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One-parameter subgroups and the B-C-H formula
by

WOJCIECH WOJITYNSKI (Warszawa)

Abstract. An algebraic scheme for Lie theory of topological groups with “large” fam-
ilies of one-parameter subgroups is proposed. Such groups are quotients of “ER-groups”,
i.e. topological groups equipped additionally with the continuous sxterior binary operation
of multiplication by real numbers, and generated by special (“exponential”) elements. It
is proved that under natural conditions on the topology of an ER-group its group multi-
plication is described by the B-C-H formula in terms of the associated Lie algebra.

1. Introduction. The notion of a Lie group of infinite dimensions is not
well founded. The differential manifold approach which is basic for the classi-
cal (finite-dimensional) theory may be successfully applied only to Banach—
Lie groups ([1], [9]). This class, however, appears to be too restrictive to
incorporate most of interesting infinite-dimensional examples. Difficulties in
extending the manifold approach beyond the frames of Banach case are of
two kinds, which correspond to the two main limitations of the differential
calculus in non-Banach spaces: lack of the ezistence and unigueness theorem
for ordinary differential equations and lack of the inverse map theorem for
smooth mappings. In the classical theory one associates with a given group
G its Lie algebra g which is usually defined to be the Lie algebra of all left
(or equivalently right) invariant vector fields on . This step presents no dif-
ficulty whatsoever, but to make it meaningful ¢ has to be better connected
with the group structure of G. Classically this is achieved by associating
with each X € g its properly selected integral curve, which happens to
be a one-parameter subgroup of . Thus the validity of the existence and
uniqueness theorem provides a one-to-one map 4 from g to A(G), the set
of all continuous one-parameter subgroups of G. In the absence of this the-
orem, e.g. for Fréchet-Lie groups, it is not known whether such a group
has a single nontrivial one-parameter subgroup (cf. [9]). On the other hand,
0o examples disproving bijectivity of ¢ : ¢ — A(Q) are known in this case,
Concluding, the lack of methods for establishing bijectivity of ¢ : g — A(G)
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is the first obstruction to developing a manifold-based Lie group theory in
general.

Another obstruction seems to he of meore objective nature. For trans-
mitting the properties of g to G via A(G) one applies the exponeuntial map
exp: g ~ A(G) 3 ¢ — $(1) € G. For a Banach-Lie G this map, by the
inverse map theorem, is a local diffeomorphism at 0, which is crucial for
getting the desired conclusions. This, however, in general fails to be true in
the non-Banach case. If for instance G = Diff* (M) where M is a compact
manifold, then G has a nice C'* Fréchet-Lie group structure ([6], [10]) and
i:g — A(G) is bijective. Moreover, the map exp : g — G is C* with
nonsingular differential at 0. Nevertheless exp is neither locally injective
nor locally surjective at 0 (cf. [9]). Typically, exp(g) is a rather irregular
first-category-like subset of G (cf. [11]). This is the main obstacle to ap-
plying the differential geometry methods, and at firgt sight almost excludes
any possibility of transmitting properties from g to . Fortunately enough
the set exp(g) is always well placed inside G, namely it is a generating set
for the connected component Gy of e in G. For G = Diff** (M) this rather
nontrivial fact results from the Epstein-Herman-Thurston theorem (cf. [3],
[5], [14]) which states that G is a simple group.

In this paper we develop an algebraic approach to Lie group theory with
a view to handling the second type of obstacle. We leave aside the question
of the existence of one-parameter subgroups, and we restrict our attention
to the case of groups for which one-parameter subgroups are abundant.
Since we need no differentiability assumptions, on the level of definitions we
adopt a topological setting. We start with a topological group G which has
a “rich” family A{G). The “richness” condition can be naturally phrased in
the way making it possible to treat G as a quotient group of an “exponential
R-group” (abbreviated as ER-group). Groups of this type admit an exterior
binary operation of multiplication by real numbers and are generated by
special (“exponential”) elements. They can be viewed as noncommutative
generalizations of topological vector spaces. Achieving some understanding
of their structure is our main goal here since they seem to constitute a ter-
ritory on which transition from (Lie) groups to Lie algebras and vice versa
occurs. Summing up, we suggest a different scheme for Lie group theory:
instead of treating groups equipped with a differential structure we pro-
pose the study of groups which are quotients of suitable regular “overlying”
groups. The main task then is to find proper objects for this role. Regular-
ity of their structure has to be the algebraic counterpart of the differential
calculus in the manifold approach.

‘The paper is organized as follows. In the preliminary sections 2-4 we
introduce objects dealt with later: in Section 2 we formulate the above men-
tioned “richness” condition and define the concept of a polynomial group
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over (7; in Section 3 there is defined a natural Lie algebra structure on
A(GF), and Section 4 introduces B-C-H groups and algebras. In Section 5
we put the objects discussed earlier into a common algebraic framework by
introducing the concept of ER-groups. The rest of the paper is devoted to
the study of their structure. After describing in Section 6 important ex-
amples of ER-groups arising in the context of Lie algebras, we introduce
in Section 7 the basic procedure associating with a given ER-group H its
Lie algebra L{H). Section § introduces C°° ER-groups which are hoped to
be the proper “overlying objects” in the above mentioned approach to Lie
group theory. In Section 9, Theorern 23 states that for a ¢ ER-group its
Lie algebra has good functorial properties. It is the basis for Theorem 28
of Section 10 which states that under an additional “analyticity condition”
each € ER-group may be continuously and homomorphically embedded
in the associated B-C-H group. This result opens the possibility of passing
from topological assumptions about the discussed group to its full algebraic
“analytic” description. The closing section 11 discusses perspectives of the
suggested approach.

The author is grateful to all those who in discussions or by criticism
helped him to better understand the ideas contained in this paper. Spe-
cial thanks are due to Janusz Grabowski whose counterexamples (one of
them presented here) clarified and modified some of initial intuitions and to
Stawomir Gozdzik who is the co-author of Lemma 13 below.

2. Polynomial groups over a topological group, weakly expo-
nential groups. Given a topological group G (all the groups dealt with are
supposed to be Hausdorff) let Cp(R, @) denote the family of all continuous
G-valued functions on the real line R such that f(0) = e. The target space
being a topological group, Co(R, &) with pointwise multiplication and the
compact-open topology is also a topological group. The real field structure
on the source space reflects in the existence of the R-product

(1) RxCo(R,G)3(s,f)— s+ feColRG), (sf){t)=F(st).

The R-product (1) is jointly continuous and it is related to the group
multiplication in Ch(R, @) by the following equalities valid for s,¢ € R and
fl:fgs f S CO(R: G’)'

(a) sx (tx f) = (st) * f,
(2) ) sx (fufa) = (s* fi)(s * fo),
(C) 1*f=f: O*fﬁe,

where ¢ is the unit of Cy(R, G},
Let A{() denote the family of all continuous one-parameter subgroups
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of G, and for k € N let
ARGy ={f € Co(R,G) : f(t) = qb(t"“) for some ¢ € A(G)}.

Note that the elements of A;(G) are distinguished among these of Cy(R, G)
by the condition
(3) nwf=f* dnteZ
(Z denotes the set of all integers and N the set of all positive integers). Note
also that by (3) each Ax(G) is a closed and R-invariant subset of Co(R, &),
The central place in our considerations will be occupied by subgroups
of Cp(R, &) which contain Py(@F), the subgroup of Cy(R,G) generated by
A(G), and are contained in P(G), the subgroup of Cy(R, &) generated by
UjZ 45(G). Such groups will be considered in various topologies, always
not weaker than the compact-open topology, and coinciding with it on
U;il A;(@). They will be referred to as polynomial groups over G.
Let H be a polynomial group over G. Consider the evaluation map

(4) Exp:H>f— f(1)e G,

which is clearly a continuous homomorphism. Note that if G is a Banach-
Lie group then the restriction of (4) to A(G) coincides with the classical
exponential map. Moreover, (4) then maps bijectively each sufficiently small
open neighbourhood of 0 in A(G) onto an open neighbourhood of ¢ in G. It
follows that for (¢ Banach-Lie the homomorphism (4) is open. In particular,
if G is connected then

(5) G = H/ ker Exp

topologically.

A topological group G is said to be weakly ezponential if the mapping
(4} is surjective for some (equivalently for each) polynomial group H over
G. Clearly weakly exponential groups form the largest class of groups for
which some abstract Lie group theory (understood as a skill of describing
G in terms of A(G)) is possible.

3. The Trotter formulas and the natural Lie structure on A(G).
A starting point in our approach is the assumption that the considered topo-
logical group G is weakly exponential. We shall examine the possibility of
endowing A(G) with a topological Lie algebra structure appropriate for de-
scribing G. It seems reasonable to assume that a part of such a structure is
a priori given by the compact-open topology and the R-product restricted
from Co(R, G). It is interesting to note that in most cases when an “appro-
priate” structure does exist it is expressed by the following Trotter formulas:

® @ @rwn =t (a(1)e(t))
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0 © o= n (oo D)o Y- 9"

where &1 + Py and [®1, $y] denote respectively the sum and the Lie bracket
of #1,82 € A(G) and where the limits are almost uniform, in particular,
they can be treated as limits in P(G).

The algebraic properties of the left-hand sides of (6)(a), (b) suggest the
presence of a certain structure coded in the shape of the right-hand sides.
The description of this structure is one of our goals here. The first step in
this direction is to observe that (6)(a), (b), when expressed in terms of P(@),
extrapolates to the following sequence of formulas:

ke

(6;k) dpf = HIEEO (—:; * f)n for f e P(@),

where (6;1) reduces to (6)(a) when f = $,®, while (6;2) reduces to (6)(b)
when f = @, P, P] 1(255 '. The analysis of ranges and domains of d; and of
their algebraic properties is postponed to the next sections.

For brevity, the topological Lie algebra structure on A(G) composed of
the R-product, compact-open topology and with the algebraic operations
described by 6(a},(b) will be referred to as the natural structure,

6(a),(b) inspired efforts to create a Lie group theory based on these
formulas (cf. [3]). It seems that these attempts failed to bring substantial
progress.

We finish this section with an easy but important observation:

Remark 1. Let G; be a topological group with natural Lie algebra A(G),
i =1,2. Bach continuous homomorphism H : G — (s induces a continu-
ous homomorphism h : A(G1) — A(G2) such that H o Exp = Exp oh.

Proof. Define h(¢) = Ho ¢.
4. The B-C-H groups. The Baker-Campbell-Hausdorff series
(7) 6(f,9)=Y_ Onl(f.9)
m=1

is a real power series of noncommuting formal variables f, g which is ob-
tained as the composition € = L o Z where

o n
L(z) = log(1 +.2) = Z(-l)ﬂﬂ%
fum=1
and .
ik
2(fg)=cfer—1= 3 LI
gk IR
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It is known (cf. [12]) that each homogeneous term @,, of order m in {7)
is a Lie polynomial, i.e. it can be expressed as a finite linear combination
of m-fold commutators of f and g. In particular, @(f,9) = f -+ g and
O1(f,9) = 5(fg - gf).

Let L be a topological Lie algebra. Substituting elements of L for f and ¢
in (7) and treating commutators in @,,,(f, g) for m = 1,2,... as Lie brackets
in L we obtain the evaluated series @(f, g) with terms @, in L.

DEFINITION 2. L is said to be a B-C-H algebra if for each pair of its
elements the evaluated series ©(f, g) converges and the function
(8) LxL>3(fg)~f-g=06(fg)eL
is Jointly continuous.

It is known ([2], {12]) that in this case (8) defines a group operation on
L, with unit 0 and the inverse of f equal to ~f for each f & L.

The topological group obtained in this way will be called the B-C-H
group of L and denoted by exp L.

The following remark lists a few known properties of B-C-H groups
(cf. [2], [12]) in a form suitable for us.

Remark 3. Let L be a B-C-H algebra. Let exp : L — expL be the
identity map. Then:

(a) Each f &€ Alexp L) is of the form f, for some © € L, where Jfalt) =
exp(tz).

(b) The mapping j : L — Alexp L) with j(z) = fy is o homeomorphism
(where A(exp L) is endowed with the compact-open topology).

(c) The Lie algebra structure on Alexp L) obtained via the identification
7 s natural, i.e. :

b @ eeem(a).
0tz (oo (- H)”

5. Exponential R-groups. Led by examples of polynomial groups from
Section 2, we now consider their abstract analogues. The axiomatization is
partly justified by the necessity of considering various topologies on poly-
nomial groups but mostly by the presence of different types of examples
coming from Lie algebras. The axiomatic approach will exhibit the common
algebraic background of both situations.

DEFINITION 4. A topological group H is said to be an R-group if it admits
a jointly continuous binary operation

RxH>(s,f) >sxfecH
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satisfying the conditions (2)(a)-(c). Let
o0
Ef(H)={f€H:nxf=f"ifn* €2} and E(H)=|] B:(H).
k=1

The elements of Zy(H) will be called k-exponential. An R-group H is said
to be exponential (resp. polynomial) if it is generated by E;(H) (resp. by
E(H)), and it is said to be topologically exponential (resp. topologically poly-
nomsel) if it contains a dense exponential (resp. polynomial) R-subgroup.

The assumption that an R-group is topologically exponential has far-
reaching consequences. An important example is provided by the following
proposition which will be used as the initial step of Lemma 13 below:

PROPOSITION 5. Let H be a topologically exponential R-group. The fol-
lowing condilions are equivalent:

{a) EA(H)=H.
(b) H is abelian.
(¢) H 1is a topological vector space.

The proof is eagy and will be omitted.
The second type of exponential R-groups is connected with Lie algebras
of a special form:

DEFINITION 6. A topological Lie algebra K is said to be product graded
if it is isormorphic as a topological vector space to the countable topological
direct product of topological vector spaces M;,

K =T]M;,
jml
and if the Lie bracket in K satisfies the grading condition
(10) (M, M;] © M.

(Here and in the sequel we write M; for (0,...,0,M;,0,0,...).)
e —t

j—1zeros
Let p; : K — M; denote the projection onto the jth coordinate, j ==
L2,...

ProrosiTioN 7. Let K be a product graded Lie algebra. Then K is a
B-C-H algebre and H = exp K admits an R-product defined by

(11) s*h:exp(isjpj(f))

j=1

fors € R and h = exp f € exp H where f = E;ozlpj(f)-
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Proof. Let f,g € K. The condition (10) implies that px(©;(f,¢)) = 0
for k < j, hence

k P
Pk ( Z é)m(fa g)) = pk( Z @m(f;g})
m=1 m=1
for p > k and the series (7) converges.

The product (11} clearly satisfies the conditions 2(a) and (c). To prove
2(b) observe that p;(©(f, g)) is a linear combination of iterated Lie brackets
of coordinates either of f or of g, with the sum of relevant indices equal to
7. Hence each term of p;(8((s * f), (s * g})) is the corresponding term of
p; (@(f,9)) multiplied by &’.

Since each coordinate of {7) and of {11) depends on a finite number of
coordinates of the involved elements via the operations in L, the products
(7) and (11) are jointly continuous.

In the following we shall refer to the groups exp X for product graded
K as algebraic R-groups.

6. Algebraic R-groups. In this section K = ][22, M; is a product
graded Lie algebra and H = exp K is its B-C-H group. For hihg € H
set {h1,ho} = hT'hy'hihy and let H = Hy D Hy O Hs D ... be the
closed central descending series of H (i.e. H,, is the closure of the subgroup
generated by all the n-fold commutators). Similarly, let K = K, > K. 2D
K3 ... be the closed central descending series of K. Denote by Pt K —
Mj; the coordinate projections, 7 = 1,2,..., and let

o0
(12) K"=1]M;, H*=expKk™ forn=12,...
k=n
PROPOSITION 8, (a) En(H)=expM,, n=1,2,...
(b) For each h € H™ the limit

. 1 k'n
dnh = kILIEc: P % h
€zists and dr, 0 €xp = exp opy,. In particular, d,, : H™ — E,(H) is a contin-
uous retraction.

(¢) The mapping o : K — H which assigns to f = S 1 palf) the
infinite product

C!(f) = n%_l_r_noo H exppn(f)

n=1
w a homeomorphism. Moreover, a(K7) = HY for j = 1,2,... (We write
products from left to right, e.g. H::;l Uy, = Q1°Q3-... Q. The reverse order

yields another mop with analogous properties.)
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Proof (a) Let h € exp M, i.e. h = exp f with p;(f) =0 for j # n.
Then for k € Z,
k*h=exp(k™f) = {exp /)¥" = p*",
ie h € En(H). Conversely, if h € Fn(H) and h = exp f then for k € Z,

exp (Z kjpj(f)) = kxexp f = (exp f)f“TL = exp(k™f) = exp (Z ]{:’”‘pj(f))
J=1 i=1
and hence p;(f) = 0 for j #n,
(b) Let h € H™, i.e. h =exp f for some f = e p;(f) € K™ Then

N T E k™ : 7 - 1 .
doh = Jim 2 (exp )" = exp lim & (;;c;pﬁ(f))

X
. 1
= exp kh_fﬂo jz_n ki:np:i(f) = exp pn(f).

{¢) Since the nth coordinate of H;’_‘___l expp;(f) depends only on factors
with indices < n, the limit defining a{f) converges, and a(f) depends con-
tinuously on f. Observe also that o has a continuous inverse 8,

oQ
B(h) = Zexp“l od; o R;_1(h),
J=1
where
Rj(h) = (dj-1 Ry (R))™ - Rj_a(h), j=1,2,...
COROLLARY 9. Fach h € H has o unigue representation in the form of
an infinite product
o
h=[]dm
J=1
with &;-(h) € E;(H) depending continuously on h.

Proof. Set d;(h) = d; Ry (h).

PrOPOSITION 10. (a) H is topologically ezponential if M, generates K
topologically. — -

(b) If H is topologically exponential then K™ = K,, and H* = H,, for
n & N.

Proof. (a) Let Ky be the Lie subalgebra of K generated by My, and let
Hy be the subgroup of H generated by Ey(H). Denote by K and Hy their
respective closures. Clearly Hy C exp Ky, hence if Hy is dense, then so is
Ky, To prove the converse observe that the density of Ky implies the density



172 W. Wojtynski

of a{Kp), and hence to prove that Hy is dense it is sufficient to approximate
the elements of expp;{Kp) for j = 1,2,... by elements of Hy. Note that
p;(Kp) is spanned by elements of the form y = [z1,[z2, ..., [zj-1,2;]].. ]
for #1,...,z; € My and it is easy to verify that

exp[ml, [502, R [.’Jij_.l, m]” B }

=d;({expz1, {expxa,.. ., {expz;_1,expz;}}.. .}).

Since {exp x1,{expzy,...,{expzj_1,expz;}}...} € HoNexp K’ the left
hand side is aproximable by Hy. To complete the proof we only need to
observe that by (12) the map exp~? od; : HY - M is a homomeorphism, thus
we can approximate the elements of p;{Kp) by taking appropriate products
in Hy.

(b) By the grading condition (10), K, C K™ and H, C H™. Since both
E"™ and H™ are closed, also K, ¢ K™ and H,, C H™. On the other hand,
since K is linearly spanned by U2, (KoNM;) and it is dense in K, KoNM;
is dense in M; for each j. Simultaneously Ko N M; C K, for j > n by (10).
Tt follows that K™ C K, for n=1,2,...

To prove that H, = H™ observe that by Corollary 9, H™ is topologically
generated by U;";n exp M;, thus it is sufficient to prove that exp M; C H,,
for j > n, and this is done in the same way as in part (a) of this proposi-
tion.

CoroLrary 11. Forn=1,2,...,

(a) I?n/f_fﬂﬂ i in 1-1 correspondence with M, . .
(b) If apm; = expZm,; - Tmy; With Tmy € My and vy € Hpy for
j=1,2, then

(14 Om,1 * Om,2 = €XP(Tm,1 + Lm2) " Tm,
{@m 1,802} = €xXp[Zm,1,Zn,2] * Trtn

where ri, € Hyy fork=m and k =m +n.

Proof. (a) results from Proposition 10(b). Formulas (14) follow from
Proposition 8(c) and the B-C-H formula.

7. The product graded Lie algebra of an exponential R-group.
Let H be a topologically exponential R-group. For j € Nset M; = H i/ H
Since {Hy, Hn} C Hitm for k,m € N, each M; is abelian. It is known {[2],
[12]) that for every topological group H the topological product

o) = T 4
i=1
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can be endowed with a structure of a topological Lie ring with additive struc-
ture given by coordinatewise multiplication and with Lie bracket obtained
ag the common extension of the family of biadditive maps

['-, ']kam P My % My, — Mk+ma

where [@,blim = {a,0} and the bar denotes the corresponding quotient
class.

In this section we prove that if H is an exponential R-group, then the
Lie ring structure on L{H) extends to a real product graded Lie algebra.
The proof proceeds in a few steps.

B,m e N,

LEMMA 12. Let H be a topologically exponential R-group. If h € Hy,
then

(a) nxh=h" mod Hyi1  formeN,
(b) (-)xh=h"" mod Hyy

Proof. Since both sides of (15;%)(a),(b) depend continuously on h, with
no loss of generality we may assume that H is exponential and h € Hy. Note
also that for a,b € Hy and n € Z one has a™b"™ = (ab)” mod Hy, 1, thus in
the proof of (15;k) we may restrict attention to the generating elements of
the form

(15;k)

hk = {ala {G;g, s ){am—lu am}} .- ‘}J
where a; € By {(H), m > k and {a,b} = a0~ ab for a,b € H.
Proceeding by induction observe first that hy € Ei(H), and hence
(15; k){a),(b) hold. Let now hy = {a1,hr_1} where by the induction hy-

pothesis n * hg—y = h}}imllrk,n for some 7y, € H. Since for a, b, ¢ € H such
that at least one of the three belongs to Hy_y we have

{a,bc} = {a,b}{a, c} mod Hyyq,

and in particular {a,5"} = {a,b}" mod Hj,1, it follows that n * hy =
{n*ay,nxhy_1} = {aF, B3 ri} = {ay, B2, 1™ = A" mod Hi.
The proof of (15;%)(b) is stmilar.

Lemma, 12 implies that the quotient R-product on M, satisfes
(16; k)

Thus introducing on each My, a new R-product R x My 3 (s,a) ~ s-a € My
by

n*a = "B g & My and n € Z.

(17) s-a=(4s))*xa"®* forseR andac M,
we obtain
(18; k) m-a=a™, m=sgn(n) |n|* withneZ
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LEMMA 13. If for each a in an R-group K there exists k € N such that
(18; k) holds then K is a topological vector space.

Proof. Suppose a € K satisfies {18; k) and let {pn}oe,; and {¢,}32, be
sequences of positive integers such that

Lo —1 -
'r1.1l+n;o n Pn = 0
Then
(19) lim q“l caPr =,
T OO
(20) lim ¢, - a% =a.
=+ 00
To prove (19) note that by the Waring theorem (cf. [7]} for each k € N
there exists s € N such that for each n € N we can choose 7,1, Tn,2,- - 1 Tn,s €

N U {0} such that
pn = be,l + 7'212 + [ ‘|“‘ Tﬁ’s.

Thus
8
- _ k k e _
q'n.l caPr o= qnl . (Cbr“'l cathE ., a,"'n.,s) — H(qnl
i=1
Clearly lity oo @7t - 'n ; =0fori=1,...,8 hence each factor of the right

hand side tends to e.
To prove {20) note that g, — oo and choose positive integers ry,, n =
1,2,..., satisfying

R < g < (ra+1)% n=12.3,...
Then
Jm g+ 1P =1 and lim g7 (e + 1) - ga) =0,

Hence by (19},

H - H -1 b "
nll]i-%o qﬂl L (flﬁlgoq (In)(T}LI%O QW.l . a(rn+1) I )
= lim ¢, om0 = lim g7t + 1% a = a.
N—+D0 =00

This proves (20).
Let now m € N and a € K. Then by (20),
m-a=m-{lim (nm)™! ") = lim n”'. a"™
00 n—oa

= (lim n~!. a™™ =™
N—o0

Hence by Proposition 5, K is a topological vector space.
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THEOREM 14. Let H be an exponential R-group. The topological Lie
ring structure on L{H) can be compatibly completed by the R-product given
coordinatewise by (17), yielding o real product graded Lie algebra.

Proof. The product given coordinatewise by {17) is compatlble with
the additive structure of L{H). Since

na=a+...+a forneNandae LH),
RO
7 summancs
the biadditivity of the bracket implies [n - a,b] = n - [a,8]. It follows that
[A-a,b) = A [a,b] for A rational, and by continuity this extends to all
real A. Antisymmetry of the bracket yields homogeneity also in the second
argument.

8. C*° and analytic R-groups. The Lie algebra L(H) is usually too
poor to determine H (this is e.g. the case when Hy = Hyyy # {e} for some
k € N). In this section we shall impose conditions on H which exclude such
situations and enable us to relate L(H) to A(H). Consider first the case
when the situation is the best possible.

ProrosiTioN 15. Let K = H 1 M; be a product graded Lie algebra
and let H = exp K. Then L(H) = K In particular; L(H) is isomorphic to
A(H) equipped with the natural Lie algebra structure.

Proof. Let L(H) = [[j2, M; with M; = H;/H;4,. By Corollary 11(a),
M; is in 1-1 correspondence with M, j = 1,2,.. ., thus so are K and L(H),
and by Corollary 11(b) the Lie ring structures of K and L(H) coincide. By

(11) and (17) the same holds for multiplication by real numbers.
The second statement results from Remark 3.

DEFINITION 16. Let H be a topologically exponential R-group. H is
said to be a € R-group if for each k € N there exists a continuous map
exp: My — En(H) such that idcexp : My — H}, splits the exact sequence

0 — Hiq ~5 Hy % My — 0
Tig [ oxp
Ey(H)
Moreover, H is said to satisfy the analyticity condition if
oo -
(21) () He={eh
fom=1,

and H is anolytic if it is C°° and satisfies (21).

The next proposition and the following examples justify the above ter-
minology. :
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PROPOSITION 17. Let H be a topologically exponenticl R-group. Consider
the limits (6;k), k= 0,1,2,..., and assumne (inductively) that:

(a) The limit {6; k) exists for f € kerdy_.
(b) The map dy : ker dg..1 — H is continuous.
(¢) dy satisfies the condition
(22;k) de(f - 9) = di(def - dig),
k=1,2,..., provided the relevant limits are well defined.
Then H is a O R-group. If, moreover,

(23) ﬁ ker di = {e},
k=1

then H is analytic.

Proof. A not difficult induction shows that Ex(H)} C kerdy—;. The
form of the right hand side of (6; k) implies that df € Er(H) and that
di s kerdy_1 — Ex(H) is a retraction for k£ =1,2,...; moreover,

(24) du(9fg™) = dy(f) it d(F) excsts.

Defining (inductively) the binary operation f + ¢ := di(f - g) on Ex(H),
k=1,2,..., one obtains, by (92; k), an abelian group multiplication such
that dy : ker dg_1 — E(H) is a homomorphism. Thus ker dy, is a subgroup of
ker di—.1 and both sides of (22; k+1) are defined on the whole of ker dy,. From
(24) it now follows that kerdy D Hyyy and by continuity kerdy > H k41
k=1,2,...

On the other hand, (15; k) yields for h € Hy, k = 1,2,.. .,

h= (% * h,nk) (% *Ak,) with Ay € Hk-l—l-
Let k = 1. Letting n —+ oo, we get
h=dih - Ath  with 4; € Hs.
Thus
H=F(H)-Hy and kerdy C Hy.

Hence ker dy = H, and since kerd) N Fy (H) = {e}, also £, (H)N Hy = {e}.
Proceedmg by induction and assuming ker r:lk 1 = H), we similarly get for
k=1,2,.

(25; k) ker dy, = E;M_l,
(26 %) Hy = Ey(H) - Hy,
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Thus dy : Hy — Ex(H) is a homomorphism with kerdy = Hyyq and it

defines the quotient homomorphism exp : My — Ey(H), which by (26;k).

and (27; k) splits the diagram (20, k). :
Note also that by (25; k) the condition (21) takes the form (23).

ExaMPLE 18. Let & be a Banach—-Lie group with Lie algebra g. Similarly
to Cp(R,G) one can consider the group C§(R,G) composed of all C°°
functions from R to G such that f(0) = e. Clearly C§°(R, G) is an R-
group containing P(GF) as an R-subgroup. Let P§°(G) be the O closure of
Py(@) in P(G). Int roducmg exponential coordlnates one can asgign to each
f € P(G) the functmn TR — g where f = exp~lof {(more precisely, Fis
only a germ at 0). By the property

exp(nX) = (exp X)"
of the exponential map, noting that f([]) =0 we get

[

o t (L) 2 g T = FO)
= jim n f(a) = b T

hence dy,f exists if f is k times differentiable at 0 with (d7 f F/dth)(0) = 0 for

j <k, and then
a7

Moreover, f (.t/n)”’Ju then converges to dif also in C*° topology. It follows
that for PO (G) the operations dy do exist on proper domains, and they
sa,tlsfy the conditions {22;k) and are continuous. Since f is analytic for

f € P(G), the condition (23) is also satisfied. Summing up, P§°(G) with
the C'*° topology is an analytic R-group.

Observe that d,,’s are not necessarily continuous for P§°(() considered
in the compact-open topology. The following example is due to J. Grabowski
to whom the author is grateful for his permission to include it here,

ExaMpPLE 19, Consider H = P$°(G) for @ the connected 2-dimensional
noncommutative Lie group of all 2 x 2 real matrices of the form.

a b
0 1/
where a > 0, By the previous example and Proposition 17, if dy were contin-

uous we would have JFy (H) N Ha = {e}. To see that this is not the case for
the compact-open topology, take basis elements X and Y of the Lie algebra
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10 _ {0 1
=(a5) ¥=(00),
and consider the corresponding one-parameter groups ¢x () = e

Py (t) = ety
A standard computation shows that

- i 1 B(e — 1)t
{QSX,QSEY} — etﬁ(e 1)Y’ 1L.e. ‘[QbaX-, gbﬁy}(t) — (0 ﬂ( ] ) ) i
It follows that Hy containg the family I' of all functions of the form

f(t) = (é tz,j:lﬂ;{(ehl)’“) _ (1 th(etml)),

g of ¢ of the form

X and

0 1

where W, is an arbitrary polynomial satisfying W, (0) = 0. By the Stone—
Weierstrass theorem the function ¢y & By (H) belongs to the almost uniform
closure of I'. Note also that all the functions from I" satisfy f/(0) = 0. Since
¢ (t) =Y # 0 the almost uniform convergence does not imply here the
convergence of the corresponding derivatives at 0.

Remark 20, Essentially the same arguments as in Example 18 prove
that for a Fréchet-Lie group G admitting an exponential chart at unity,
the group Pg°(G) equipped with the C°° topology is a C°° R-group. This
applies e.g. to some “current groups”, i.e. groups of all functions of a given
smoothness class (C* or C*) from a compact manifold M into a Lie group G.

EXAMPLE 21. Let G be the B-C-H group associated with a product
graded Lie algebra L (this type essentially includes the groups of invertible
elements of formal power series algebras). We shall indicate how P(Q) can
be given the natural C* topology. '

Observe first that according to Remark 3(a) the map exp™ : @ — L
provides a global exponential chart on &, and each f in P(G) has the form
of & finite pointwise B-C-H product with factors of the form ¢(t) = exp(tiz)
with k € N and 2 € L. Therefore

£t = exp gl,coﬂj),

where a; € L™ and m; — oo as j — co. It follows that the series converges
in L and the function f : R — L where f = exp~’of is analytic (in
particular, it is C°°) with derivatives of the form

}:(“‘) B Z(ﬂ +3)(n -1 +J) (1 +j)a..,,,+jtj.

=0
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We endow P(Q) with the topology of almost uniform convergence with
all derivatives of the representing functions in the global chart. In the same
way as in Example 18, this topology can be proved to be ¢, (Clearly P(@)
also satisfies the analyticity condition.)

9. Exponential map and induced homomorphisms. Let H be a
C* Regroup. Put M(H) = | )i, My, C L{H) and consider the continuous
map 7 : E(H) — M(H) where 7| g, 1) = mp oid. By Definition 16, H is ¢
iff 7 is a homeomorphism. Let exp = 7~ M (H) — H be the inverse map.

PROPOSITION 22. For ench T € M(H) the function fz(t) = exptZ be-
longs to A{H).

Proof Let T € My for k € N, By (20;k), T = - Hyyy for some
z € Ep(H) and by (17), tZ = ( {/]t| * 2%t} . Hy, 1. Thus

(28) Fa(t) = exp(tz) = {/t] x a8,

This implies that fz(—t) = fe(¢)~" and since ¢ € Ex(H), for my, ma, g € N
one gets

Ty Mo 1 , 1 1
f,f(—w—w— + --—-—) = L ( % m'n"u) ( " wm;)
7 4 vl ¥lal Vlal

-(3)4(3)

Since fy is continuous this means that fz € A(H).

THEOREM 23. Let P be a C%° polynomial R-group and H be an analytic
R-group. Let L(P) = TIo", My and L(H) = [[22, M, be the corresponding

product graded Lie algebras. For M = | ;.. M, and M = |72, M, let

expp : M — P and expy : M — H be the corresponding exponential maps.
Then:

(a) For each graded Lie algebra homomorphism ¢ : L(P) — L(H) there
erists a unique R-homomorphism & : P — H such that

(29) Poexpp = expy © ¢,
(b) The homomorphism ¢ is induced by @, i.e. forn € N,
(30) $oTn = 0noP,

where 7, 2 Py, — M, and gn : Hy — Mn are the quotient homomorphisms.
(c) If ¢ is injective then ker & C (oo Pr. If ¢ is surjective and H is
polynomial then @ is also surjective.

. The proof involves a few auxiliary constructions. Since M is the union of
linear subspaces of L(P), it can be endowed with the R-product restricted
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from L(P). For 2 € M define |z| by setting [z| = k if 2 € My (P). Let Jbea
pure R-group (meaning that J has no topology and an R-product is defined
on J satisfying the conditions (2){(a)~(c)). A map o : M — J will be called
R-graded exponential if for each x € M,

(a) a(t®z) =txa(z) fortek,

31
3 {b) R 3 ¢ a(tz) € J is a homomorphism.

PROPOSITION 24, There exist a pure R-group F and an R-graded expo-

nential map 7 : M — F such that:
(i) 4(M) generates F.

(i) For each R-graded exmponential map o 1 M — J there emisis an
R-group homomorphism 8: F — J such that a = B o j.

Proof. The proof is standard and we only sketch it. Let Fy be the free
group over M\{0}. Let jo : M — Fpy be the extension of the canonical
embedding of M\{0} obtained by assigning to 0 the unit of Fp. Introducing
an R-product on Fy by the formula

A (Go(#1) - Jolen)) = Jo(M® 1) .. jo(N*r )

we get a pure R-group with jp satisfying (31)(a). Let I be the ideal of Fy
generated by all the elements of the form jo(Az)jo(pe)jo((A + p)z) ™t with
z € M.Put F = Fy/I and let j = p o jo where p: Iy — F is the quotient
homomorphism.

Let X be a linear space over R, Given a pure R-group A and a positive
integer k, a homomorphism v : A — X is said to be a k-homomorphism if
v(t % a) = t*y(a) for each a € A and t € R.

LeMMA 25. Let A be an R-subgroup of F. For k € N let Q, denote the
R-subgroup of F' generated by oll elements of the form

i

(82) ¢={j(z1), {i(ma), ..., {i(mima) G@}} ...} where Y |awm| 2k

frues ]

For each a € A there exist b € AN Qu such thot v(a) = ~(b) for each
k-homomorphism v defined on A.

Proof Let a € A. Define recurrently
(33) ar=a, a;=(2% ai—l)a'a-:_-—zi_1

We claim that a; € AN @Qy. Clearly a; € A for each j. We shall prove that
force @1,

(34;4)

fori=23,...

=&
2¥¢c=c¢”  mod (.

icm
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Since cfcf = (c1e2)" mod Q; for ¢1,¢p € Qj—1 and since each ¢ € @,
is & product of elements of the form (32) with & = j — 1, in the proof of
(34;7) we may restrict ourselves to elements of that form. Proceeding by
induction assume first that j — 1 = 1 and consider a single element J(z)
with 2 € M(H). Then by (31}(a),(b),

2% j(z) = j(2P - 2) = j(z)?"".

Since j(#)*" " always belongs to Qy we see that 2 i(@) = j(2)? mod Q:.
Assume now that ¢ is of the form (32) with k¥ = j — 1 and note that if
Somea |®m| > 7 — 1 then both sides of (34) are in @; so with no loss of
generality we may assume that Y. _ [&m| = j — 1. Then ¢ = {j{z:),d}
where d € Qi With k = j—1~|2;|. By the induction assumption 2xd = a2 -f
where f € Qg1 Then by similar arguments to the proof of Lemma 12 we
get

ke

24 c=1{2xj(r:), 2% d} = {i(21)?™,d®" - f} = {i(z:)2™", d¥)
= {j(z1), 4} = &7 mod Q.

This proves that a; € @;.

To finish the proof observe that v(a;) = (2% — 27" M)vy(a; 1) for § =
1,2,... It follows that b= AY/%q, with A = []5Z} (2" — 27) has the needed
properties.

Proof of Theorem 23. Since exp(M(P)) generates P, the homo-
morphism & : P — H satisfying (29) is unique if it exists. To construct such
a @ consider the maps &y : M —» P and o : M — H where a; = expp
and gy = expyy o¢p. By Proposition 22, ov; and ag are R-graded exponential
maps. Let § : F — P and f3 : F — H be R-homomorphisms such that
a; = fjojfori= 1,2 (Proposition 24). The central part of the proof is
contained in the following statement:

LEMMA 26. Let mo = go = 0. For each a € F andn e N,

(35; ) (n—10B1(a) = 0) = (gn-1 © Pala) =0),
(36;n) (Tt © Bi{a) = 0) = (¢ om0 B1{a) = 0n 0 Ba(a)).

Assuming that Lemma 26 holds we first conclude the proof of Theo-
rem 23. Observe that Lemma 26 vields ker 81 C ker 8. Indeed, if a € ker 8y
then 7, 08, (a) = 0 for each n € N, hence Fz{a) € (ow, Hn = {e} by (35;n).
Thus the formula $(81(a)) = 82(a) defines an R-homomorphism & : P — H
satisfying (29) and such that $(F,) C Hp. Let ¢ : L(P) — L(H) be defined
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by (30). Then by (20; k), for z € M, and p=exp,z = Bj(x),
B(2) = doma(p) = on 0 B(p) = 0 0 B(exp, 2) = 0ufhai(3)
= ¢ f1j(2) = dmn exp(a) = ¢(z).
This iraplies that ¢ = # and so ¢ is induced by @. Note also that if ¢ is
injective then (36;n) for n = 1,2, ... yields the implication
(enfB2 (a) =0) = (Wnﬁl (a) = 0)1

hence ker & C (5, Py.. Surjectivity of ¢ implies that ¢(M(P)) = M(H)
and since exp M (H) generates H, (29) implies that & is surjective.

Proof of Lemma 26. The implication (35;1) is obvious. To prove

(36;1) consider a € F of the form @ = j(z1) - ... - jlzk) with z; € Mg
Then
Brla) = exp(z1)...exp(z,) and gom ofi(a) = qb( Z mT)
| |=1
Similarly
Baa) = expd{z1)...expo(zy,) and p10fBaa) = Z Py
|i|=1

Since ¢ is a homomerphism the implication (36;1) holds.

Assume now that {35;n) and {36;7) hold for n < k and let w08 (a) = 0.
Then my-1/31(a) = 0, hence (36; k) applies with 7 o fi(a) = 0, yielding
gxoPB2(a) =0,1ie. (35,k+1) holds. To prove (36; k+1) put A = ﬁl—l(pk_},l).
Clearly @p4+1 C A. Consider first the case when a € @x+1. Then a is repre-
sented as a finite product of factors each of the form (32) with 377 _; |zm| >
k+1. Since 81, B2, ¢, or and my, are homomorphisms, when proving (36; k1)
we may restrict ourselves to a single element ¢ of this form. Then

_Jo i 3y || > k41,
¢ ompy1 0 fi(c) {qf;([ml, oo e, ] ) Y Em| =R+ L

Similarly,
ok © Ba(c) = ok ({exp ¢(z1), {exp d(wa), ..., {expai, expwia }} .. .})
_ {o o i 5 ey |2 > R 1,
[B(za), [Bm2), ., [0(2e), dlaa Y]] M Sy [l =k L

This gives (36;k+ 1) for a € Qp.1.

Passing to the general case, observe that by (17) both ¢ ¢ mpry ¢ B1
and gg41 © B2 are (k + 1)-homomorphisms defined on A and with values in
Ny11. Thus by Lemma 25 for each a € A there exists b € Q41 such that
¢ o Trs1 0 Bila) = ¢ o w1 0 f1(b) and gy © Pala) = o4 © Fa(b). This
reduces the general case to the one just considered.
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10. Embedding theorem. The conclusion of Theorem 23 is purely
algebraic and so it is too weak for some applications. The situation improves
for some particular ¢, e.g. for ¢ the identity isomorphism.

PROPOSITION 27. Lel P be a C°° R-group with the corresponding product
graded Lie algebra L(P). Let P’ be the dense polynomial R-subgroup of P
generated by E(P). Then L{P} = L(P').

Proof. Clearly P' is a C* R-group and E,,(P') = E,(P). Since P} =
P P, for each n, the map jy, : P,/ P11 — Pp/Pni1 is well defined and
by (27} it is an isomorphism of linear spaces. The direct product J of j,’s
provides the desired product graded isomorphism.

THEOREM 28. Let P be a O™ R-group with the product graded Lie algebra
L(P). Let H = exp L(P). There exists a continuous R-homomorphism & :
P H withker® =\, Py,. In particular, each analytic R-group embeds
continuously in a B-C-H group.

Proof. Let P’ be a dense polynomial subgroup of P (cf. Proposition 27).
Then L(P) = L(P") = L{H). Thus for ¢ being the identity map, Theorem 23
provides an R-homomorphism @, : P/ — H such that &g o exphp(z) =
expy of(z) for x € M(P). We shall prove that & extends to a continuous
homomorphism defined on the whole of P. For this purpose consider the
mapping @ : P — H given by

(37 #(p) = (3 0070 REL(0))

j=1
where & : L(H) — H is the homeomorphism introduced in Proposition 8(c)
and Rf for j =0,1,2... is defined recurrently by
(38) R{(p)=p, R(p)=(d]oR1(p))™" Ri_1(p) forj=23,..,

where df = exporm; : P; — Ey(P) is a continuous retraction. Since exp :
M(P) — E(P) and o are homeomorphisms, & is continuous. We claim that
B(p) = Po(p) for p € P'. By Corollary 9 this is equivalent to
(39 (/)cwjowal(p): QjoRj:ilodf’o(p), i=12,...,
where the functions R¥ are defined in (13) and g; = expz* od. To prove
(39) observe that ¢ and @y satisfy (29) and (30) and thus
By odl = Py o expp omy = expy ooy = expyr 0 0 Fo = dff o Pp.
Hence the recurrent formulas (12) and (38) yield
$yo R} =R ody forj=0,12,. ..
and therefore ‘
¢omsoRE(p) = g; 0 B0 Ri_1(p) = 0 0 BiL; o o(p)
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for p € P’ C P. This implies that ¢ extends $y. Since Py is a homomorphism
defined on a dense subgroup, @ is also a homomorphism.
To conclude the proof observe that since « and ¢ are bijective, (37) and
(38) yield the equivalences
fe ]
{pekerd) = (wjoRf{l =0, j=12,...) = (pe ﬂf_’j).

i=1

11. Comments. The aim of this paper is to provide a step towards
understanding mutual relations of (“Lie”) groups and Lie algebras. It is our
belief that to achieve this one should complete the scene with a third type
of objects—special type R-groups. Such a group, say H, is to be generated
topologically by its subset E(H) and should embed continuously in the
corresponding B-C-II group exp L{H). The “Lie group”, say G, appears in
this scheme as related to A by the quotient homomorphism 7 : H — G ~
H/T (where I' is a closed subgroup of H) in such a way that the induced
map T : A(H) — A(G) (as in Remark 1) is surjective. (For commutative &
this relation has been studied in [4].) Observe also that if A is obtained as
P(G) for some Banach-Lie G then L(H) is isomorphic to the Lie algebra of
all formal power series of one variable, with coefficients in g, the Lie algebra
of G. Generalization of this observation should provide us with the third
object, the Lie algebra g corresponding to &. The relations among all three
members of the triplet (G, H, g} constitute in our opinion a Lie group theory
formulated in the general algebraic-topological setting. We intend to provide
more arguments justifying this scheme in a forthcoming paper.
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