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Global maximal estimates for solutions
to the Schriodinger equation

by

PER SJOLIN (Stockholm)

Abstract. Global maximal estimates are considered for solutions to an initial value
problem for the Schrédinger equation.

1. Introduction. Let f belong to the Schwartz space S(R™) and set

(@) =u(z,t) = @m)™" [ eI fle)de, zeR" tER,
Rﬂ
where ¢ > 1. Here f denotes the Fourier transform of f, defined by
floy= [ e f(z)da,
Rﬂ-
Tt is then clear that u(z,0) = f(z) and in the case a = 2, u is a solution to

the Schrdinger equation ¢0u/dt = Au.
We shall here consider the maximal functions

S*f(z) = sup |S:f(z)], =e&R",
0<t<l

and
5% f(z) = sup|S:flx)|, zeR"
>0

We also introduce Sobolev spaces H, by setting

Hy={feS&8 :|flg <o}, seR,

ere
wh -

il = ([ L+ 1ER7 17 de)

!R'\’P-
Local estimates for §* f and S** f have been studied in several papers, see
e.g. J. Bourgain [1], L. Carleson [3], B. E. J. Dahlberg and C. E. Kenig [5],
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C. E. Kenig and A. Ruiz [8], E. Prestini [9], P. Sjélin [11], [12], L. Vega [14]
and C. E. Kenig, G. Ponce and L. Vega [6].
We shall here consider global estimates of the type

1) 5% fllz < Cll 5,
and
(2) 18 fll2 < Cl f]lz,,

where the norm on the left hand side is the norm in LZ(R™). It is known
and easy to prove that (1) holds for s > a/2 (see A. Carbery [2] and M.
Cowling [4]). C. E. Kenig, G. Ponce and L. Vega [7] have proved that if
n=1and a > 2 then s > a/4 is a sufficient condition for (1). We shall here
prove the following theorem.

THEOREM. If n =1 and a > 1 then s > a/4 is a sufficient condition for
(1) and s > a/4 is a necessary condition for (1).

We remark that the method in the proof of the sufficiency in the theorem
also gives the result that s > an/4 is a sufficient condition for (1) for all n.
This coincides with the result mentioned above in the case n = 2.

We shall also observe that the inequality (2) does not hold for any value
of s.

We also remark that a small modification of the proof of the theorem
yields the estimate

~ 1/2
15" flle < O( f IFOPL+ 1€/ og(2 + |£1))? dg
R‘ﬂv
for v > 1, which is of interest for n = 1 and 2.

2. Proofs. We first prove the impossibility of the inequality (2). We
choose f such that f = ¢ where ¢ € C§°(R"), supp ¢ C {€:1/2 < |&] < 2},
 is radial and @(€) =1 for 3/4 < i¢] < 3/2. Then $,f is radial and we set
z == (21,0,0,...,0), where z; > 0 is large. Also choose ¢ = z1/a. Then

Sif(m) =y [ e Ot B g) g

and it follows from the method of stationary phase (see e.g. E. M. Stein [13],
p. 319) that

157 (2)| 2 eay™?,
where ¢ denotes a positive constant. Hence
' S* f(z) 2 clz]~™/?

for || large and it follows that S** # does not belong to L*(R™). We conclude
that the estimate (2) holds for no value of s.
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Proof of the theorem. We carry out the proof of the sufficiency
for general n. Let #(x) denote a measurable function in R® with 0 < t(z) < 1
and set

Tf(z) = [ e Ee@El fe) de,
Rn
We want to prove that
(3) 1T fl2 < Cliflla,
if s > an/4.
It is well known that there exists a function p € C§°(R™) with support
in {£:1/2 < [£] <2} such that 5 a0 (277} =1, £ #0. We set

pol) = 1= p(27k¢)

k=1

z e R™, fe SR

so that ¢y € C§°(R™). Setting

B(8) = po(§) + Y _p(27FE)27*
k=1
one also has
o1+ |61F)*/% < &(€) < C(L+ |32
Defining an aperator R by
Rf(z) = [ =4I a(6) 7€) de,
we then have R

Rf(z) = [ e teNT 0o(6) F(€) de
Y [ et o ey ag o
k=1

= Pof(z)+ Y _ Puf(z).
k=1

To prove (3} it is sufficient to prove that
(4) IRfll2 < ClIF 2.

This is a consequence of the fact that

Tf(e)= | e‘”"fe"“”)'“@(f)% d = R(f“ ({;)) (=),
from which it follows that (4) implies
IT1ll> < ClIF/8llz < Cllf 2.

Here F denotes Fourier transformation.
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We then sef
Rof(z)= [ e™%po(x, £)F(€) d,
where
po(w,€) = e gy (¢,
and
Ryf(z)= [ epn(z,€)f(¢)de, N=1,

where

P (2, €)= O (g /NN,

Hence Py = Rg and Py, = Rgs, k = 1,2,3,... Then choose a real-valued
function g € C§°(R™) such that o{z) = 1if |z| £ 1, and o(z) = 0 if |z| > 2,
and set ¥ = 1 — g. We ghall need the symbols

pN,M(m:E) = Q(ﬁ/M)pN(IB,&), M>1,

and

PN,M,z(ﬁ'::E) =¢(£/E)pN’M(w,§), 0<ex<l
The corresponding operators Ky yr and Ry nrc are then trivially bounded
on L2
The adjoint of Ry, is given by the formula

M@ = [ [ eCvipy (v, £)g(y) dy dt
and it follows that

Lim By 3,09(2) = Ry p9(z), g€S.
From the computation on p. 708 in [11] we conclude that
J 1By sze9(2) da

= m) [f (] e o 100, E)w,aae (24 ) d€ ) 9 (4)307) dy d=
= 0" [ ([ S0 olamrote M8/ pnTu o (2, )

% g(y)g(z) dy dz
and invoking Fatou’s lemma. one obtains

[ 1BY mo(z) d
<11m1nf f|RNMEg Y dx
=n)" [ ([ & ol Opn (s, €) )
o(y/M)o(z/M)g(y)g(z) dy dz
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< Off ’f ei(z—y)'c‘e—it(y)lﬁl“eit(z}lé“]"wz(E/N) dé-N-"Es

x |gy)|lg(z)|dydz, N=>1.

In the case N = 0 we have a similar inequality with ?(£/N)N~2° replaced
by ©3(£) in the right hand side.
Now set

In(z,w) = f T2 INYAEN" g eRY,~1<w< 1, N>1,
In(z,w) = f ei(""f”*"“"ﬂa)cpg(f) dé¢, zeR™ —1<w<l,
and

In(z) = sup |In(z,w)|, =zecR™
Jwi<l

We shall prove that Jy € L'(R") for N =0 and N > 1, and that
(5) lIn]1 < CN7F, N 21,

where § > 0. One therefore obtains

J 1Ry ae9(@)Pde < C [ [ In(z - )laly)|l9(=)| dydz
< CllIn gl ll2llgll2 £ €|l Tx [ llgli3-
It follows that || R§ rrgliz < Clig]ls and

HRR’,M.Q”z < ON“m”QHz, N > 1.
We can here replace R?v, u by By ar and letting M — oo we obtain

|1 Rogll2 < Cllgl2
and
|Ruglls < CN"2|glla, N>1.
Therefore | Fy|| < C and [Pe|| < C27%/2, k > 1. Hence R is bounded on
1.2 since
IR] < (1P
k=0

Tt remains to study Jy. Setting @ = ¢* and ap = 2 and performing a
change of variable we obtain

Io(z,w) f @ EtelEl®) o, (£) dt
and
Iy(z,w) = [ efNostN il o) dg N*%, N > 1,
We shall first prove that
(6) oz, w)] < C(1+ |=[)7
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for |w| < 1. We set
Iy(z,w)= [ (eIt — Lao(¢) dg
and
Lelzw) = [ (el — Dy(¢/e)an(e) d, 0 <e <.

It is then clear that it is sufficient to prove (6) with Io replaced by Ij .. Since
|Io{z,w)| £ C we may assume that |z| > 1. Performing n + 1 integrations
by parts one obtains

Ié,&'(a:’ LI.)) S Glml’"”""‘l Z IF-'mgx‘f’
[l 18]+ y|=n-+1

where
Ly = [ [DH(e™1" = 1) IDP (¥(¢/e))| D7 (€)| dé.
Since
|DE(eE — 1) < ClglTH, jg <,
and
|D(w(E/e)) < Ol 7,
we obfain
Tupy =C f lg[*—tag < C
[¢ls1
for 3 =0, and

Lpr<C [ JgPleePlag < genest <
e<|E|<2%
for |8 > 1. Hence (6) is proved and it follows that Jy € L*.

To study Jy for N > 1 we shall use the following two lemmas (see P.
Sjélin [10] and the references in that paper).

LeEMMA 1. Let £2 denote an open set in R™ and let p € CP(12). Assume
that ¢ € C™(£2),v is real-valued and that |det(0%)/8z,0z1)| = ¢ > 0 in 2.
Then

| [ D@y de| <O+, EeR™, (eR
n .

LEMMA 2. Let I denote an open interval in R, let g € C§°(I), F € C>(I)
and assume that F' is real-velued and F' #£ 0. If k is o positive integer then

f e g(z) de = f e @ py (z) dee,
I I
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where hy, is a linear combination of functions of the form
g (kT H Fla)
g=1

with 0 < s < k, Og'rskandZqugk-i—l.
It follows from Lemma 1 that we always have
(7) I (@, w)| < C(N®[w])~/2N"~2,
If Nolw| < coN|zi, ie |w| < cole|/N*~1, we also have according to
Lemuna 2,
(8) [In(z,w)| < C(1 4+ N¥|z|¥) I N2,
where K is large.

We shall estimate Jy and begin with the case 0 < |¢| < 1/N. It is clear
that |Iy(z,w)| £ CN™"2% and it follows that

(9) [ In(@) de < ON,
|| <1/N

We then consider the case 1/N < |z} € N%1/cq. If |w] < colz|/No?
we use the estimate (8) and if |w| > co|z|/N %! we apply the inequality (7),
which implies that

Iy (z,w)| < O(N|z[)~"/2N""28,
Hence
In{z) < ON™22e g2 N™1 < |z] < N1 /e,

‘We conclude that

(10) f

N7 g|z|$N " /e

In(z)de < QN2 f ||~/ du
=] SN*"1 feo
Na.—l/CO
< ONn/2—23 f r‘n/ﬁ—ldr — C«Nan/2--23.
0
In the case |z| > N®1/¢q it follows from (8) that
Jn(z) < CNP25 N—K ||~ K
and hence
(11) [ Jnlz)ds <CON7E,
|z >N*"" feo

where L is large.
Combining (9), (10) and (11) one obtains

[Inl € CNov/2=2e N > 1,
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and hence (5) holds with § = 25 —an/2. The sufficiency in the theorem now
follows since § > 0 if s > an/4.

We next prove that if n = 1 and (1) holds then s > a/4. First let
@ € C§F(R) with suppp C (—1,1) and choose f such that

J?(E) — (P(Na/z_lé' _l_Na/Z)_

It is then easy to see that f vanishes outside the interval [~N—N1~%/2 N4
N1=¢/2] and it follows that

(12) I£llm, $ ONeFT/2malt,
Setting 7, = (27)™™ we have
Sef(z) = my f eieneithl® o(Na/2-1y 4 Na/2) g
and performing a change of variable we obtain
Sif(z) =m f eim(Nl_“/QE—N)ev;thl'“/zEmNP{p(é.) de N o/
= m N1-e/? j‘ ei(Nl"“ﬂmE—Nm)éitN“(l-N—a/ZE)u(P(f) dé

=m N [ T 0p(e)d

Using the Taylor expansion
(1+9)* =L+ ay +cp® + OJy*),
where ¢; = ¢ and ¢y denotes a positive constant, we obtain
F(&) = N1o25¢ _ Ny
+ N (1 ey N2 4 g N ™22 4 O(N~39/2))
=tN® — Nz + N'2g¢ — ¢t N3¢ 4 cpte? + O(EN~2/2),

We now choose t such that

1 =
1-a/2,, _ a2 : o=

N z=ctN**, le ¢ S N1
It follows that

1:7(@)] = m N2 [ 000 (c) ag,

where

C

G(€) = catf? + O(N 2 =

Na. 1&.2 (Nu 'LNMG/Q)

Also choose z such that (1 —e)N*"! < 2 < N*~!, where € > 0 is a small
number. One then has

G(¢) = E"j"fg +0(=) + O(Nwa/Z) — z_jEz + O(e)
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if N is large. Setting d = c3/e; and choosing ¢ such that
. 2
J e p(e)de = oo # 0,

we obtain
[ &M@ de = [ e“'ﬁz “’%(e) g
= [ e p(e) de + [ €19 () — 1)) de
= co+ O(E)

and it follows that
lf eC@p(g) df‘ >e>0,

if € is chosen sufficiently small. Hence |S, f(z)| > cN1~e/2 and we conclude
that §*f(z) > eN1=%/2 for (1 — )N~ < g < No-T,
It follows that

1/2
(f 15* 72 d:t:) / > NS/ (Na- 12 o Y/2,

Invoking (1) and (12) we then obtain N¥/2 < CQN*+1/2-6/4 414 letting
N — oo we necessarily have s > a/4. This completes the proof of the
theorem.
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Note on semigroups generated by positive Rockland operators
on graded homogeneous groups

by

JACEK DZIUBANSKI, WALDEMAR HEBISCH and
JACEK ZIENKIEWICZ (Wroctaw)

Abstract. Let L be a positive Rockland operator of homogeneous degree d on a graded
homogeneous group G and let p; be the convolution kernels of the semigroup generated
by L. We prove that if 7(z) is a Riemannian distance of © from the unit element, then
there are constants ¢ > 0 and €' such that [py(z)| < Cexp{—cr(z)% (=1}, Moreover, if
G is not stratified, more precise estimates of p1 at infinity are given.

1. Introduction. Let L be a positive Rockland operator on a homo-
geneous group G (cf. [FS]) and let d be the homogeneous degree of L (cf.
Section 2).

The operator I satisfies the following subelliptic estimates proved by
B. Helffer and J. Nourrigat [HN]: for every multi-index [ there are constants
C and k such that

(1.1) 1X 22 ey < CUL*fllae + 1 fliL2e),  f € CR(G).

Theorem (4.25) of [FS] asserts that the closure —L of the essentially
selfadjoint operator — L is the infinitesimal generator of a semigroup of linear
operators on L?(G) which has the form

(1.2) Tif =fx*p, t>0

where the p; belong to the Schwartz space S(G).
The homogeneity of L implies

(1.3) pi(a) =t~y (8,-r ),

where @ is the homogeneous dimension of G and &; is the family of dilations
associated with G (cf. Section 2),
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