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STUDIA MATHEMATICA 109 (2) (1994)

On. certain nonstandard Calderén—Zygmund operators
by

STEVE HOFMANN (Dayton, Ohio)

Abstract. We formulate a version of the T'1 theorem which enables us to treat singular
integrals whose kernels need not satisfy the usual smoothness conditions. We also prove a
weighted version. Ag an application of the general theory, we consider a class of multilinear
singular integrals in R™ related to the first Calderén commutator, but with a kernel which
is far less regnlar.

1. Introduction. The I? mapping properties of non-convolution type
Calderén-Zygmund singular integral operators with standard (i.e. “smooth”)
kernels are now rather well understood, thanks in no small part to the re-
markable “T'1" theorem of David and Journé [DJ]. Suppose that 1" is a sin-
gular integral operator with kernel K (z,y) defined on R® xR"\ {z = y} (this
means that T is a bounded linear functional from D to D', where (T'f, g} =
[ K (z,v)f(y)g(z) dz dy, whenever f, g € C§° have disjoint supports}, with

(1.1) K (z,y)| <

and, for all |z — 2| < |z —9|/2,

|z - y|"

z —o'|?
12) |0 - K& 1K) - Ka) s 02,
for some 0 < § < 1. We define the transpose T* by (T'f, g) = {(f, T*g), so
that T* has kernel K*(z,y) = K(y,%). David and Journé’s “T'1" thecrem

states that for T" as above with standard kernel, T’ extends to a bounded
operator on L? if and only if T1 € BMO, T*1 € BMO and T sat1sﬁes the
following “weak boundedness property” (WBP)

(13)  |lpr, Teeadt S Cr*{[pilloo + 7 Ve1llo) (Ip2lloe + 7l Veoz]oo)

for all @1, € C§° with support in a ball of radius 7.
The kernel conditions were weakened by Y. Meyer [M], who replaced the
size condition (1.1) by
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100 S. Hofmann

(1.4) sup f

(1K {2, )| + | K (y, 2)|]dz < C' < o0,
120 pglu-y/<2r

and the smoothness condition (1.2) by

(1.5) sup { f

R>0
[ul+fv|<r Bifesla—y|<2R/s

o

Rfsg|e—y|<2R/s

K (z +u,y +v) — K(2,y)| de

JK(m+u,y+v)~K(w,y)idy] <B(s), O<s<l,

where
i

~ 1
fw(s)logH?—!f<oo.
0 5 8

This last condition was relaxed slightly in recent work of Y. 8. Han and the
author [HH] to

16 wp | [ |Kruy+o)-
0
fultinlgr le-vl2R/s

+ [ Byt -
|[z~y|>R/s

Kz, y)idzs

K(z,y)ldy] < wis),

where fo s)ds/s < oo. A result of Carbery and Seeger [CS, Prop. 2. 3]
could also be used to consider {1.6).

There are, however, large classes of singular integrals which are of interest
in harmonic analysis, Whose kernels may fail to satisfy even the relatively
weak condition (1.6). In the present paper, we formulate a version of the
T'1 theorem which includes the above results, but which also permits one
to treat at least some of these rougher kernels; we then consider a class
of multilinear singular integrals in R” related to the Calderén commuta-
tors, but rougher, and which falls cutside of the scope of the earlier results.
In a future paper [H2] we will apply this “T1 theorem for rough singular
integrals” to extend some 1-dimensional results of Mural on singwlar inte-
grals of “Calderén-type” to R™. It turns out that rough singular integrals
arise in a natural way when treating such operators, even when the original
“Calderén-type” kernel is smooth. The class of operators which we consider
in the present paper are those of the form

(A7) TAf(@)

=pv. [ Tt 4e) - A) - VAG) - (e - DI by,

where 2 € LT(8"1), r > 1, is positively homogeneous of degree zero and
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satisfies the moment condition

(1.8) [ o0(9)ds =0
Sn—l
and where VA € BMO. We do not impose any smoothness condition on §2.

We recall that BMO is the Banach space of functions (modulo constants)
with norm

1
[l = sup i ;f b —m (),

where my(b) = (1/{I]) [, b, and I denotes a cube with sides parallel to the
coordinate axes. A well known result of John-Nirenberg states that

1 g 1/a
(1.9) Hbu*msz}p (m}fbmmf(bﬂ) . 1<g<oo0.

Since L™ is properly contained in BMO, we see that in general the kernel
of the operator T# fails to satisfy the “standard” kernel estimates even
for “smooth” 2. For VA € L™, the L boundedness of T4 is a classical
result, obtained by the method of rotations in work of Calderén [Cal, and
Bajsanski and Coifman [BC]. For VA € BMO, the method of rotations no
longer applies, and in this case results for smooth {2 were obtained by means
of a “good-A" inequality by J. Cohen {Co| and Y. Hu [Hu.
‘We shall prove the following:

THEOREM 1.1. Let T4 be defined as in (1.7). If 2 € L7, r > 1, then T4
is bounded on L?, and

(1.10) IT4 11|z < Call2- {7 Allw [l £z -

If 2 € L™, then for all w € A and 1 < p < co we have the weighted norm
inequality

(1.11) T4 fllpw S COnpoan 12loo VAL Flp -

(Here ||fllpw = ([ |f(z)|Pw(z)dz)/?, and the constants Cn and Cpp 4,
depend only on dimension, and, in the latter case, p, and the A, constant

of w.)

We remark that by generalizing (in a routine but technically messy
way) the ideas of Duoandikoetxea and Rubio de Francia [DR] and Car-
bery and Seeger [CS] one can extend the unweighted bound (1.10) to all L?,
1 < p < o0, but this will not be done here. In order to avoid tiring the reader
unduly, we ghall ingtead content ourselves with the technically simpler case
7 € L, which permits one to obtain L? bounds via the extrapolatlon
theorem of Rubio de Francia [GR, Chapter IV].
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This paper is a continuation of some work which began while the au-
thor held a post-doctoral fellowship at McMaster University. I would like
to thank Eric SBawyer, who proposed the problem of formulating a version
of the T1 theorem which would include “non-standard” kernels, and I am
grateful to Y, S. Han for helpful discussions concerning the use of Calderén’s
reproducing formula. I also thank Anthony Carbery for bringing to my at-
tention his joint work with A. Seeger [CS], in which some of the ideas used
in the present paper had previously appeared. I also thank the referee for
numerous helpful suggestions. In addition, it should be pointed out that the
results in this paper were originally part of a much longer manuscript. 1
am also grateful to the referee of that paper for several helpful comments,
including suggestions which have permitted a much shorter proof of Lemma
2.1 than I had given previously. ‘

The paper is organized as follows. In Section 2 we discuss the weals
samoothness conditions which replace the “standard” estimates. Section 3
contains the generalized T'1 theorem and its proof, and in Section 4 we
prove Theorem 1.1,

2. Conditions for nonstandard kernels. David, Journé and Semmes
[DJS] have given a proof of the T'1 theorem based on a continuous param-
eter Littlewood-Paley decomposition known as the “Calderén reproducing
formula”. Let ¢ € C§°(|z| < 1) be radial, with [7 = 0. Set ¥,(z) =
sT"(|z|/s), and Qs f = tp,* f. With the normalization fooo(q,‘l;(s))z ds/s =1,
we then have fom Q2 ds/s = I, where the operator-valued integral converges
in the strong operator topology on L2. Thus, in analogy with the expansion
of & function in terms of an orthonormal basis, one has f = fow Q2fds/s,
and formally,

ds dt

(2-1) (Tf,g) = ?T

Cir__38

T (@700@:1, 20)
0

David, Journé and Semmes observed that, under the assumptions of
the T'1 theorermn (plus T'1 = 0 = T*1, a restriction which may be readily
removed), the operator T is “almost diagonalized” by this expangion, and
they were thus able to give an elegant proof of the T'1 theorem. In fact, they
were able to show rather easily that

Ls,t(:ﬂa y) = (@ba(m - )1T7nbt( -~ y»

satisfles estimates which in particular imply that
(22) [ |L@w)ldo+ [ |Los(e,9)ldy < Coo(min(s/t, t/5)),

where fol w(s) ds/s < oo. It is not hard to show that even the weak smooth-
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ness condition (1.6) implies (2.2). It then follows easily that
(2.3) Q:TQt]lop < Cro(min(s/t,t/s)),

where | - |lop denotes the L? — L? operator norm. Schwarz's inequality
and Littlewood-Paley theory conclude the proof. Thus, it is not the kernel
conditions per se that are crucial to this approach, but rather the fact that
they yield the diagonalization (2.3), which in turn can be obtained in some
cases for kernels which fail to satisfy the standard estimates, or even. {1.6).
The explicit use of {2.3) as the starting point of an L2 theory has appeared
previously in work of M. Christ [C2], in [CS, Prop. 2.3] and in somewhat
simpler form in the convolution case, in [DR].

We now set some notation. Let ¢ € C§°(1/4,1) define a partition of
unity so that 357 @(27ry =1, r > 0; set

Kj(z,y) = K(z,9)p(27 |z —y|), and KV =) K;,
=N

and let Ty and TV be the corresponding pieces of the operator. Recall that
K*(z,y) = K(y,z), and T* is the corresponding operator.

Let us introduce the replacements for the “standard” conditions. In lien
of the size condition (1.1) (or (1.4)) we have

(2.4) I I

Bar RSlo-y|S2R

where B,y is any ball of radius AR, A € (0, 00). Tt is clear that (1.4) implies
(2.4) with Cy = CA". However, for VA € BMO, the operator T4 defined in
(1.7) need not satisfy (1.4).

As a substitute for the smoothness condition (1.2) {(or (1.5) or (1.6)) we
will assume (for all Q, defined as above)

&= (@, 9)| + [K{z,y)|] dy d= < C1R",

(2.5) QTN oo + [[QT* V|0 < Cw(27Vs), s <2V,
and a certain smoothness in the L? operator norm:
(2.6) HQATNHOp + HQST*NHOP < Ow(2_N-5'), s<2V,

where in each case ff;t w(s) ds/s < oo. (Here C may depend on the particular
choice of 1 defining @;.) It is easy to see that standard kernels satisfy (2.5)
and (2.6): since @41 = 0, this is a straightforward consequence of the mean
value theorem. Moreover, it is not hard to show that even (1.6) implies both
(2.5) and (2.6). We also point out that conditions similar to (2.6), as well as
(2.8) below, have been considered in [CS, Props. 2.5 and 2.6]. See also the
previous work of the author [H], where much of Section 3 had been implicit.

In addition, we iropose a certain (qualitative) technical condition, which
holds in particular for any kernel satisfying (1.6} (or even Hormander’s con-
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dition). It also holds trivially for doubly truncated principal value kernels,
With 4, the kernel of Q,, we assume

[ | ] o= 20K o) de]du < o,

le—u|>2s

f ‘f¢5(m_z)K(2,u)dz’d'u<oo.

|z—1|>2s

(2.7

The precise bound in (2.7) is unimportant, as the condition will not
be used quantitatively. It is only imposed so that we may define 7'l and
T71, and also to make the proof of the theorem rigorous. In fact, we can
now define T'1 by a standard device, in the sense of distributions rmodulo
constants, as follows: for ¢ € C§° having mean value zero and support in a
ball of radius s with center zp, we write 1 = A+ (1 — ), where h € C° and
h{z) =1if |2 — @o| < 25. Then we define (3, T1) = (¢, Thy+ (T4, 1~ h),
where the last expression exists by (2.7). It is straightforward to verify that
the definition is independent of /. Similarly, we can define Q,7V1(z) as

(LT~ = [f EV(zu)p(e - 2) dedu,

which makes sense by (2.4) and (2.7).

Before stating and proving the nonstandard 7'1 theorem in the next sec-
tion, we wish to make some comments about the weak smoothness condition
(2.6). In our application (Theorem 1.1), we shall have a stronger version:

(2.8) 1Q:Tjllop < C(27%5)%, s<27, for some &> 0.

We now proceed to show that (2.8) is satisfied in several cases of interest.
The first (and easiest) case is that of the convolution operators satisfying
Fourier transform estimates of Duoandikoetxea and Rubio de Francia. [DR].
For example, if K(z,y) = K(z —y) = 2(z - y)/|x — y|", where for some
r>1, 2&L"(S™ ) has mean value zero, then (see [DR, Section 4])

[Eo(£)| < Cmin(j¢|, |€]72)

for some & > 0 (it is enough to take j == 0 by dilation invariance). Thus, by
Plancherel,

[QToflIf < ¢ [ 16 (sIEl)[® min(L, |€]*)I F(e)[ de .

But %(0) = 0 and % €S, 80 J(s|£|) < min(s|¢, 1), and therefore, by an
elementary computation, we have

(2.9) - QTofllz < Cs°||ffa-

The non-convolution case requires more work. In [H], the n-dimensional
Calderén commutators with kernel (2(z—y)|z—y| PRl A(2) - A(y)]* (VA €

icm

Calderdn-Zygmund operators 111

L and 2 € L7, r > 1) were shown to satisfy (2.8). Consider the kernel of
T4:
I(A — Q(:E — y)
(2.10) (z,y) = W[A(ﬂf) —A(y) - VA(y) - (= - v)].
We will prove:

LeMMA 2.1. Suppose that {2 is positively homogeneous of degree zero.
Then, if 2 € LT(5" 1), r > 1, and VA € BMO, we have, for s <27 and
some & > 0,

1QuT o < CILY VAL (275"

Remark. We will see in Section 4 that 74* nearly satisfies (2.8), except
for an error term which is controlled by Carleson measure estimates.

Proof of Lemma 2.1. By scale invariance, we may take j = 0, and
without loss of generality, we may take [|2]|, = 1 = || VA]|,. We decompose
R™ = |J I;, where cach I; is a cube with side length 1, and the cubes have
disjoint interiors. Set f; = xz,f so that f = 3 fi ae. Now, if s < 1,
the support of .7y f; is contained in a fixed multiple of I;, so that the
supports of the various terms QT f; have bounded overlaps. Thus we have
the “almost orthogonality” property

2
|3 0ms| <Y Ie.TuhilE,
i i
and it is therefore enough to show
(2.11) Q. Tofil3 <Cs° [ 1£*-

For fixed 4, let I= 1000ni;. Now, and frequently in the sequel, we use an
observation from [Co] that K4 = K47 (K4 defined as in (2.10)), where

A;(z) = A(z) — mp(VA) -z.
(Here m; denotes the mean value my(f) = T}Tff Ff.) We wiite Q,Tp =
UV 4+ W, where
Uf@) = [[ vz - w)koly - u)
x [Af(y) — Ap(w)]ly — u[ ! f(u) dudy,
Vi) = [[ dule - nkoly - u)
x [VA(z) = VA - - f(u) dudy,

Y — ul
Wiz = [[ vl —y)koly - w)

x [mp(VA) - VA(z)] - Hf(u) dudy,
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with
2y — )
koly — u) = ———+
oy —u) Y — @(ly — ul).
We consider V' and W first, as they are easier to handle than U. Now,
(2.12) JIWaP < [ [VA®) - mp(VA)? Q.S fila) de,

where & has kernel Ky(z ) = ko(z)z/|z|. By Schwarz, the right hand side
of (2.12) is no larger than

013) ([ IVA@) - mi (VAR5 @) dn) [ @uSoila.

By the result for convolution operators {2.9), the second factor in (2.13)
is no larger than Cs%||fi||2. Thus, to obtain the required estimate (2.11)
for W, it is enough to show that the first factor in (2.13) is bounded by
CV A|2|| fi]|2. By Schwarz, this factor is no larger than

(2.14) (f |V A(z)

where L{z — u) = [ |ip,(z — y)Hko — u)|dy, so that ||L]}; £ C||2] < C.
Now, for all w € I;, supp L(-—u) C I, and |I| Cp. Thus (2.14) is dominated
by

~mA VAL [ I - 0l )P dude)

of J 187 [ 194 = my(VA)Yoe ) s w) "

and the required estimate then follows by applying Hélder’s inequality to
the inner integral with exponents »’ and r, since ||L| - < C|l9||1|£2].

We now consider V, which is just the commutator [V A4, Q,5;). We have
already observed that

1QsSoflla < Cs#(1 £z
Furthermore, trivially

Qs Sof 1 < C|IF|1,

80 by interpolation and duality, we have
(215) 1Qs5011la < Ol Fllgs
where &' > 0 depends on ¢. Also, QSS_’b maps L? into LP*® for p > ' since

J1QSsp <o [ |5sp+e
104/n ]

P46
<of ([ eyl T alf(y)ldy) da,

l<g<oo,
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where we have used the fact that the kernel of & is supported in an annulus
|z —yl ~ 1. But for 0 < a < n/p, and (p+ &)~ = p~% — a/n, the last
expression is no larger than

Cleere sz,

by the Hardy-Littlewood-Sobolev theorem if r = oo, or by a similar argu-
ment (see, e.g., [, pp. 119-120]) if p > '. Thus by interpolation with (2.15),
we obtain (with smaller values of £ and §),

(2.16) 1Qs50fllgts < Cs*lfler 1< g< 0.

Then [VA, Q, go] = [VAj, Q_.,§g] and the desired estimate follows from
(2. 16) and Hélder’s inequality applied to each of VA; - Q5of; and
Qs5h(VA; 7fi)- It remains to prove

(2.17) [Ufillz < Cs°| fill2 -
Now, U = Q,T’f, where T; has kernel
218) Kyl = oy - ulds) - Arw)].

We shall need the following unpublished inequality of M. Weiss, whose proof
can be found in a paper of C. Calderén [CC, Lemma 1.4].

LeMMma 2.2, Suppose VA belongs to L}, q > n. Then for v > 1 we

have
Alr) — A 1 1/q
Alz) - Al scw(m [ vag)e dz) ,

x —
= -yl o —2|<yle—y]

We recall that I; is a unit cube, and T= 1000nJ;. Thus for w € 100n1;,
by Lemma 2.2 and the definition of A7, we have

=2y - ) < Cofv Al
We rewrite QT f;(x) as
QeRo(—~Azfi)(x) + Ap(2)QuRo filz) + [Qs, Af|Ro fi(z) = T + IT + IIT

where Ry denotes convolution with (£2(y}/ly"Te(ly]). The kernel of
[Q., Aj] is bounded in absolute value by

[ 1Qs(e — I Afy) - Ar(@)| dy < Cs° |9l VAL,
where in the last mequahty we have used Lemma 2.2 to write for z,y €

20\/ﬁIi>
1/q
- f’ flq) :
—y 7]

(2.19)

Apy) — A7(@) < o -y|(
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The desired estimate for JIT follows easily.
In I+ II, we can use an idea of Cohen [Co] to replace Ay by

Anfz) = n(z)}[Af(z) ~ Af(wo)]
where zp is a point on the boundary of 500./nl;, and where we choose
n € C§° such that 0 < 5 < 1, 9 is identically one on 100,/ni; and vanishes
outside of 2004/nl;, and ||V7le < Ch.

The kernel of Ry, call it kg, satisfies ||‘IED(E)H® < Cmin(l, |&]7%), 50 as
above Q, Ry satisfles (2.9) and also (2.16). Thus we can treat [ 4 I7 in the
same way that we handled [VA, ngg], once we show that for all large,
finite go, [|An|lzs < C||V.A[4. To do this, we use the identity I = I & -V,
where I; is the usual fractional integral of order 1, and R = (Ri,...,Ry,),
and the R;'s are the Riesz transforms. By Sobolev’s theorem and the L?
boundedness of ﬁ, we have

[Anlizes < ClIVAg|z»,
with 1/gp = 1/p — 1/n . We now follow {Co, p. 698] to estimate V4,. In
fact, for y € suppn C 200,/nl;, by Lemma 2.2 we have

1/g
IVAn(y)ISC{IVn(y)leo—y!{Tl__y-! I IVAf"} +VAf(?/)}-
i

l<p<n,

But {20 — yl = 1, and |I]| = Cy, 50 |VAy|lzr < Cppl|VA|lk, and this con-
cludes the proof of Lemma 2.1,

3. T'l theorem for nonstandard kernels. Let T be a singular integral
operator with associated kernel K'{z,y). We have the following:

THEOREM 3.1. Suppose that T satisfies the weak size condition (2.4),
the weak smoothness conditions (2.5) and (2.6) and the technical condition
(2.7). Suppose also that T1 € BMO, T*1 € BMO, and that T satisfies WBP
(1.3). Then T extends to a bounded operator on L2,

3.1.Proof of Theorem 3.1 Inthe original proof of the T'1 theorem
by David and Journé [DJ], they first considered the special cage T1 = 0 =
T*L. For f T1 = b, T*1 = b* € BMO, and Bf = (/) x f with
peCE, [p=1, then

di

(3.1) Iy = | Q:((Q:b)F,) 7

defines a bounded operator on L? (and therefore satisfying WBP) with stan-
dard kerx;gl (as in (1.1) and (1.2)). Furthermore, IT,1 = b, since (formally)
Ml = [(° Qjbdt/t where [ Q2 dt/t = I. We refer the reader to DJ] for
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details, They then removed the restriction T1 = 0 = T*1 by replacing T
with T'= T — IIy — II.. Observe that T will also satisfy (2.4)—(2.8), since
these easily hold for standard kernels, so we could also use this approach.
We shall, however, instead treat T directly, which gives rise to error terms
essentially like (3.1). This approach will be convenient for us, because addi-
tional such error terms will arise in our applications, and will be disposed
of by the same method.

We now use the Calderdn reproducing formula. fé’c Q2 dt/t = I, and, by
the same argument as in {DJS, Sections 1 and 2], it is enough to show that

e t/es 5 ds dt
(32) f f (QSTQt fv ng> ? _t‘ S C”f|i2”9'”2 H
€1, En

with bound independent of £; and e;. Since our hypotheses are symmetric
with respect to T' and T, by duality it is enough to consider the case s < £.
For each pair (s,t), let Ng = Ny(s,t) be the least N such that 2% > s¢1-9,
where 0 < 8 < 1 will be chosen later. We write

(3.3) Q:TQs = QT Qs + (QsTQs — QT Q1) = Ry + Sst s

where we recall that 7V = 2.i»n 1j, and define corresponding operators

/e 1/e2 ds dt
(3.4) R=R(ey,e0) = f f x{s L t}Q:Rs: Qs el

€1 Ea

e lre ds dt
(3.5) 8= S(e1,8) = f f x{s <1}Q:5:,: Q¢ T

&1 E2

Here, with a slight abuse of notation, we indicate by x{s < t} the function
which is identically one if £ > s, and zero otherwise. Now, R can be handled
trivially: by (2.6) we have

I Rst@efllz < Cul(s/) ) Qsf Iz,
and therefore the estimate

o0 ¢ ds
36) [ [ {Rar@ef,Qu0)l =

0 0

_CE
t

s\ ds dt\'/*
() resiz2 %)

«( ffw((-j-)_lﬂe)ucysgl|§%f d—)/

< Clifll=flgll2

A
O
—
ok_‘jﬂ*
£
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follows immediately by Schwarz’s inequality, Littlewood-Paley theory, and
the fact that w satisfies the Dini condition fol w(s)ds/s < o0.
Next, we rewrite S, ; as

(3.7) [QsTQ: — (QT™Q: — (Q:TM°1)Q)] ~ (Q T 1), .

By (2.5), and the definition of Ny, we have the pointwise estimate
QT 1)QFf| < Cur{(s/1) )M (Qe ),
so for this term we have the bound

(39) C [ [ w0 (M@u),1Qul) 2 &
o 0

s t'

and we can proceed as for {3.6).

We turn to the expression in square brackets in (3.7). This term will be
treated by a technical modification of an argument in [CDMS, Lemma 2.3,
the case |z — y| < 4t]. By definition, for n € C§°(—11,11), and 5 = 1 on
(—10,10}, we have

QTL(e) = <¢s(w - )T("(gﬁ”ﬁ)»

+ <T*(ws($ BRLE ”(%) > ’

where the last expression is well defined by (2.7). We write Q.TQ, =

Qs(T1)Q; + Qs (T — T1)Q;. Now, Q4(T — T1)Qy, for fixed s < ¢, has kernel
H(z,y) given by

(3.9) H(z,y)
= (vufo- 22 (Bt -0 - wate - ))

+(ST*(¢a(m— -))), () |t - e - )
= HW(z,y) + B (z,y).

Since s g‘t, H(]')(x,y) is supported in {(z,9) : |z - y| £ ct}, and a grubby
computation involving WBP and the mean value theorem shows that

N E
[H(l)(m,y)‘ < (_‘;_’;) g

if we take § = (n+1+&)/(n+2) < 1for 0 <e < 1. Thus, the operator cor-
responding to H(z, 1) is controlled by (8/t)° times the Hardy-Littlewood

inaxi(mai) function, and therefore this part of S can be handled exactly
ike (3.8).
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Now, the only remaining parts of the expression in square brackets in
(3.7) are Q4(T1)Qy, whose treatment we defer for the moment, and

(3.10) H —(Q.1™Q, - (Q,TM1)Qy),

where we have, by abuse of notation, denoted by H'?) the operator corre-
sponding to H®) (x, y). By (2.7), H® (z,y) is well defined as

I ate =0y dz 1 = n (B2 [t - ) - e - 1,

and we can replace K by K™ without changing the value of the integral.
But this implies that the kernel of the operator in (3.10) is given by

[ tale =2 KMo, “)’?(fs;—q’?') et~ y) — o — 9] do du,
which is bounded by

[ hhle - 2K (zw)

le—u|<i1s® ¢+ ¥

x f [Pe(v — y) — (2 — )| dzdu

s¥4179 4|z —u|<124% 41—
< O(s/t)! gy lle — y| < Ct},

where in the last inequality we have used the size condition (2.4) and the fact
that 14 [lee < Os™™, as well as the mean value theorem. Now, 8 —n{1-0) > 0
for 6 close enough to 1, so we can handle this part of the operator exactly
like the corresponding estimate for H%.

[t now remains only to consider the part of S corresponding to @5(T'1)Q:.
Since 7'l € BMO, it is enough to treat

1/ey L/es ds di
(3.11) [ [ xls<talemal ==,

with b € BMO. To simplify the exposition, we argue formally with €1 =
£9 = 0, and we shall add a brief comment at the end of the proof explaining
how to malke the argument rigorous. We shall see that {3.11) is essentially
ITy of (3.1). We shall show that (3.11) is in fact bounded on L}, w € As,
gince we shall need this result in the sequel. To handle (3.11), we first recall
an observation of Han and Sawyer [HS] that the radial kernel p,(|z|) of the
operator P, = fs°° Q2 dt/t satisfies . :
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(i} lips(lzllleo < C's™,

(ii) suppps C {lz| < 2s}.
The first of these is trivial, gince

fz-ne(""') ‘<c||9|f_,o ,

where § = 9 * 1. The second follows by changing variables:
lie]/s

ps(lz]) = |=z[™" f t'”G( )—: z| ™™ f 9(7")7""‘"1057“.
0

alz]™*

(3.12)

s ()] =

But § is radial, has mean value zero, and is supported in {|z| < 2}, so the
last integral is zero if |z| > 2s. Thus (3.11) equals

st(Qb P2

But this is essentially IT, so by an observation of Journé [J, pp. 85-87], it
is bounded on L%, w € Ay, with an operator norm no larger than C/||b|..
To make the proof rigorous, one would split (3.11) into:

1/e3 1/51 1/52 1/e1
di ds dt d
fx{s<el}f 22y x{61<s}f T

£2

= 11} +

Then (II} f, g} splits into a diﬁerence of two terms of the form

1/52

J s < e H@N)Ped, Qua) =

3]

where = &; or 1/e;. By Schwarz and weighted Littlewood-Paley theory,
and the observation of [J, pp. 85-87], the square of the last expression is
then bounded by

Clgl3apm I [ (NCels < e1}Paf)()*w(z) da,

R'ﬂ-
where N is the nontangential maximal function
NF(DN=)=  sup |y

(va)ile—yl<s

But for o < 3, the reader may readily verify that N(x{s < a}Psf)(z) is
controlled by the maximal function.

To handle IIZ, we write

x{er<s <t < Vet =x{e1 <5< Ve }x{s S ¢} — x{t> 1/e1}].

Calderdn—Zygmund operators 119

Thus,

1/52
(313) (T, = [ xder S5 S1a}(QBPFQu0) 2

1/g2

~ f x{e1 € 8 < 1/e1 H(Qub) Prye, f, Qag)

The second term in (3.13) can be handled exactly like 17}, The first term in
(3.13) is even easier, being bounded in absolute value by

f‘ Qs Psf:ng)ié‘s“

and we repeat our previous argument.

3.2. A short remark on weighted norm inequalifies. As above, to prove
that T is bounded on L2, it will be enough to show that, for f, g € C§°, we
have

R ds dt

(3.14) [ [ s 13Q:TQ1H, @9 5| S Clfl wllgllz,1/w

for all w € Az, where C' depends cn the As constant of w (but not on the
weight w itself). The case p 5 2 follows by the extrapolation theorem for A,
weights (see, e.g., Garefa-Cuerva and Rubio de Francia [GR, Chapter IVY).
Here we are using the notation

1o = ( J 1770)7, and 12 = 1517w < o0}

We have seen that S, (from the splitting of Q,T'Q;, see (3.3)) is con-
trolled by Clw((s/t)'~%) + (s/t)¢] = wo(s/t) times the maximal function,
plus Q,(T1)Q, which gave rise to the error term (3.11). The latter was
shown to be bounded on L2, w € As. Thus, with S defined as in (3.5), we
have (modulo the bounded error termy}

= A ds d
(SEA < [ [ wols/)MQu), 1Qugl) =5
[ D
ds dt
< ff H2,1/w'§s‘?:
o 0

for all w € Ay, where in the last inequality we have used Schwarz and the
weighted norm inequality for M. By Welghted Littlewood-Paley theory and
our previous argument, S is bounded on L2, for all w € Ay, and therefore
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on LB, we A, 1 <p< oo, by extrapolation. The only obstacle, then, to
weighted norm inequalities is R (see (3.4)).
It will now be easy to prove a weighted version of Theorem 3.1.

THrorREM 3.2, Suppose that T and K are as in Theorem 3.1, except

that we impose the sironger smoothness condition (2.8) in place of (2.6).
Suppose alse that

(3.15) | T fll2w + 175 fll2w < Clifll20:
Then T is bounded on LY, w € Ay, 1 < p < o0,

weE Ay,

We remark that (3.15) holds in particular in the case that K(mx,y) <
Clz —y|™", in which case T} is controlled by the maximal function.

Proof of Theorem 3.2. Duoandikoetxea and Rubio de Francia
[DR] have proved weighted norm inequalities by interpolating between crude
weighted estimates and sharper unweighted estimates, and Theorem 3.2 is
based on their idea. In the present situation, by (2.8) we have

(3.16) QT3 fll2 < C27F8)%| flla

and the same for T7. Now, w &€ Ap implies that wht? & A, for some positive
& sufficiently small. Thus, since @, is controlled by the maximal function,
by (3.15) we have

(3.17) £ llz 145

and the same for T3¥. Thus, interpolation with change of measure between
(3.16) and (3.17) yields a weighted version of (3.16) (with a smaller £):

(3.18) 1QaT; fll2w < C(2778)°|| Iz »
and the same for TJ*

The proof of Theorem 3.2 will now be easy. By extrapolation, we may
assume p = 2, and by the comments above, it is encugh to consider the

operator R deﬁned in (8.4). By definition, and the self-adjointness of Qs, we
have

1/ey 1/ea

o) = f f o<ty 3 (QuIiQi, Q) B

2 >gltl~8 8t

By Schwarz and (3. 18) th1s last expression is bounded in absolute value b
a constant times

- ds dt
f f (s/t)t~ ”EHQJHMHQSQHQl/w«-—,

and the desired estimate follows by another application of Schwarz’s inequal-
ity and weighted Littlewood-Paley theory.
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4. Proof of Theorem 1.1: L? and L? bounds for T4. The proof
will be essentially a direct application of Theorems 3.1 and 3.2, except for
an error term which can be controlled by Carleson measure estimates. In the
sequel, we shall agsume that the operator has been truncated; that is, we
take T4 = T4(N, M) = z T , and obtain bounds independent of the
truncation. We remark that for such a truncation, the technical condition
(2.7) holds trivially. We shall leave implicit, the truncation of the sum, except
for those parts of the argument where it plays a role.

We shall need to establish some facts. A crucial one is, of course, the
following

LeEMMA 4.1. T41, T4*1 € BMO.
Proof We consider T41 first. We have
(4.1) TAl( )

- f Z 2o o) o [A) - AG) — VAG) - (o - )],
In polar coordmates, T41(z) equals

oo M
a2 [o0) [ Y e ol - A - o]

gn—1 0 j=N
o M dQ
Jonw)- [ 3 e VA(O:—QH) dn .
gn—l 0 j=N

By an integration by parts in the dp integral, the first term in (4.2} will
exactly cancel the second term except for “boundary” terms

f .Q j‘ ‘Z(w - 99) [2—1\4('0 (2-—

0)+ 2Ny (27N o) dedd.

Now, by the moment condition (1.8), this last expression equals

f ) TA(w)—A(a:—gﬂé))WmI(VA)'EB @~V (2N

(4.3) o)) dedd,

gt 0

plus an analogous term corresponding to 2~ /(27 ), where I = I(z) has
center & and side length 104/72% (or 10y/n 2M for the other term). Since
the expression in the numerator in (4.3) equals Ar(z ) Ar(z — p8), where
Ar(z) = A(z)—m;(VA) x, afamiliar argument involving Lemma 2.2 shows
that (4.3) is bounded by C||2] || VA ~

We now consider T4*1, This is (4.1), except with 2(z) = —2(-g) in
place of §2, and VA(z) in place of VA(y). Furthermore,-by the moment
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condition (1.8),
[ 2(6)pdo =0,

so in polar coordinates T4*1(z) equals the first term in (4.2), except with
2 in place of £2.

To show T4*1 € BMO, it is enough to prove that, for all H! atoms 1),
we have

(4.4) |, T4 )| < Ol 2l VAL

Let +» be supported in the cube with center zy and side length s, with
l¥lloc < 8™ and [¢ = 0. Now let n € C§°[~114/n, 11/}, and suppose
n=1on [—10/n, 10y/n]. Set ¥ (o) = E;iz\r (277 0). We can write

T41a) = [ 80) [ S (01AE) - Ale - eIt~ nle/e) Lo
0

Snml
+ [0 [ ¥
u—ml {
F(z)+ G(z).
By the moment condition (1.8),

48 Flo)= [ 36) [ 3 e o4 )
4]

Snwl

where the sum runs over j such that 2 > 2/ > max(2V, 10/ns), and
where

A(z) - Az — oB)ln(e/s) ij%d@

—Ay(z — oB)][L-n(e/s)] %de,

A;(z) = A(z) — my, (VA) -z,
and [; is a cube with center 2 and side length 10 27. Since v has mean
value zero, we have

(46) W, F) = [ $(@)F(z) - Flzo) dz.
By Lemma 2.2, we have, for ¢ ~ 27 and |z — zy| < /rs < 29/10,
- 45(2) — Aj (o) | + |4 (z — ) — Az(zo — ob)]
1 /4
§O|m—scg|(—~—----—— f |VA;;IQ)
|z~ zo|"
I (wo)
< Clo ~ g ™"/927™/4||V A < Cs*~™/220%/9)| 7 4],

A routige computation now yields the desired estimate (4.4) for (1, F').
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We now turn to Gz}, which, after integrating by parts in the dg integral,
equals

ff?f?)f’ f—m—vjl ; Qe)dﬂw‘(@)ﬂ(f) dodh

+ [ 22) f ) gyt (9)%77’(%) dodf =

gn- 1
plus “boundary” terms which arise from differentiating %/, and which can
be handled exactly like the corresponding terms for 741 (see (4.3)}.
We claim that, for z € supp 1, we have

(47) |Ga(2)] < Cll2] VA,

which yields the desired estimate (4.4) for |{s, G3)|. In fact, by definition,

n'(o/s) is supported on the set {10,/ns < g < 114/ns}. Furthermore by the
moment condition (1.8), we can replace A(z) ~ A(z — pf) by

(4.8) Alz) — Alz ~ 08) = My (VA) - 08 = Ap(x) — Ar(z — 08),
where I = I{zo) has side length 204/ns and center w4, and A7(z) = A(z) —
mi{VA)-z. Now 2 is the center of the cube of side length s which supports
1, so for © € supp v, (4.7) follows by a routine application of Lemma 2.2.

To handle G (), we return to rectangular coordinates, and write Gy ()
equals

5

Gi(z) + Ga(z),

(4g) [EED 27V gamva))

B3l ol
< (e— (22 ) ay,

for the same I as in (4.8), where the presence of m;(VA) is permitted by
the moment condition (1.8). For x € supp+, we can multiply the integrand
in (4.9) by x:{¥), so the estimate (4.4) follows from Schwarz and the well
known L% houndedness of the (truncated) convolution singular integral with

kernel
mf?( ) i

Next we prove a stronger version of (2.5).
LeMMa 4.2. (i} |Q.T{ 1]l < Cl2JL||VA[L(2775)%, 27 > 5.
(1) QT oo < CIR2IAVA[(2775), 27 2 5.

Sketch of proof. To treat QSCI’Jﬁ"‘l(zg) we write T{*1(z} in polar
coordinates and integrate by parts exactly as inithe proof of Lemma 4.1.
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The result is an expression exactly like (4.3), with N = j, and where [ is &
cube with center zg and side length 5./n27. Since f ¢ = 0, we have

QsT 1 (zg) = f (o — 2)[ T 1(z) - T{41(20)] de,

and an application of Lemma 2.2 (see the argument following (4.6)) con-
cludes the proof of (i). The details are left to the reader. To prove (i), we
consider what is essentially a single j term in (4.3). The details are again
left to the reader (see also (4.6) and the subsequent argument).

Next, we prove:
LEMMA 4.3, T4 satisfies WBP.

The proof follows a procedure with which the reader will by now be
familiar. Suppose 71,1z € C§° have support in the ball {z : [z — z¢| < r}.
As usual, we may replace A by Aj(z) = A(z) — my(VA) -z, where I has
center To and side length 20+/n7. As in the proof of Lemma 4.1, we change
to polar coordinates and integrate by parts, so that T4 ng(x) equals

(4100 - [ @0 f AI(”‘")“‘i’(m_gg)@%(g)Vnz(wwgﬂ)dmw
Sn--fl

plus “boundary” terms

(411) [ o9 [ Arlz) = i"(m =90 (o~ o)
S‘n--l

x 27Me (27 Me) + 27N (27 Vo)l dedé .
For |x — zg| < r, by Lemma 2.2 we see that (4.10) is bounded by

Cr
Sl VAVl [ (r/0)*de < CI2ILI VA Vnlloor
0

since ¢ > n, and integration against ny yields the desired estimate for this
term.
" Next, (4.11) equals (for |z — 2o/ £ 1)

(412) [ 20) j« Ar(z) - fzf(x — o)

X [ma(z — 08) = m(2)1(27 V' (27 g)) dodf

Cr
413)  + [o@ [ A"(m)_‘zf(m’QG)m(m)(z-Ncp’(z“”g))dacw,
gn-1 0

gn-1 4]

plus analegous terms with M in place of N, which may be handled by the
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same arguments. By Lemma 2.2,

[A1(2) — Ar{z — 08)| < C(r/ o)™ 7| V A,
80 by the mean value theorem, (4.12) is no larger than

Cr
(4.14) CI2INVALIVmle [ (r/0)*/9027 N2V ) do.
0

But g > n, and 2% < Or (or the integral is zero}, so the integral in (4.14)
is bounded by

OO )y < O,

and L.'h.e desired estimate follows. Finally, in (4.13) we may use the moment
condition (1.8) to replace A; by Ay, where J has center z and side length

10v/n2". By Lemma 2.2, (4.13) is then no lar !
, {2 ger than C'lo’||1]£2 co
X |[VA|l., and WBP follows. (2]

We now show that 74 satisfies the weighted estimates of Theorem 3.2 if
2 € L, 'We have

LEMMA 4.4. If 2 € L™, then for ol w € A,,
1T fllzw < CIVAL] 2liool £z,

Proof. The approach will be familiar. Let I(z) be the cube with center

# and side length 104/n27. As usual we may replace 4 by Ar(e), and by
Lemma 2.2,

2z~ ;
(415) [ S e B (o)~ Al — ) £(6) dy
< CI VAo M f(2)

so the desired estimate follows for this part of the operator.
It remains to consider

2w~ .
S B9 AG) = (VAT (2 = Dol — ) )y,

which is bounded in absolute value by

1 , 1/0
C'Ilﬂlim(ﬁif(ifl'"))”’"(m [ 1VAQ) - mi(vA)? dy) |
I

We may choose r so close to 1 that w € Ay/,.. This proves the lemma.

We are now in a position to finish the proof of Theorem 1.1. The only
thing that prevents us from directly applying Theorems 3.1 and 3.2 is that
T;‘l need not satisfy (2.8), but we shall see that the resulting ervor term
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can be controlled by Carleson measure estimates. We will show that (with
2] =1=[VA[.)

Lea 1fe2 ds dt

(4.16) f f (@IT4Q%, f) — — < Clifl=llgl2,

or that the left 31de of (4.16) is bounded by C||f[l2,w/lgliz.1jw, for all w &
Ag, when ||2]loo = 1. We split the left side of (4.16) so that we consider
separately the cases £ < s and t > s. We have shown in Lemma 2.1 and in
Section 4 that T4 satisfies all the required estimates to carry out the proofs
of the theorems in the case ¢ < s (notice that in (4.18), we have reversed the
order of the Q; and @, operators). Furthermore, concerning the case s <1,
we have also verified in Section 4 that all the conditions hold which are used
to treat (in the notation of (3.5))

/1 /ey s dt
Stoy= [ [ x{s <l stQtf:ng> 7

&1 Eaq
where

S01 = QT4 Qi - Qu

T
27 > g0 gl=0
In the last expression, and in the sequel, we implicitly define Tf‘* = 0 for
j> M or j < N.This is done to simplify the notation.

In fact, the only conditions used in Theorems 3.1 and 3.2 which we have
not established are (2.8) for TjA*, and its weighted equivalent (3.18). Thus
we need consider only that part of the cperator whose treatment involved
the use of those conditions, namely R of (3.4); i.e. we must show

(Rf.9)
1/81 Lea ds dt
(4.17) = f f x{s £t} Z (QaT{A‘*fo',Qs.g)TT
PR 2 > gftl-0 )
<{Sfplel al=L1<r <o
= L O llewligllza/w i [ 2o =1,

For fixed j, we again decompose f = fi a.e., where f; is the restriction of
ftoa dyadic cube I; with side length 27,
With 2(4) = —2{—6), and fixed, we write the kernel of T as

R t) = 1 07y — ) AGy) = AL) = g (V) (4 )
2y~ v)

+ ey — u)limg,(VA4) - VAW (v~ v)
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— (D 2
=k (y,u) + kD (),

= 1000ni;. Then k M g just the analogue of U in the proof of

Lemma 2.1 but with 2 in place of §2, so it satisfies {2.8) and (for bounded

2) condition (8.18). The correspondmg part of {4.17) therefore satisfies the
desired estimate.

We now turn to that part of (4.17) corresponding to k
consider the action of ), on this kernel. We have

(418) [ ¢y(@ - p)k (y,u) dy
= [ bulz - y)lm;, (VA) - VAQ)] - &5 (y — ) dy = Lo, ),

1= 220 (3).

We let gj denote the convolution operator f — E::.,' * f. We write
(4.19) L{z,u)
= [ ¥elo = 0)lmy (VA) - VAW Ei(y — ) ~ Eilo - w)ldy

+ Qs (VA) @)k (x — u) = Ly(z,u) + La(z,u),

where in Ly we have used the fact that Q,1 = 0. We will show that the usual
program of Theorems 3.1 and 3.2 can be carried out for Ly, and that L
can be controlled by Carleson measure estimates. To treat L,, it is enough
to show that the operator

T f(z f Li(z,u)f(u) du

where f

. We need to

where

satisfies

(4.20) (Tiflla < C77s)F(Ifl2, s 2,

anc

(4.21) | Ty fll2w < Ollfllzw, weAs, if]2o=1.

The proof of {4.21) is very simpie. We have Ly = L — Ly. But Lj equals
a bounded function times the kernel of the operator §; which is controlled
by the maximal function. To treat L, we apply Hélder’s inequality in the dy
integral, along with the John~Nirenberg inequality, to obtain an operator
controlled by (M(M f)L=e)t/(+e),

To finish our treatment of Ly, we need to prove (4.20), By dilatien in-
variance, we may take 5 = 0. As in the proof of Lemma 2.1, we may assume
that f is supported in a unit cube I. The bound will held more generally
with VA replaced by an arbitrary BMO function &, and we write

mz(b) — bly) = +mz(b) —my, (8) + my, () — b(y},
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where I, has center = and side length /ns, and T is concentric with I and
has side length 1000n. In place of L; we then consider

[m(b) = mr,(0)] [ we(z — ) lkoly — w) — kole — )] dy
+ [ alz - ), (b) ~ b [Roly — u) — kol(z — u)] dy
= hy (i, u) + hoplx, u).
Now, in fy, the kg(z — u) term is not there, since [ 1 = 0. Thus,
[ hale,w) f(w) du = [mg(b) — my, (0))QaS0f ().
But Qs 55 fllz < Osennwfuz (by (2.9)) and
mis) = 1, (6)] < Clpl Tog -

The latter is a well known property of BMO. Then (4.20) follows for A;.
To finish the proof of (4.20), we must show

f | f hg :t: u
By the change of variables y — v + z, we have
- [ mzufwdu= [ $.@)by+z)—my, G)Foxs (@+y)~Fox f ()] dy.

Now, by Schwarz, the square of the absolute value of this last expression is
no larger than

(4.22)
@) by +a) s, P dy) | [ [a(w)llFor Foty) ~Fox f(z) dy]

The first factor in (4.22) is no larger than ||b]|2. Thus, by Fubini’s theorem,
it is enough to show that

u) du T < Cllelzs®l fllz -

(4.23) sup f ko * flz+y)~ ko*f (z)* dz < Cs°|| 2.
|yl<s<l
By Plancherel, the left hand side of (4.23) equals
(4.24) sup [ [ — 112[ M) 2(FLE) P e
by <s<l
But a result of [DR, Section 4] shows that
(4.25) R (6) < €)™, forsomea, 0 <o < 1.
Thus (4.24) is dominated by
o [l - 112“ 2
sup Cs? e dag,
o2 O ) g o e

and the desired estimate follows.
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To finish the proof of Theorem 1.1, we need only consider the part of
(4.17) corresponding to La(z,u) in (4. 19) We need to prove that

1/!:1 1/82
wn) [ [t ¥ Qv 5000 L2
g1 £g 2} >gb4l-0 t
l<r<oo,

< {OHVA”*”‘QHer|2“9Hz=
= LOIVARN RNl f 21920 /w0 7= 00, w e A5

The left hand side of (4.26) equals

l./E[l/E‘g d dt
@2 | [ [ xls<0@Quva) - 90210 =2
| AL ds dt
[ [dsstt Y Quvay- SJQtf:ng)—_
€1 g3 2jssetl—6

(U f.9) — (V£

where S = 357 S; (here we continue to use the convention that gj =0

for < N or j > M). We recall that SZ is a convolution operator which
annihilates constants, so the kernel of 3 o, . 4,125 §th is no larger than

> [ (e — y)llwuy — w) — (e — w)| dy
i gl -8
2 x| ~u| < 2t}

<OVl S =

2F Laftl-¢
= Cl121(s/t)°t " xf{lz — u| < 2},

where we have used the mean value theorem, that Ej (z ~y) is supported in
{292 < |@y| €27}, and that s < £. Thus, since [|Q3(VA)|ew < C| VA,

1

(V1,6)) < Cl2 1]V Al f J o/ m(@up) @uly 22 &
0

< 2 |vA]. HszwHQHE 1w  WE Ay,

where the last inequality follows from Schwarz, weighted Littlewood-Paley
theory, and the weighted norm inequality for the maximal function. We turn
to U in (4.27). Now § is bounded on L? by a classical result of Calderén--
Zygmund [CZ}, and if 12 is bounded, then § is bounded on L, we Ay, by
[DR, Carollary 4.2]. Since 5, being a convolution operator, commutes with
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@, it is enough that

J

£1

1/5‘1 1/59

ds d
f x{s ﬁ t}(QE’(v‘A‘)QE-f’ ng> _;' —;'

P]

< CIVA[llFlowllglz e, w e Az

But we have already proved this fact in Section 3-see (3.11) with b =

VA e BMO.
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