X and ¥ for which the growth of the sequence
|A™]| (n = 1,2,...) can be described more precisely. The corresponding
“inverse” problem is also interesting: given an operator 4, find spaces X
and Y such that all iterates A™ are bounded from X into Y, and the se-
quence |A"| (n = 1,2,...) has certain growth properties. ‘We now show
that these two unSLlOIlf: can.in fact be answered fairly completely and lead
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to interesting phenomena even in the very simple case X = L, = Ly(0,1),
Y =L, = L,(0,1), and

(19) Azs(t) = alt)z(t)
It is evident that, for p < g, the operator (19) may be bounded from L, into
L, only if a(t) = 0; therefore only the case p > ¢ is interesting. Now, for
p = g the multiplicator function ¢ in (19) has to helong to L, in order to
generate a bounded operator, Since

(20) Arz(t) = a"(Dz(t) (n=1,2,...)

and

(0<t<1).

A =la®|ze = llolZ,, {(n=1,2,...),

the sequence ||A™|| is simply a geometric progression in this case. A certain
converse of this is also true:

LeMMA 2. Suppose that the iterates ||A™|| of the operator (19) do not
grow faster than a geometric progression, i.e.

limsup /|| A7 < oo.
n—o0

Then the corresponding multiplicator function a belongs 1o L.

Proof Let ¢ > 0 and L > 1 be such that ||A"|| = ||e"|| < eL™. Passing
then from a to the function
SN if a(t)] < L,
0= {0z Kol s 2

we have ||a"|| < c for any n. On the other hand, the sequence 8" () tends
monotonically to oo on the set {t : a(t) > 0}, contradicting the Beppo Levi
theorem. =

We now turn to the case p > g. As a consequence of the classical Holder
inequality, the operator (19) is hounded from L, into L, if, and only if,
0-€ Lipg/ip—gy- Bere the condition |[a||L,,, -, < o0 (n=1,2,...) does not
necessarily imply that a € Lo, but only e € L, for every p € [1,00). At this
point, it is reasonable to talke into accowunt not just Lebeasgue spaces, but the
larger class of Orlicz spaces; we recall the necessary definitions and results.

Given a Young function M, consider the Orlicz space Las = L Mm{0,1)
equipped with the Luxemburg norm

1
(21) lalliy =int {rir>0, [ Mlot)/r|dt < 1}
Q

(see e.g. [6, 10]). Suppose that the Young function M grows faster than any
polynomial (e.g., M (u) = e/l |«| —1), and denote by v, (M) the imbedding
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constant of Lxs into Ly, for 1 € p < oo, ie.

(22) lzliz, <% (M)|zllr, (€ L)
Since
(23) "z, = llalZ, € wmM)|zliz,, (n=1,2,..),

all multiplicator functions a from the unit ball of Lys give rise to the same
asymptotic behaviour of the iterates (20). In this connection, two facts are
worth mentioning. First, it is often possible to estimate (or even calculate)
the value of the imbedding constant v,(A) in (22); for example, one can
use the estimate

YpM) <inf{r:r >0, Mu/r) <(1-X)+x®? 0<A<1,0<u<co)}

Second, the Orlicz space Ly cannot be chosen in a “minimal” way; in fact,
in [9] it is shown that there is no Young function M such that

(1 Lp=1Lu

1<p<oo

As we have seen, only (essentially) bounded multiplicator functions a
generate an operator (19) with the property that [ A™| grows like a geo-
metric progression. In other words, if the growth of {|A™| is faster than any
geometric progression, one should expect that the corresponding multipli-
cator function e belongs to some ideal space Z which contains unbounded
functions. We now show that Z can always be chosen as an Orlicz space Las
generated by some real-analytic Young function M. The converse is also
true: from the coefficients of the Taylor expansion of a real-analytic Young
function M one can recover the growth of |A"|| for every a € Lyy:

Prorosrrion 3. Let M, (n = 1,2,...) be a sequence of positive real
numbers sotisfying

. : ln
(24) nlgréo M, %]
and
(25) M2 < Moy My
Define a Young function M by
| &
(26) M(u) = ; o

and suppose that

(27) oz, € MuL®  (n=1,2,...)
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for some L > 0. Then a belongs to the Orlicz space L, and ||a||z,, < 2L.
Conversely, if a belongs to Ly with M given by (26), then

(28) la™lz, € Mullallz,, (n=1,2,...);
in particular, v2(M) < M,
Proof If (27) holds, from Beppo Levi's theorem we get

T

fMa(t }/(2L)] dt = f ZZHM 5 d

1 R . S 1 .
= 5 JO— ™ dt < E — L.
et 2% M, Lm of el dt < ! 2n M, L ML=l

hence ||e]lz,, < 2L, by the definition (21) of the Luxemburg norm. Con-
versely, if ||aHLM = L < o0, we have

fMLn ~f2$t§ndt fM[a y/Ldt <1,

=]

again by {21). Consequently,
1
[ la(®)|™ dt < M, L7,
0

which is (28). =

In the preceding proposition, we found upper estimates for the Ly norm
of the function o™, i.e. for the case when the operator A™ maps L., into
L;. More generally, if A" maps L, into L, (1 < ¢ < p < o0), we have the
following analogue of Proposition 3 which is proved in exactly the same way:

PROPOSITION 4. Let M, (n=1,2,...) be a sequence of positive numbers
satisfying (24) and (25). Define a Young function M by

x npg/{p—q)
(29) Mu) = M, ,(u) = —‘ul————,
pa(w) ; A
and suppose that
(30) 10|y € MaL® (n=1,2,..))

for some L > 0, Then a belongs to the Orlicz space Ly, and ||a
Conversely, if o belongs to Ly with M given by (28), then

(31) 0™ 2pg)ipmqy € MallallZ,, (n=1,2,..);
in particulor, v, Jtr—a) (M) < M,.

We remark that the preceding two propositions can also be used to prove
the assertion of Proposition 2. In fact, it suffices to choose X = L(0,1),

< 2L.
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Y = L1(0,1), and Az(t) = a(t)z(t), where

32 S
(32 5 2 57, X O
where D), is a sequence of mutnally disjoint subsets of [0, 1] such that
mes{Dy) < 2_“%
Myt

We claim that then a € Ly with M given by (26), and |la]|z,, < 1. To see
this, put

M{u) =sup{|ul"/M, :n=1,2,...}
and obhserve that

203(?5 Z ]\'_’[n XDn,

Further, since the Young functions M and M are equivalent in the sense
that M(u) < M(u) < M(Zu), we have

oo Mn— 1
Mla(t)jdt < | M[2a(t _mas(.D 1,
Of 0) f a9t = 3 FA—mes(D) <

ie |lallp, <1, On the other hand,

1 i
M,
Johan = [ o asx [ (7o) de= i
0 D, ne

i.e. (10) holds.

We point out that the construction of the analytic Young functions (26)
and (28) is similar to the construction employed in the papers [1, 2] on
analytic superposition operators.

All the results proved so far refer basically to the case of multiplication
operators in L, (Propositions 3 and 4), weighted multiplication operators
in L, (Proposition 2), or multiplication operators in Ip (Proposition 1).
For other types of operators 4, it seems much more d1fﬁcull te get precise
information on the asymptotic behaviour of ||A™||. We just confine ourselves
to some general remarks.

First of all, since multiplication operators are closely related (via Fourier
transforms) LQ convolution operators, one could expect that the preceding
two propositions carry over as well to convolution operators. This is in fact
true. By means of Proposition 3, for example, one can describe the asymp-
totic behaviour of the iterates of a convolution operator Ax(t) = (k*z)(t) if
the Fourier transform & of the kernel k belongs to the Orlicz space Ly with
M given by {26). In general, if A is an integral operator of type (5), one
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may try to describe the growth of ||A™|| by combining the usval formulas
for the iterated kernels

k("‘)(t,s)=fk(”_l)(t,r)k(r,s)dv“
0

with well-known formulas or estimates for the nortn of integral operators in
various function spaces (see e.g. [7, 14]).

Finally, we point cut that cne cannot expect any menoetonicity behaviour
for the sequence || A™| as n increases. For instance, many operators which
are important in mathematical analysis are periodic, i.e. AP = I for some
entire p. As typical examples, we mention the Fourier transform on Lebesgne
spaces, the Hilbert fransform on Holder spaces, and all composition operators
(4) on spaces of analytic functions (e.g. Bergman or Hardy spaces) which
are generated by some M&bius transform on the unit disc [16].
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