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Spectral multipliers for a distinguished Laplacian
on certain groups of exponential growth

by

MICHAEL COWLING (Kensington, N.S.W.),
SAVERIO GIULINI (Genova),
ANDRZEJ HULANICKI (Wroctaw) and
GIANCARLO MAUCERI (Genova)

Dedicated to the memory of our friend Marie Ratmondo

Abstract. We prove that on Iwasawa AN groups coming from arbitrary semﬁm_‘;ﬂi
Lie groups there is a Laplacian with a nonholomorr.)hm' funcéional calculus., Illi,Ot fh y :ﬂ
! (AN), but also for LF(AN), where 1 < p < 0. This y'1elds a gpectral multiplier theore:
analogous to the ones known for sublaplacians on stratified groups.

0. Introduction. In this paper, we consider two Laplacian-like opera-
tors, both denoted by A here:

(i) Let G be a connected Lie group, and Xj, j. =1,...,d, be m%ht—
invariant vector fields on G, which generate the Lie algebra of G. Then
- Z};l X’? is known as a sublaplacian on G. . ' .

(ii) Suppose that M is a complete Riemannian manifold; then there is
a canonical second-order differential operator on M known as th.e Laplace-
Beltrami operator. We let Lo be minus this oper'ator t'o make it formallz
nonnegative. The L2-spectrum of Lo is contained in an interval [b,00), an
we take A tobe Lg —b.

In these examples, A is hypoelliptic and elliptic ;espectively. In bot.h
cases, A is formally self-adjoint and nonnegative on L*, where th‘lS space is
constructed relative to the left-invariant Haar measure and the Rleman'nlan
measure in examples (i) and (ii) respectively. Consequently, A admits a
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104 M. Cowling et al

spectral resolution,

a= [ eane),
V]

where the E(¢) are self-adjoint projections, and from the spectral theorem,
if 7 is a bounded Borel function on [0, co), then the operator m(A), given by
[».5]
m(4) = [ m(&)dB(g),
0

is well-defined and bounded on L?. A problem that has received much atten-
tion over the last twenty odd years is that of finding sufficient conditions on
m that ensure that m(4) is also bounded on L?, for some p different from 2,
or a range of such p. It is impossible for us to give a complete bibliography
here, but let us mention the work of N. J. Weiss [32], R. R. Coifman and
G. Weiss [11], A. Bonami and J.-L. Clerc [6] (on compact Lie groups), of
L. De Michele and Mauceri [13], [14], Hulanicki and E. M. Stein [23] (see
also G. B. Folland and Stein [15]), M. Christ [9), Mauceri and S. Meda, [24],
D. Miller and Stein [26] (on nilpotent Lie groups), Clerc and Stein [10],
L. Vretare [31], R. J. Stanton and P. A. Tomas [28], J-Ph. Anker and
N. Lohoué [5], Anker [2], {3] (on symmetric spaces), M. E. Taylor [29] (on
Riemannian manifolds), and G. Alexopoulos [1] (for groups of polynomial
growth).

In most of the work on this problem, in the Lie group or Riemannian
manifold environment, a dichotomy seemed to be emerging, based on the

growth of the volume of balls as their radius becomes large. Two paradig-
matic results are the following.

TuEOREM 0.1 (L. Hormander [21], S. Mikhlin [25]). Suppose that A de-

notes minus the usual Laplacian on R™. If s > [n/2], [] denoting the integer
part function, m € C*(R1), and '

sup
tert

k
E’“(a%) m(E)\ <oo Vke{0,1,...,x}

then m(A) extends to a bounded operator on LP(R™) whenever 1 < p < oo,
and to an operator of weak type (1,1).

_ To state owr next theorem we need a preliminary definition: for any
positive real k, S¢ = {{ € C: [Im(¢)| < «}.

T}IEQREM 0.2 (Taylor [29]). Suppose that A denotes minus the Laplace~
Beltrami operator on a noncompact n-dimensional complete Riemannion
manifold M, with “bounded O geometry”, and a lower bound on the Ricci
curvature, of the form Ricpy > (1 —n)s?, Ifm: C — C is even, bounded
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and holomorphic in the strip S, /s, and if

sup (1 + &)k
£ERT

(g%)knqg’<cn Yk e {0,1,...},

then m(AY?) extends to a bounded operator on LP(M) provided that 1 <
p < 00.

Note that the hypotheses imply that the growth of the volume of a ball
in M is at most exponential: indeed, for zy in M, the volume |B(zq,r)| of
the ball of radius r centred at z( satisfies | B(xzg,r)| < Ce"™ for all positive r.

It is certainly true that, in general, some holomorphy of m is necessary
for m(A) to be bounded on LP(M); Clerc and Stein [10] establish this for
noncompact symmetric spaces. ,

In view of these results, and others like them, it seemed not unreason-
able to expect that when the volume of balls grows exponentially, then
holomorphy of m is a necessary condition for m(A) to be bounded on some
LP with p different from 2. The recent result of W. Hebisch [18] therefore
came as a surprise; basing his computations on some formulae in Cowling,
Giulini, G. I. Gaudry, and Mauceri [12] (the formulae can also be found
in the work of P. Bougerol [7], a paper we discovered after publishing our
own), Hebisch showed that for a particular right-invariant Laplacian on the
Twasawa AN component of a complex semisimple Lie group, a necessary
and sufficient condition on m so that m(A) be bounded on L*(AN) is that
m{A’) be bounded on L' {R™), where A’ denotes the standard Laplacian on
the Euclidean space B™ of the same dimension as AN. The formulae used
by Hebisch are specific to complex semisimple Lie groups.

The point of this paper is to show that this result of Hebisch may be
extended in several ways: we prove that on ITwasawa AN groups coming from
arbitrary semisimple Lie groups there is a Laplacian with a nonholomorphic
functional calculus, not only for L'(AN), but also for LP{AN), where 1 <
P <00,

1. Notation and preliminaries. In this paper, we use the variable
constant convention, in which C' denotes a constant which may not be the
same in different lines.

Let ¢ be a connected, noncompact, semisimple Lie group, with Lie alge-
bra g. We need a few basic facts about G' and its harmonic analysis. These
can he found in S. Helgason’s book [19].

Denocte by 6 a Cartan involution of g, and write g = £ @ p for the asso-
ciated Cartan decomposition. Fix a maximal abelian subspace a of p; this
determines a root space decomposition: g = go © @ae 5 B> &7 denoting the
set of roots of the pair (g, a). After choosing an ordering of the roots, we
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have an Iwasawa decomposition of g: g = n® no & ¢, where

n= E{) Pa-

aelt

Write G = NAK for the corresponding Iwasawa decomposition of G, and
S for the solvable group WA, which is identifiable, as a manifold, with the
symmetric space G/K. The image of the G-invariant Riemannian measure
on G/K under this identification is the left-invariant Haar measure on &
and the Riemannian metric on G/K corresponds to a left-invariant metric
on S, In the following we shall systematically identify the metrie, functions,
distributions and differential operators on G/K with the corresponding ob-
jects on S. By B, and B, we denote the open ball of radius » centred at the
identity of S, defined relative to the left-invariant metric, and its closure.

Denote by mq the multiplicity dim(g.) of the root @, and define g by the
usual formula, g = %Za e 5+ M. We denote by n the dimension of S, by {
its real rank, i.e., the real dimensjion of A, and by » the “pseudodimension”
2d+1, where d is the cardinality | X5’ of the set of indivisible positive roots.
Notice that 1 = n if G is complex, v = 3 if G has rank one, and v > n if
is a normal real form, since then n = d + . For every z in G, we denote by
A(z) the g-component of & in the decomposition G = N exp(a) K.

For each complex-valued linear forrn A on a, the elementary spherical
function ¢, is given by the integral formula

() = f ePTAED) g vy e g,

The spherical Fourier transform of a K-invariant function in C.(S) is then
defined by the formula

FO) = [ fleyo_r(m)de YA€ af.
g

Harish-Chandra proved an inversion formula and a Plancherel formula for
the spherical Fourier transform, namely

fa) = f FN (@) du(d) vz e§

for “nice” K-invariant functions f on @, and
~ 1/2

112 = [ f FOPdu] " vr e 13(8),

where the Planchere] measure #4 18 given by the formula du(N)=c|c(A)|~2dA,
¢ denoting the Harish-Chandra c-function. From the GmdlkmwKarpelevmh
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formula for c, it is easy to deduce that
" v—i
1.1 M2 <o Al if A <1,
(L.1) eI = {mn—l if A > 1.
We shall use the integral formula for the Cartan decomposition:
[ f@yde=C [ [ f(kexp(H))dk D(H)dH Yfe L}S),
g ot K

where dk is the normalized Haar measure on K, at is the positive Weyl
chamber in a, and

n—1
DH) = [] (sinhea(H))™= < c(lﬁgi) ey e gt,
et

One corollary of this result is the following trivial estimate for the measure

of B,:

(1.2) |B,| < Croetlelr vr e R,

Here is another. Since the basic spherical function g satisfies the estimate
wolexp H) < C(1 + [H))%e ¢H)  yH eqgt,

we have

2 r* ifr <1,
(1.3) f“P” |d‘”<c{rv > 1

To define our dlstmgmshed Laplacian A, we recall that if B denotes the
Killing form on g, then the bilinear form (-, ), given by the formula

(X,Y)=—B(X,0Y) VXY ey,

is an inner product on g, for which the decomposition

5= 6{) ga@a
ag I+
is orthogonal. We choose an orthonormal basis {Ha,...,H;, X1, ..., X} of
5, also denoted by {V1,...,Y,,}, adapted to this decomposition, and view its
elements as left-invariant vector fields on S in the usual way. For a smooth
function f on S, VJ denoctes the vector-valued function (Y3 f,..., Y, f). We
denote by ¥ the right-invariant vector field on § which agrees with the
left-invariant vector field Y at the identity. Then

L " 1, .
A:-_(Hf+...+H?+—2(Xf+...+X§1)).

The operator A is essentially self-adjoint on C$°(S) with respect to the
left-invariant Haar measure and has a special relationship with the Laplace—
Beltrami operator.
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Let & be the modular function for S; § is the N-biinvariant function
whose restriction to A is given by the formula 6(a) = exp(—2g(loga)) for
all a in A. We denote by £ minus the Laplace-Beltrami operator on G/K
and by £ the shifted operator Lo — (o, ), whose L2-spectrum is [0, co).

Let 7 be the inversion $ Sz — z~! € S and £ = 7Lr. Then, trivially,
§Y2L6-1% = A and, if f is a K-invariant function, then £f = LF.

ProrosiTiON 1.2. If m is o bounded measurable function on [0, 00) and
k and K denote the distributional kernels of the operators m(4) and m(L),
respectively, then 82k = K. We note that K is K-invariant, so K is the
kernel of m(L).

Proof. This result was (essentially) proved by Bougerol [7]. See also the
papers of Cowling, Gaudry, Giulini, and Mauceri [12], Giulini and Mauceri
[17], and Hebisch [18]. =

Notice that, since A is right-invariant while £ is left-invariant, (A} f =
kx+ fand m(L) = f * K, for every test function f.
Our next result is, in part, a corollary of Proposition 1.1.

LEMMA 1.2. Suppose that L denotes either AY2 or £1/2. Then , the kernel
corresponding to the operator cos(tL) is supported in the ball B,, for all
positive L.

Proof. By Proposition 1.1, the kernel for cos(tAY/2) may be obtained
from that for cos(2£*/?) by multiplying by 6~/2. Consequently, it suffices to
prove that the kernel of cos(t£1/2) has the claimed support property. This
has apparently been known for some time to experts in Fourier integral
operators (see, e.g., Taylor [29]), but it may also be easily deduced from the
Paley-Wiener theorem for K-biinvariant functions on G. For completeness,
we explain how. The spherical Fourier transform of the kernel w, of cos(tL)
is the function @y : A — cos(t1/(), A})) on a* (this is well defined because cos
is even), which extends analytically to an entire function on ag such that

‘ﬁjt()\l + %)\2)' < etllmml
<ePal  wapa e o,

If f is C°°, K-biinvariant, and supported in B,, then the Paley-~Wiener the-
orem implies that cos(#£/2) f is supported in Bi e, for any small positive «.
Taking an approximate identity for convolution of X -biinvariant functions
with shrinking supports then establishes the claim. w

The following technical lemma, allows us to tame the exponential growth
of the volurne of the balls. Hereafter, x g denotes the characteristic function
of aset Fin 5.
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Lemma 1.3. Let E be a K-invariant measurable subset of §, and f a
Junction in L2(S) such that 612 f is K-invariant. Then

(1.4) Ixm fll2 = llxz 82 f|2-
Moreover,
(1.5) Ixe flir < Ixzwoll2llxe flia-

Proof. Write g for the function §/2f. The L%-porm of ygf is the L~
norm of xxg with respect to the right-invariant Haar measure §(z) ! dz,
i.e., the L*-norm of (xpg)" : & — (xgg)(z™!) with respect to the left Haar
measure. Since x gg is K-invariant, the latter coincides with the L*norm of
xeg. This proves (1.4).

By the K-invariance of g, E and the invariant measure on ¢ / K, we have

Jlf@ldz = [ |f(kz)| dz
E E

= [ 16(kzy ™2 |g(kz)| da = [ 16(ka) ™ /2||g(x)| d,
B E
for any k in K. Integrating over K gives

Ixefll= [ [ 16(ka)=2 2 dk |g(z)|dz = [ eo(z)|g{z)| do
E K "

by Harish-Chandra’s integral formula for the spherical functions. Thus (1.5)
follows from Schwarz’ inequality and (1.4). m

2. Statement of the multiplier theorem. We fix once and .for all a
function ¢ in C2°(R™), supported in (1/2,2), such that

(2.1) > o) =1 VEeRT

J=—0a
We denote by H*(R) the L*-Sobolev space of order s on R. If m is a function
on R* which is locally in H*(R) on (1,00), we define |m/i(,) thus:

lImll(sy = sup l¥(-)m{t-) ]|z
21

The aim of this paper is to prove the following result.
THEOREM 2.1. Fiz 50 and 8o i RT such that
v+ 1 v+1 n+1l
7 2 ' 2 }
Let m be a function on [0,00) such that
(i) on the interval [0,2], m coincides with o function in H% (R},
(ii) m is locally in H*=(R) on [1,00) and ||m||(s,,) < oo.
Then m{A) is bounded on LP(S), for 1 < p < oo, and is of weak type (1,1).

Sp > and soo>max{
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To prove the multiplier theorem we decompose m into a sum: m =
g +es, Where ng is obtained from m by multiplying by a smooth function
on [0,00), equal to 1 on [0,1] and 0 off [0,2]. Then the “local multiplier”
my is supported in [0,2) and the “global multiplier” m.o, is supported in
(1,00). Let ko and koo be the kernels of the operators mo(A) and me(A)
regpectively. In Section 3 we prove that the kernel by of the local multiplier
is in L*(S), using the functional calculus based on the heat kernel; it follows
that mo(A} is bounded on LP(S) for all p in [1, 0c]. In Section 4 we prove
that ke is integrable away from the identity and is a Calderdn—Zygmund
kernel near the identity. These estimates of ko are obtained by exploiting
the property of finite propagation speed of the fundamental solution of the
wave equation, following J. Cheeger, M. Gromov, and Taylor [8], and using
small-time estimates for the fundamental solution of the heat equation due
to N. Th. Varopoulos [30] and Anker [3]. In the last section we conclude the
proof of the multiplier theorem by means of a covering lemma.

3. Estimate of the kernel of the local multiplier. We denote by p;
and ¢; the “heat kernels” associated with the operators A and £, i.e., the
kernels of the operators e™*4 and e*€, for positive ¢. For complex w we
define '

o0 . ¥
: w )
Ty

j=1

and we denote by £, the corresponding kernel % — §, for the operator
L. Then, by Proposition 1.1, §/2E,, = &,, and &, is K-invariant.

LEMMA 3.1. For every complez w, Ey,; is in L'(S). Moreover,
[ Bull, € C(L+ |ul*log [u])*/*  vu e R.

Proof. Since ||p:[,; = 1 for all positive t, the series defining F., converges
in L}(3) for every w in C. To estimate the L'-norm of E, for real U, We
consider separately the integrals over the ball B, and over its complement
B?. By Lemima 1.3 and (1.3),

Ixz.Bully < Ixa,wollol Bully S C(L+7)"2Eu], VueRVr e RF,

The L-norm of £, can be found from the Plancherel formula:

€= [ EOPa)]” wuer

where £,, the spherical Fourier transform of &,, is the function ) ~—
exp(ive™MA)) ~ 1 on a*, and so

1Eu(V] € min{|ule™N 2} Yy e R VA € .
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Using this estimate and the asymptotic behaviour of the Plancherel measure
(1.1), we deduce that

Ixz.Buly < C(1 +?‘)”/2~1—lfl!u—1(10g(3+ WD) Yue R Vre R,

To estimate the L*-norm of E, outside B, we ohserve that, following
Hulanicki [22], by the submultiplicativity of the function z ~ el*! (where
z| denotes the distance to the identity), there exists a constant & such that

f pz)e®de < k' YVt eRT
5
Therefore

IxasBully <€ [ |Bu(@)|e™ do
BC

oo s
- ul? E wlk—r
<e ZJ—&L— fpj(:c)eHd:cSCe“ Vu € R ¥r € RT.
i=1 5
When r = |u|#, we obtain the desired estimate. w
PRrROPOSITION 3.2. Suppose that 5 > (v +1)/2. Let mp be a function in

H*(R) with compact support. Then the kernel ky of the operator mo(A) is
in LY(8}. Consequently, mo(A) is bounded on LP(S) for all p in [1,c0].

Proof. Let f be a function in H*(R) such that f(0) = [, Fluydu = 0.
Then _ N
fw)= [ (- Dfluydu Vv eR,
R
and the kernel of the operator f(e™2) is f(p1) = fg Eu f(u)du. Therefore
by Lemma 3.1,

17l < [ 1Bl F ()] du
R

<C [ (1+uf*loglul)/*| F(w)| du
R

N ge 2
<[ [ 0+ ol loglul) /(1 + )™ du
R

<[ @ i? au] "

< Cllfllgre-
Thus to prove the proposition it is enough to choose a function f in H*(R)
such that f(e~t) = mo(¢) for all ¢ in R*. The function f equal to mg(—log-)
on R™ and 0 elsewhere will do. _
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It is standard that mg(4) is LP-bounded because the corresponding ker-
nel lies in L (S); see, e.g., Corollary 20.14 of E. Hewitt and K. A. Ross [20]. =

4. Estimates on the kernel of the global multiplier. In this section
we derive estimates on the kernel of the “global multiplier” m... The basic
tools are the property of finite propagation specd of the operator cos(tAY/?),
and some estimates on the heat kernel ¢; for small positive ¢.

By renaming s, as s, and mee as m, we may and shall assume in this
section and the next that 2s > max{n+1,v+1} > 1, that supp(m) C [1,0),
and that

Iy = s5p [$0)m(t) s < .
Our aim is now to estimate the kernel of m (in this section) and then to

use these estimates (in the next section) to show that m(A) is bounded
on LP(S) when 1 < p < oo and is of weak type (1,1). Let m;y denote

Z“Llw(?j -)m. It suffices to obtain estimates for the operator mz(4),
uniform in J, for then limiting arguments give the result in genoral Thus
in what follows, we assume that m has compact support.

LeMMma 4.1, Suppose that b in H*(R) is even, and that 0 < r < R < oo.
Then for every function u in L*(S),

Ixss h(Z)ul,
o([ S e ) (B~ 1) s ), + [ xasul, ).

Proof The proof is a slight modification of an argument of Cheeger,
Gromov, and Taylor [8] From the inverse Fourier transform formula,

h{Lyu = f Re(h(t)) cos( tL)(xB.u+ xpsu) dt.

By the property of finite propagation speed (Lemama 1.2},

supp(cos(tL) (x5, u)) C Betr-
Therefore, from the L2~boundedness of the operator cos(tL),

[ e as]

R

<“ fIRe (hENxmully db
. R—'r

1 —3
;Rf t7*([Re R(DIL") dit x5, u]l,
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1/ (R—r)-2e\1/2c o 1/2
< (B2 T T methepee a] it
Ro—r
Furthermore, from the L2-boundedness of cos(tL),
2 3 % -
| [ D) ssu)@)Pds] < = [ R [xzsul, d,
B 0

and the lemma follows. m

Recall that for positive ¢, ¢; and p; denote the kernels of the operators
£ and et respectively.

LeMMaA 4.2, Suppose that 0 < v < 1/4. The following inequalities hold,
uniformly for v positive:

(i) [xmepell, < Cyt~te "/t vt e (0,1],
(if) xes Vol < Cot~ /et wie (0, 1.

Proof. The first part of this proof involves proving variations of the
estimates announced, with ¢; in place of p,. To prove these analogues, we
use the estimate (1.2) for the volume of a ball:

V(r) =|B,| < Cr*e*™ VreRT,

where a = 2|p|, as well as the following pointwise estimates, which are
consequences of the sharp pointwise estimates of Anker [3]:

g (x) < Gt/ 2121 /(41) Yz € SVt e (0,1),
IVay(z)| < Ct= (22— 1el*/4) vy e S vt € (0,1).

An inequality like the first of these estimates was earlier proved by Varopou-
los [30] (p. 354), though the number 4 in the denominator of the exponent
must be replaced by a larger real number. The argument below does not
depend on having the exact constant in the exponential, so Varopoulos’
inequality could also be applied in this situation.

To prove the analogue of (i), we integrate in polar coordinates, then by
parts: for any ¢ in (0,1),

”XB,EQt”g <Ot je—-uﬂ/(m)vl(u) du

o 2
= ot‘"[ J 3700V () du — e BV (r)

r

00
< Cf—n‘_l f un+leau—u2/(2t) du

"
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00
:Ot—n/Zetaz/E f (T}+t1’/20{)n+18—02/2 du

T

o0
< Ot-«n/zetaﬂ/z f (JUInM +t(n+1)/2an+l)ﬁ—-v2/2 dv,

'F"

where v =t~/ 2¢ — /20, and v’ = t~1/2p —11/24. Hence if < 2620 then
r' < o and ||x55th§ < Ct="/? while if r > 2t1/%q then ' > & and

O
“XBthllg < G2t /2 f phtlg=v'/2 du,
!

< C’t_””zear('rz/t)ﬂfze—rz/(w)
< Ol (02 ppyn/2g =" 21)

The desired estimate for [|g¢||, follows. The estimate for || V] Il is sim-
flar. Note that when 7 = 0, these estimates simplify to estimates for lla:ll,
and [[|Va|ll,, which are readily deduced from the Plancherel formula,

We now derive the estimates desired. Since §4/ *py = gy, and ¢ is K-
invariant, by Proposition 1.1, Ixepsll, = |lxmgll, for all positive ¢ and
K-invariant sets F, by Lemma 1.3. Inequality (i) follows. Moreover, |Vq,| is
also K-invariant, and & is a homomorphism of § into R, so that

IVps| = [V (67 2g)| < |V6~12]g, + 612 vg,|
= |VE~Y2(e) 6712, + 5§72V gyl

and the right hand side of this inequality is again the product of §~1/2 with
a K-invariant function, so that

IXElVpelll < [VE2(e)|lIxm6 7 2qu, + |x26~ Vgl
from which inequality (ii) follows. m
The first estimate of this corollary. could also be proved directly, by
using Varopoulos-type estimates for p,. However, there are no good pointwise

estimates available (to cur knowledge) for {Vpi| on a group of exponential

growth such as §. Thus the second estimate seems to require this somewhat
devious proof.

Define the function h(z) on R by the formula,

A(m) =m(r) () et yr e RVt € R,

LEMMA 4.3. If £ > 1, then

Iyl < Cllmlly - 1By |, < Ct1=29/4) | .
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Proof. Since composition with the map 7 + 72 is a bounded linear
operator from the subspace of H*(R) of functions supported in [1/2,2] to
the subspace of H*(IR) of functions supparted in 1/4/2, 2], we have

by (#72) . < Cllm(to() exp()] g < Clmlcs.

Thus the first estimate follows from the dilation invariance of the L'-norm of
the Fourter transform and the estimate || /||, < C||f||,;., valid since s > 1/2.
The second estimate is proved similarly, nsing homogeneity. =

We shall denote by h; the function h(os), for integral 7. Let L be the
operator AY/2. Then, from (2.1),

m(A) = i hi{Lye=2 74

J=0

and the kernel k associated with m(A4) is given by Yio ki where k; =
hj(L)py-s and the series converges distributionally on S. To estimate k we
decompose S\ {e} as the disjoint union of the dyadic annuli A, defined to
be BR(p-l-l) \BR(p)a where R(p) == 2;0/2.

LEMMA 4.4. For all nonnegative integers § and integers p,

Ixa ksll, < CL G p)lmllys x4, Vs, € CIs(Gy p)Imll o)

where -
IS (J', p) = 2((.’P+j)(lw~23)+nj)/4 + 2nj/4e_2p+3—4’

Jo(j,p) = U TN (1-28)+(n42)) /4y 9(n+2)i/4p=27H "4

Proof. The estimate is a straightforward consequence of Lemmata 4.1,
4.2 (with 7y equal to 1/8), and 4.3. Indeed, by set inclusion and Lemma 4.1,

Ixa kslly < lxzg,, by (D)pansl,

T 7 2,9 /2
<c(| [ Iu@reed
R{p)—R{p-1)
X (R(p) - R(p - 1))(1—23)/2HXBR(F.NJ_).IPZ—J' ”2

+ Wl s, 2ol )
< O([ f IR (6)]2t% dt]w
0

x R(2) 22 |y sl + B xag,ypasll, ),

and using the results of Lemmata 4.2(1) and 4.3 yields the first inequality
desired.
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Recall that there are left-invariant vector fields ¥7,...,Y;, such that,
for smooth functions f, Vf = (Y1£,...,Y,f). Since A is right-invariant,
Ymk; = hi(LYYapo-s, for m = 1,...,n. The argument above shows that

iy (L) Yinpaes |,

<of] f@(t}f?t% @)

”XBC

F(p)

/2

X BD) P2 Yol + Il lXay,, , ¥mpa-i]),
for each m; square and add (over m), then take the square root to obtain

the second inequality. =

PROPOSITION 4.5. For y in S, denote by A(y) the set {x € § : 2y <
l@| < 1}. The kernel k is locally integrable on § \ {e}, and satisfies the
following estimates:

(4.1) [ k(=) dz < C|lm]) ),
B

(4.2) [ 1k(@y) — k(z)| dz < Cllmljy).

A(y)
Proof By Lemmata 1.3 and 4.4,

oo
S K@) dz < lixa,oolly S lxa ks,
Ap j=0

< C’HXAP(,Do”zZfs(jap)”m”(s)

i=0
o0
S O“XAP 900”2”?71”(3) 2[2((P+j)(1—2.5)+nj)/4 + Zjn/‘le_zp‘“’*“}
j=0
< Clxa, poll, Iml|(sy 2P0 =20/ 4 g=2)
since s > (n + 1)/2. Now we use (1.3) and sum over P:

o0 o0
f k()| dz = Z f |k(x)| dz < Cf”mH(a) Zzpvm[zp(lwzs)m + e-—zwwa]'
B$ p=04, p=0

H

Since s > (v + 1)/2 the series converges, which proves (4.1).
The same argument shows that if po < 0, then

Z f {k(z)|dz < Cllm|l¢sy Z 2pn/4[2p(1—23)/4+8_2p—4]

P=po Ay p==pp

icm
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whence £ is locally integrable on S\ {e}.

For the proof of (4.2), we may assume that ly| < 1/2. Define p, to be
[210g5(2(y])]- Then

J by = k@)ldr < 350 [ s (o) — ()]
Aly) P=py =0 A,
-1 00 —p—1
=Y (X + ) J kiew) - k@) de
P=py j=—p =0 4,
:SI +S2:l

say. We treat these two sums separately.

Since |z| — |y| < |zy] < |#| + ly| for any =,y in S, and since the modular
function is bounded and bounded away from 0 on compact sets,

S ks(ay) = kj(a) do < 6() ™ [ ky(a)lda+ [ Iks(o)| de
Ap

Apy Ap
P2
<C Y [ik@ldz+ f |kilz)|do
q='P_'2 Ag Ap

if 2|y| < || < 1. Consequently,
oo p+2

~1
51033 S [ k(@) de

P=Py J=—pa=p—2 A,

~1 oo p+2
<Cy

DY ixagwollyllxaksl,

P=py jm-pg=p~2

-1 o0 iR
<C 3N N 2L, q)mll g < Cllmll e,

p=py j=—p g=p—2

much as in the proof of (4.1).

Now we estimate the second sum. Let 5 — y, be the (constant speed)
geodesic in § such that yo =€ and yy = . Then |ys| < |y, |#s]| = |y/, and

1
ki(ey) = ki(@) = [ 95 Vhj(@ys)ds,
0
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80

1
f|kj(wy)—kj(m)|d$§['yf f f |Vk,(zys)| do ds
Ap 0 A,

1

<lyl [ ()™ [ [Vky(w)ldeds

0 Aplis
P42
<Clyl Y [ V(=) de,
g=p—2 A4

because |z] — lys| < |2ya]: < || + |ys], and 2[y| < |2 < 1.

We conclude much as before, but with a subtle difference: we choose g
in ((n+1)/2, (n+3)/2) such that ' < s, and note that Ml oy £ Cllm| (-
We use the estimates which arise using s’ rather than s in the preceding
lemmata. Thus

-1 —p p+2
Se<Clyl 3 3" 3 lxagweollylxa, Vi,
p=py j=0 g=p~2
-1 -p p+2
< Ciy[ Z Z Z 2qn/4J5’(j:Q)l|mH(s‘)
p=py j=0 g=p~2
-1 —p pt+2
sou Yy 3w
=py j=0 g=p—2

x [2UEADUSDHOADD/A L gt 25 4e =2 )
< Cllmllgg),

as required. w

5. The boundedness of the global multiplier. In this section, we
show that, with the notation established in the previous section, m(A) is
bounded on IP(5} if 1 < p < oo, and that m(4) is of weak type (1,1)
Theorem 2.1 follows immediately.

Recall that k is the kernel corresponding to m{A), and define kg and
koo to be xp, k and x Bek respectively. Then, trivially, k = kg + koo; further,
from Lemma 4.5, ko lies in L1(.S), and so convolution with koo 18 8 bounded
operator on all the spaces L?(S), where 1 < p < oo, It now suffices to show
that convolution with kg is an operator of weak type (1,1). Indeed, if this is
50, then on the one hand, m(A), i.e., convolution with k, is also an operator
of weak type (1,1), and on the other, m(A) is bounded on L2(S) by spectral
theory. Marcinkiewicz’ interpolation theorem establishes that m{A) is also
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bounded on LP(S) if 1 < p <2, and the boundeduess for p in (2, 00) follows
by duality.

To handle ko, we can reduce matters to a purely local question, by ap-
pealing to a suitable covering lemma, and applying standard partition of
unity arguments. To treat the local problem, we use Coifman and Weiss’
notion of space of homogeneous type,

‘We denote by L'(By) the subspace of L'(S) of all functions with support
in B 1.

LemMma 5.1, The following weak type inequality holds:
{z ek flz) 2 A} < Cﬂj—gl—l YA e RYVf e L}B,).

Proof. Letd: Sx.S — [0,00) denote the left-invariant distance function
associated with the canonical left-invariant Riemannian metric on S.
At least formally,

koxf(z)= [ koley™) fu)6@w) " dy Ve e SVfe LBy,
By

and so ko * f is supported in By. Further, the modular function & is bounded
and bounded away from 0 on compact sets, so that f € L*(H;) if and only
if 71 f is. Finally, equipped with this distance function, and the left Haar
measure, Bs is a homogeneous space in the sense of Coifman and Weiss [11].
Consequently, in view of Coifman and Weiss’ [11] Théoréme II1.2.4, it is
enough to prove that there exist constants C and C; such that

(51) [ Iko(zy™") —ko(zyg ldz < 1 Vy,y0 € By,
Le(yiyo)
where Loy, yo) = {z € 9 : d(z,y0) > Cd(y, yo)}. However,

52) [ lkoley™) —ko(zys )| du
Lo (y,y0)

< sup §(2)
ZE§1

[ Tkole'voy™) — ko(e')| da’
' - Lo(wwolyg
and 2’ € Le(y,yo)yy ! if and only if
g 2"yo| = d{z"y0,50) = Cd(y:90) = v vol = o5 " (Woy ™ yol-
There exist constants o and 8 such that, for all yg and z in the compact
set E,_;,
oYz} <y zyo| < Blel.
Then if C = 2a8, it follows that if ' € Leo(y, yo)vo ! and the integrand
of the right hand side of (5.2) is not trivially 0, then |z’| > 2Jyoy™[, so
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Lemma 4.5 implies the existence of a constant C; with the required prop-
erty, and proves (5.1). m

LEMMA 5.2. There exist o sequence (z;) of elements of S and an integer
m such that

(e o]
5= U B;SL’J‘,
j=t
and each point of S belongs to at most m of the sets By, .
Proof. See Pier [27], Anker [4] or Gaudry, Qian and Sjégren [16]. w

It is now a simple application of a partition of unity to prove the desired
result. The presence of § requires some slight variations on the standard
method, but these are simple; see, e.g., Gaudry, Qian and Sjogren [16] for
details.
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