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el ; AB
Montrons que § & SB(X). En effet, 3¢ > 0tel que, si T = (&5) € B(X)
avec | T—S|| < &, alors A € &_(I,) avec ind(4) = ind(U) = oo et D € P.(ly)
avec ind(D) = ind(V) = —o0.
Encore la proposition précédente montre que T ¢ SP(X).

Remerciements. Je tiens a remercier M. Gonzalez pour les discussions
concernant les exemples précédents.
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TNlurination bodies and affine surface area
by

ELISABETH WERNER (Cleveland, Ohio, and Lille)

Abstract. We show that the affine surface aren as(8K) of a convex body X in R"
can be computed as

T voln (K%)= voln (K)
as(9K) = fim dn =y

where dy, is a constant and K 5 is the illumination body.

For a convex body K in R™ with sufficiently smooth boundary 8K the
affine gurface area is defined as

J K@D du(e)
oK

where K(zx) is the Gaussian curvature at ¢ € 8K and p is the surface
measure on 9K It has been one of the goals of geometric convexity theory to
extend the notions of differential geometry to convex hypersurfaces without
differentiability assumptions. For the affine surface area this has only been
done recently and then three different ways to extend affine surface area
were given. One is due to Lutwak [Lu], the other to Leichtweiss [L2] and
the third to Schiitt and Werner [SW]. The last two extensions are based on
floating bodies (see [L1] or [SW] for more information) and the fact, already
known to Blaschke [B] for sufficiently smooth bodies in R?, that the affine
surface area can also be computed as

, vol, (K) — vol, (Ks)
(1) 5111,% Cn §2/ (1)

where

'VOln..l (B'zn—l (0, 1)) 2/ (n+1}

oy = 2
n+1

is a constant and Ky ig a floating body.
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Here we consider another class of convex bodies and show that for this
class of bodies an expression similar to (1) also leads to the affine surface
area, thus answering a question asked by Calabi. In some ways this class
of bodies seems to be the most natural one when considering extensions
of the affine surface area. Using methods different from ours this question
was also solved by R. Howard [H] in the special case of convex bodies with
C4-boundary. R. Howard and E. Lutwak have drawn my attention to this
problem.

Throughout the paper we use the following notations. B (z,r} is the n-
dimensional Euclidean ball with center z and radius r. For & point 2 € R™,
||z|| denotes the Euclidean norm of 2. For a point & € 8K, N(z) is the
outer normal to 8K in z. It is well known that N(z) exists uniquely almost
everywhere. For a convex set A in R" and # € R", co[z, A] is the convex
hull of z and A. Please note that some of the constants that appear in the
paper depend on the dimension n.

Let K be a convex body in R™ and § > 0 be given. Denote by K* the
convex body in R™ given as follows:

K& = {z € R": vol,(co[z, K]) — vol.(K) < 6}.

We call K¢ an illumination body.
Then we have the following theorem.

THEOREM.
\ VOln(Ka) - VO].H(I{) _ 1/(n+l)
%1_% dy, /T = a}j; K(z) dp(z)

where u is the surface measure on 8K and

vol,—1(B5 (0, 1)))2/ )
do=2
n(n+1)

%8 6 constant.

In the proof of the Theorem we follow the ideas of [SW). We need several
lemmas.

LEMMA 1. Suppose 0 ig in the interior of K. Then
2%}

l T
voly, (K¢ — vol, (K) = - f {z, N(x)) ((W) - 1)du(m)
)3
where z¥ is the point on OK® where the halfline determined by 0 and =
intersects OK¢,

The proof of Lemma 1 is standard.

For # € 8K denote by r(z) the radius of the biggest Euclidean ball
contained in K that touches 0K at .
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Remark It was shown in [SW] that
(i) p{r € 8K : r(z) 2 1} = (1 - )" Lvol,1(8K),
(i) Jopm(z) ™ du(z) < 0o Vo, 0 < o < 1.

LEMMA 2. Suppose 0 is in the interior of K. Then for all z with r(z) >0
we hove

1 ‘ N
0< g(z’,’N(m)>5—-2/(n+l) ((””9;”H> _ 1) < dr(w)—(n—wl)/(n+l)

where d is a constant that does not depend on ¢ and §.

LEMMA 3. The lirnit
. : lz*]\ "™
lim —{x, N (x))s—2(n+1) - ;
lim n< () T 1 ezists a.e.
and equals
(i) -&l;g(m)'(”‘l)/(”“) if the indicatriz of Dupin at z € 8K 4s an (n—1)-
dimensional sphere with radius /g,
(ii) zero if the indicatriz of Dupin at x is an elliptic cylinder.
Remark. (i) Since the indicatrix of Dupin exists a.e. [L.2] and »(z) > 0

a.e. [SW], the indicatrix of Dupin exists a.e. and is an ellipsoid or an elliptic
cylinder.

(i) If the indicatrix is an ellipsoid, we can reduce this case to the case
of a sphere by an affine transformation with determinant 1 (see e.g. [SW]).

Proof of the Theorem. We may assume that 0 is in the interior
of K. By Lemma 1 we have

VOIH(K‘S) — VOl(K) - -]; —2/(n+1) - M n ~ i
32/ (1) %45 { ,N(w))(( HrCII) 1)@( ).

By Lemma 2 and the remark preceding it, the integrand is bounded uni-
formly in & by an L'-function and by Lemma 3 it converges pointwise a.e.
We apply Lebesgue’s convergence theorem.

Proof of Lemma 2 Let z € 8K such that r(z) > 0. Denote by
H the tangent hyperplane to x and by H* and H™ the two halfspaces
generated by H. To prove Lemma 2, we distinguish two cases:

(i) la* ~ | /r(z) < 1. Consider then the shaded cone C of Figure 1.
Clearly we have

§ = vol,(co[z?, K]) :
> voln(co[z®, BE (z — r(2)N(z),r(z))] N HT) > vol, (C).
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h

—r{®)N(x)
Fig. 2

We compute the radius p and the height h of the cone C. We get (see
Figure 2)

h:(”ﬂ%ﬁl@ )+ L‘(ﬁ’lﬁ)lm””é"””<ﬂgﬂ'ﬂr(”>

L (pvee)
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r(x)!/? A

e (g o) + =)™

1
§2 —voln_1(B}7H(0,1))e" A

hence

1
= = volu-1 (B (0, 1))r(z) " ~1)/2

ie® ~all/ @ Jo® = o2\ "/
x(1+2 r(z) <rw|’N(””)>+ r(z}? )

le® — ”+1>f2< d N(x)>

2]’

(<H K ($)> “33_(:;)_%)(”—1)/2

1
2 = voln1 (B (0, 1))r(z)m~H)/?

1
|=° ~2) / = 2 — 2|2\ /2
(“’2 @) <||m|’N("'“’> e )

et e {5 N(“’>

(e N+ “mr(;)wu) o

~L0, 1))r (@) m— 172

x

X

1
= E VOINH]‘ (BE'

Jo =l )

) (1+ M;éﬁfl)ﬂ(u ﬂ%{&jﬁﬂ)(nmm.

As 2 and 2° are colinear, we have ||z®|| = ||z|| + |® — z| and hence

e (1) =) = R () )
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= <ﬁ=N(w)>Hm‘* g
2220

< d<ﬁ,w(m>nm5 — 3

where d is a constant. Hence altogether we get
L e (1) 1)
n e \\al
2/ n-{-l)r(m) n=1)/{n-1)
<
= (vola-1 (B3O, 1))/ (v Y

9 T— n+1l
. ”mé —z|| 2n/(n+1} (2+ “mé _ 33“)( 1}/ (n+1)
T r(z)
{n—1)/(n+1}
(g )

As 0 is in the interior of K, we can choose o > 0 such that BE(0,1/a) €
K C K C BR0,a). Then {z/]|z||, N(z)) = 1/a* and the above expression
can be estimated with some new constant d' by

& 2n/{n+1} ||$6 _ {L‘“ (n—-1)/(n+1)
ety [, 128 2] M) .
ar(e) I }(l-l_ r(z) 2 r(z)

As by assumption ||z — z||/r(z) < 1, Lemma 2 is proved in this case.

s

B0, 1 /)
Fig. 3
(ii) |z — z||/r(z) > 1. We then proceed as follows (see [SW1). Consider

now the cone C' = colz®, BF0,1/a)] N H* (see Figure 3). Clearly § 2
vol, (C) and vol,(C) is minimal if H is parallel to the base of the cone.
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Hence
1 |af — 2]
> . i T
~n Hmé'”'n lo,'n. 1

and consequently

1z, N()) £/ |28 \" 1 ot
n e \\al )~ 1) = e € dr(e)7 e

where d is a constant.

volp—1{B3 (0, 1))

P ro of of Le m ma 3. We can suppose without loss of generality that

0€ K. As z and 27 are colinear, we have [{2°|| = ||z|| + ||z ~ z||. Conse-
quently,
® e NE) ((—m“w”)" -1) (o M) Y1 2
n ] |zl
and

(3) %(w,N(sc)>((%”|~l)n—1) <<”’”” N(z >“m :c||(1+d” " ||‘°”)

for some constant d, if we choose 6 sufficiently small. Put
(L= (/||| N{z))*) /2
{z/|lell, N(z))

AsODe K, ( (z/||z]l, N(x)) > 0 and hence g is finite and a > 0.

Suppose first the indicatrix of Dupin at z € 8K is a Euclidean sphere
with radius /2. If the indicatrix is an ellipsoid, we may reduce that to the
case of a sphere as in [SW]. Introduce a coordinate system such that z = 0
and N(z) = (0,...,0,—1). Hy is the tangent hyperplane to 8K at z = 0.
Denote by {H; : ¢ > 0} the family of hyperplanes parallel to Hy that have
non—empty intersection with K and are at distance ¢ from Hy. For ¢ > 0,
H} is the halfspace gencrated by H; that contains z = 0. By Lemma 9 of
[SW] there is & monotone function f on RT with lim;q £(#) = 1 such that
for sufficiently small ¢,

() ) an, FE) g, ) ¢

o= (21,000, Trel,y t) € By (( 0, Q)a )}
- Kﬂﬂ, - {(f(t)mlw--,f(t)xnwlr ) :
T = (mla~"1a:nv*1vt) € Bg((o’ "O’Q)"Q)}'

Let ¢ > 0 be given. By (4) we can choose ty so small that for all ¢ < ¢,
(8) BR((0,....0,0~¢),p—e)NEH

CKnH < BMO,...,0,0e),0+ )N H.
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Let t; = min(to, £). Now we choose § so small that

(i) estimate (3) above holds,

(31) (2/ (e ~ €)M %all2 — a|V*{a/|l2||, N(z))/* <,

(iit) 2z — x| {z/]z]l, N(z))

x(1+4(2/0)" a2’ — 2| (z/|2!], N(2)}}/?) < ta.
Moreover, we can choose the coordinate system such that the zy,...
., Zn_g-coordinates of z° are 0. The main step in proving assertion (i)

of the lemma consists in estimating § = vol,(coz?®, K]) -~ vol, (K} from
gbove and from below. We first show that § can be estimated from
below by

o(nt1)/2 9 - . (ns1)/2
> 2 ol (B 0,6 (168 ol (57 e}

{1 - ) - n(iﬁ“%%i@)"“u rd'e)]

where d’ and d” are constants, A is the height of the cap of Figure 5 and
¢ is a continuous function such that lim;_q g(t) = v/2. Using this estimate
for & and (3) we get

() )

§2/{n+1)

< l( n(n+ 1)
= 2 \vol,—y B} (0,1}

1
n

2/(n+1
) Hint )Q-(n—l)/(n-l-l) (1 N d“m; mHmH>
2

n =2/(n--1}
x{(n+1)(1md’s)—n(@—/%ﬂ) +1(1+d”£)} ’ -H.

Using the estimate from above for § and (2) we get a similar estimate from
below for the left-hand side above. Figures 4 and 5 illustrate the idea of the
estimate for 6 from below. Consider the shaded cone C of Figure 4 and the
shaded cap of Figure 5. By (5) we clearly have

6 2 voln(C) ~ volp(cap).

We start by computing the radius 7 of the cone C. Let H be the hyper-
plane containing all the points where a tangent line from z¢ to BZ((0, ..., 0,
¢ —g),0 — €) touches BF((0, ), ¢ — &) and let Ay resp. A be

these points of H N BF((0,...,0,0 — &), 0 — &) with biggest resp. smallest
" my-coordinate ag resp. az. We get
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G0~ c), 0—¢) BY((0,...0,0+¢), 0 +2)

-

Fig. 4

seen0,04¢€), 0+ )

o1 = 1~ . Vie)) (1.0 [ Zl -l (g N(‘”>I/2
+ el el “’XW”))

+ higher order terms in

wﬁ“st

or = 1o ol ) (1 - e (2 “>1/2
= e ==l v ) (v =)

+- higher order terms in ||zf — z||.

By assumption (iii), @ < a; < t1. Moreover, by assumption (ii),
= lla? ~2ll(a/ all, N (@))(1+dse),  az = s~ sl (a/liall, N (2)) (1~ dac)
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for some positive constants d; and dp. Hence we get for the radius r of the
cone C,

r=t{{ar — a2)* +{(2(0 - €)as — a2 (2(g — &)ag — af) /P2

3 5.2
= {||lxf - m||3<ﬂzé“,N(m)> 52%—5 + higher order terms in [|z° — a|

+2(0- mm“ﬂ<n| ‘O

* B ((1+d15)1/9 (1H 2(:1 E))l/'?

i) )
2 [2(9 Wt —:ci|<” r Nz )>]1/2

(- g

+ higher order terms in ||zf — x|}

> oo =)l =l 2, s )Tﬂu—w@

for some new constant d’. Now we compute the height A of the cone C'. We get

1/2
_ AN S Y 5 a2
h-@@ )t |K”” ($+@ &) + o 1@
. [(Q —5)2 _ 7"2]1/2

ol A ()
NN
"(“(5‘:)) ]
= (o- P+' ~ all(a/|z], N (z))
e—e

+§(¥;3ﬂf€1 Q|uNf>j
-(-3(5) - (%))

+ higher order terms in ||2% —z||
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zf — z||{z N
> (o Il Eb NG (g _ ey

n % (%i;“s_””)zO - <I%I| N(m)>2(1 - {1 - d’e)“))]

+ higher order terms in ||l2® — z||
2 2l|z® ~ x|/ llzll, N (@))(1 - d"e)

for a constant d”. Hence we get
1
vol, (C) = — voln L(BEH0, 1)) hrmt

1
z - vol, _1(B3~1(0,1))

. 2(n-}—1)/2”$6 — :t:“(-'B/“mH7N($)>(”+1)/2(9 _ 5)(11—1)/2(1 ~de)
for a new constant d'.

We now compute vol, (cap). By [L2], p. 459, we have

vol, (cap) =

A n41 )
n— {n—=1)/2 A(nt+1)/2
ro(5) B0 D)+ VA

where A is the height of the cap of Figure 5 and ¢ is a continuous function
such that lim,,g g(t) = /2,

To compute A, let By resp. By be those points of H N B2((0,..
o+¢), ¢+ &) with blggest resp. smallest #,-coordinate by resp. by, We get

b = af = ol 720 (o))

B 23/2, (Q-I-E)l/ Y 1/2
<R[+ e gtet -t ()
4a®(g +€)
" e gle =l o N @)

+ higher order terms in ||z° — z|),

by = 1o = ol oy )

E ~ 98/2, (0 -'I-E)l/ 2l @ . 1/2
XA[1 @B =g * <mrN(O

* gt ==l V)

-+ higher order terms in [|z° — x|
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where )
1/2 s 1/2
_ 12(_ % 1-d 1/2(1-- ) ,
A= (1+dig) (1 2(,(_)-"!-:)) + ( 2€) 2(0— )

B = (1 + d1€)1/2{1 bl d2€)1/2

By assumption (iii), b2 < by < #1. Hence for some constants dy and dy we
get

by = ||2° — ell{z/fzll, N(2)) (1 + dee),
{@/z]l, N(2)) (1 = dae)-

Finally—similar to the computation of h—we get for the height A of the
cap

by = ||2® — 2|

A=p+e—{(lo+e)?~ ;b —ba)?
— 1[(2(0+ )by — B3)M? + (2(g + €)bg — B3P}/

- (9+s)[1— {1- (_2%:;,:%)2
(2(0 + £)by — B1M2 + (2(p + £)by — 8B)1/27° 1/2]
B [ 2(0+¢) ] }

= o —all{ 5. o))

X [% ((1 + dge)V/? (1 -3 (ijr 3 ) v

+ (- d4€)1/2(1 - 2(;1 s))w)r

+ higher order terms in ||z° — z||

or
A < o® — wfi{e/ 2], N(@))(L+ d"e)

Hence we get

for some constant d.

vol,(cap) <

1 A ﬂ+1. .
— 19(9 n e) voly,—1{B3 Lo, 1))

x (o +8)" V2 (|la® — {2/ ||, N{(z)) " TVA (L + ')

for some new constant d”. Consequantly,
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oln+1)/2

§2 oy Vol a (B0 1)) o - all(a/ ], N (o)) )+ 23/2 g0 1)

X {(n +1) (1 - Z) (nﬁl)/g(l ~ d'e)

- n(l + %) e (9______"(43/5;’; 8)))n+1(1 - d”e)}.

The estimate for § from above is done in a similar way.

Suppose next the indicatrix of Dupin at x is an elliptic cylinder. We can
again assume (see [SW]) that it is a spherical cylinder, i.e. the product of
a k-dimensional plane and an (n — k ~ 1)-dimensional Euclidean sphere of
radius ¢. We can moreover assume that g is arbitrarily large (see also [SW]).

By Lemma 9 of [SW] we then have for sufficiently small ¢ and some & > 0,

B‘ZL(((J:"HO’Q_E);Q—E)O}It gKﬂHt.
Using similar methods, this implies assertion (i) of Lemma 3.
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