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Compactness of Hardy-type integral operators
in weighted Banach function spaces
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Abstract. We consider a generalized Hardy operator T f(z) = ¢#{z) f; fu. For T to
be hounded from a weighted Banach function space (X, v) into another, (¥, w), it is always
necessary that the Muckenhoupt-type condition B = suppy.q xR0 1¥ X0, m 27 <
oo be satisfied. We say that (X,Y) helongs to the category M(T) if this Muckenhoupt
condition is also sufficient. We prove & general criterion for compactness of T from X to
Y when (X, ¥) € M{T") and give an estimate for the distance of T from the finite rank

operators, We apply the results to Lorents spaces and characterize pairs of Lorentz spaces
which fall inte M7,

1. Introduction. Given two weighted Banach function spaces X =
(X,v), ¥ = (Y,w), and an extra pair of weights (¢,), we study bound-
edness and compactness of the generalized Hardy operator Tyyf(z) =
d(x) f; w(t) f(t)v(t) dt considered as an operator from X to Y. If A and ¥
are weighted Lebesgue spaces, say, X = L7(v) and ¥ = LP(w), it is enough
to consider only the usual Hardy operator H f(z) = fox f(¢) dt. For this case,
the theory is complete. For example, if 1 < p < r < co, we have the result of
Tomaselii [TO], Talenti [T], Muckenhoupt [MU], Bradley [B], Kokilashvili
K] and Maz'ya [M] which states that there is a constant C' such that

{1.1) NH fllpw S Cllfllpp  forall feX
if and only if
o Fid

(1.2) sup B{R) = sup ( j "‘”)”p( f
A

oL/
Tl ) =1 < oo
Rl R0 0

(' =p/(r-1)).
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It is easy to observe that (1.2) is always necessary for (1.1), but it is not
always sufficient. More precisely, {1.2) implies (1.1} if and only if | < p <
r < oo (ef. [M] and [OK]).

These results were extended by Sawyer [S] to the context of Lorents
spaces. He proved that an analogue of the condition (1.2) is sufficient for
boundedness of H from L™*(v) to LP9(w) if and only if ¢ > max(r, s).

It is easy to formulate an analogue of (1.2) suitable for a conple of Ba-
nach function spaces X, ¥ and the operator Ty, and to observe that this
condition is again always necessary for Tyy : (X,v) — (Y, w) (cf. [BER]), We
introduce a category M (T, ) of conples of spaces for which that condition
is sufficient. In our main result we establish a general criterion for T4y to
be compact from X to ¥ when (X,Y) € M(Tyy), and in the non-compact
case give upper and lower bounds for the distance of Ty from the subgpace
of finite rank maps from X to Y.

We apply these general results to the particular case of Lorentz spaces
and characterize those pairs of Lorentz spaces which fall into M(Tpy). Tt
turns out that this class is essentially smaller than AM{H); In particular,
the parameter p, which played no role in Sawyer’s above-mentioned result,
becomes important,

Section 2 contains the statement of the main results in a general Ba-
nach function space setting. The material on Lorentz spaces is presented in
Section 3, all the proofs being given in Section 4.

We are very grateful to W. D. Evans and D. J. Harris for interesting
discussions of this material. In particular, the proof of the sufficiency part
of Lemma 2 is based on an idea due to D, J. Harris,

2. Compactness of operators in Banach function spaces. Let v,
w, ¢, ¥ be weights, that is, Lebesgue-measurabie functions, positive and
finite a.e. on (0, 00). Our concept of Banach function spaces (BFS) follows
Luxemburg ([LUX]) but we restrict ourselves to weighted BFS only. We say
that a real normed linear space X = (X, v) is a BFS if

(P1)  the norm ||f|ix = {|f||x.» i5 defined for every Lebesgue-measurable
function f, and f € X if and only if ||f]lx < oo; ||f]|x = 0 if and
only if f =0 a.e,;

(P2)  [Ifllx =1l [f] |lx for all f € X;

(P3) #0<f<gae, then |fllx < |gllx;

(P4)  #0< fu1f ae., then |[fnllx T1fllx;

(P5) if E is a meagurable subset of (0, 00) such that v{B) = [pv < oo,

then Ixelx < oo (Where xg s the characteristic function of the
. set E);
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(P6) for all measurable £ C (0,00) with v(F} < 0o there is a constant
Cp > 0 such that [p, fo < Cgl/f]|x for all f € X.

Given a BES X = (X, v), its associate space X' = (X',v) given by

oo
X' = (X v} = {f : f is meagurable azd f fov < oo for every g € X}
0

and encdowed with Lhe associate norm

Il e =2 sup{ [ fqu:
0

,_1}

is also a Banach fuuction space in the sense of (P1)-(P6).
The spaces X, X' are complete normed linear spaces and X' = X. The
Hélder inequality

[ 7gv < Ifilxlgllx
0

holds for all f € X and g € X’ and is sharp. {For more details we refer the
reader to [LUX] or [BS].)

Henceforth we shall work with two weighted BFS X = (X,v) and ¥ =
(Y, w).

Define

Tf() = Tyy f(2) = f w(t)f

We shall write 7" rather than T4y when no confusion can arise.

The operator Ty is a generalization of the usual Hardy operator Hf ()
= fo (note that H = Ty 1), The weight v appears in the definition of
Ty for convenience only; the main reason is that then the associate operator

Ty given by

T'g() = Thyg(z) f G(t)g(tyw(t) dt
sutisfies .
[ THagewE) de= [ T'g(@)f(z)v(e)do.

By a simple exercise, this shows that

(i) T is bounded from X to Y if and only if T’ is bounded from Y’

to X' (with the same norm as T'), ’ ’
(ii) T is compact from X to Y if and only if T is compact from ¥
to0 X', .
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(iii) 2a(T) < a(T') < 2a(T") where
a(T) = inf{||T — F|| : F has finite rank}
{ct. [EE]).

We start with proving a universal necessary condition,
Suppose that the operator T' is bounded from X to Y, i.e. there exists a
constant ¢ > 0 such that for all f € X we have

(2.1) I7fly < ClIf
If||filx £ Land R € (0, 00) we obtain

X

C2Clifllx 2

xR0 v

Taking the supremum over all such f and R we obtain

(2.2) B =supB(R) = sup |[9x(r,00)ll¥ [¥x(0.m) | £ C < 00.
R>0 R>0

We observe that similar results hold when we replace ¢ and ¥ by ox:r
and 1x;, respectively, where I is any subinterval of (0, 0o).

With later applications to compactness in mind (see {4.8) and (4.9) be-
low) this leads us to formulate

Lemma 1. Let I be any subinterval of (0,00). If the operator

@) [ wenatn oo
0

is bounded from (X,v) to (Y, w), then

Trflz) =

(2.2)* By = sup Br{ ) = sup ||$x1x(r,00)||¥ 1¥xrx 0, | x < 00.
Rel Rer
Moreover, Br < |Tr||x—v-

The condition (2.2)* is thus always necessary for (2.1), but it need not
always be sufficient (for example if X = L"(v), ¥ = LP(w), and r > p,
see [OK]). The family of pairs of Banach function spaces (X,Y) therefore
:Elaturally splits into two parts according to whether or not (2.2)* suffices for

2.1).

DEFINITION. We say that a pair of Banach function spaces (X,Y) be-
longs to the category M (Tyy), and write (X,¥) € M(Tyy), if for cach
subinterval I of (0, cc) the condition (2.2)* guarantees the boundedness of
Tr: (X 'U) (Y ) and
(2.3) Br < |Trlix~v < KBy,

where K > 1is a constant independent of v, w, ¢, ¥, and I.
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Exampres. (i) ([OK]) (L¥(v), L%(w)) € M(H) if and only if 1 < p <
g5 00;

(i) ([S]) (L™ (v), LP4{w)) € M(H) if and only if ¢ > max(r, 8);

(iii) ([LP]) (X, L™) € M(H) for every X.

Note that in [S] and [LP] the verification of the above conditions is carried
out only when [ = (0, o0). However, the methods of proof work equally well
for arbitrary intervals 7.

TIu onr maiu result we characterize the compactness of Tyy from X to Y
provided that (X,¥) ¢ M(Tyy).

ToworeM 1, Let (X,Y) € M(Tyy). Then Tyy iz compact from X to ¥V
if and only if the following two statements are satisfied:

(1} we have both

(24) Jm sup [éxara v [¥xomllx =0
and
(2.5) pm sun 90X a.0oly X, myllx = 0;

(il) for every « € (0, 00) the following two alternatives hold:
(2.6) i éx(amlly =0 or lim jldbx(eellx =0,
and
(2.7) Jim ([ @x(zally =0 or - Tim_[ldxeulle =0

Remarks. (a) The statement (i) is quite natural and appears in the
literature in various modifications (see e.g. [EEH]). On the other hand, it is
often replaced by the stronger condition

(2.8) i B(R) = lm B(R)=0.

It is easy to see that this replacement does not affect the theorem as long
as X' and Y are spaces with absolutely continuous norms (f has absolutely
continuous (AC) norm in X il || fxg,||x - 0 for cach sequence of measur-
able sets such that £, | 0, and we say that X is a space with AC norm if
every f € X bas AU norm in X), However, in a general context, our method
fails to prove necessity of (2.8) and we do not know whether or not (2.8) is
equivalent to (2.4) and (2.5).

(b) If X’ or ¥ is a space with absolutely continuous norm (for exarnple, if
X orY is reflexive), then the statement (ii) of Theorem 1 becomes redundant
ag it is antomatically satisfied. For example, if X and Y are Lebesgue spaces,

we obtain known results as a particular case of Theorem 1.
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(¢) Another corollary of Theorem 1 is the result of Lai and Pick [LP]
which states that H is compact from a BFS (X, v) to L™ if and only if the
fanction 1/v has a continuous norm in {X', v} (f has continuous norm in X
i limp oo || FX () | X = liMnmoo 1% (.0l = 0 for every e € [0,00), 4 €
(0,00], &n | & and y, T 3). To see this observe that since ¥ = L™, a space
in which no function except that which is identically zero has continuous
norm, the second alternatives in (2.6) and (2.7) should be satisfied. This
fact together with (2.4) and (2.5), which amount to continuity of the norm
of 1/v at the endpoints of (0, 00), are equivalent to the condition of Lai and
Pick.

(d) The alternatives in (ii) of Theorem 1 involve certain statements about
the continuity of the norm of the weights in question. It has heen known
for years that compactnéss of the Hardy-type operators in Banach function
spaces is somehow connected with {absolute) continuity of the vorm. We
refer to the classical paper {LZ], and also to the recent result [LP]. In [LZ]
the assumption is made that the image of T lies in that part of the target
space which has absolutely continuous norm, and the condition is expressed
in terms of uniform absolute continuity. We need less here and also we do
not make that assumption, but on the other hand our result does not apply
to a class of integral operators as general ag in [LZ], so our results overlap
somehow.

(e) The connection between compactness and absolute continuity of the
norm was also pointed out in [BER]. The author states (without a proof)
that if X is an £-concave BFS, and Y is a proper f-convex BFS for some se-
quence space £, then H is compact from X to Y if and only if (2.4) and (2.5)
hold, This statement is, however, wrong: to see this, take X and ¥ normed by

171 = 1Fx,u,00 2 + ([ Fxe2yll L
I£ly = I x@yu@enllez + 1 Fxa.z o

and take any pair of weights v, w for which H is compact from L*(v) to
L%(w). Then X is an £2-concave BFS, Y is a proper and ¢*-convex BFS, but
H is not compact as for a € [1,2] neither (2.6) nor (2.7) is satisfied.

The proof of Theorem 1 has quite a standard form: the operator Tyy is
written as a sum of several operators, two of which act near the endpoints
and are thus controlled by (2.4) and (2.5), and an “inner” remainder opera-
tor, which is compact if and only if (2.6) and (2.7) hold. This result concern-
ing the remainder operator is new and a little surprising. In fact, it is a key
to Theorem 1 and is formulated separately, being of independent interest.

LEMMA 2. Leta,b € (0,00), with a < b, be such that l|dx (ap |y = O <
oo and |[¥X @ lix = C2 < 00. The operator Ty defined by
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11

T () = X (@96(0) [ w0 F(2o(t) e

is compact from X 1o Y if and only if (2.6) holds for every o € [a,b) and
(2.7) holds for cvery o € (a, b).

In the non-compact case it is helpful to estimate the distance of an
operator from the compact (or finite rank) operators. We have

THEOREM 2. Suppose that the set of measurable functions with compact
support in (00} is dense in Y orin X', Let (X, V) € M(Tyy), and let the
conditions (2.6} and (2.7) be satisfied. Put

gy l_im sup | dx(r,a 'y [9x0,mll
asn U (o Rerg

J.n==bl_im SD [ éX(R.o0) Iy [[¥X(0,5) | x5
"0 b R oo

and J = Jr, + Ji. Then
I
where K 13 the constant from (2.3),

Remark, The set of measurable functions with compact support is
dense in Y (or X') for example if ¥ (or X’) is a space with absolutely
continuous norm (in particular, if ¥ or X is reflexive). In this case {2.6) and
(2.7) are automatically satisfied. (See [BS] for details.)

3. Lorentz spaces—examples. We begin with the definition of the
weighted Lorentz space LP?(w).

If f is a measurable function defined on a measure space ((0, 00), wdz),
the non-increasing rearrangement f of f with respect to wdz is given by

foly s=inf{A >0 w({z>0:|f{z)] > A}) <t}
(we recall that w(E) = [, w dr).
For p € (0,00) and g € (0,00] the Lorentz space L™9(w) consists of all
fanctions f satisfying || f|p.gw < 00, where
L/q

[ f %t”’”’”lf:,j(t)‘f dt for g € (0,00),
0 - .

BUPys tl/p.f:: (t)

Note that || flla.pw = || lpaw = (fom | "1 dz)/?, so we can also consider the
space Lo (1) as the space L®°(w) = L% (|| f|jre = €858UP e (0,00) |f(z)])-

The Lorentz space LP%(w) is a BFS if and only f p = ¢ = 1, or p =
¢ =oc,0rp € (l,00) and ¢ € [L,p]. If 1 < p < ¢ & oo then (3.1) is

ip»'{:‘u’ =

RV Vi

for g = co.
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only a quasinorm, but LP4(w) is then a BFS with respect to another norm,
equivalent to (3.1) (see [H] or [BS] for details).

Applying the change of variable ¢ = w({z > 0 : |[f(z)] > A}} to the
right-hand side of (3.1) and integrating by parts we obtain ([H])

(3.2)
[ [ oo tutie> 0115 > mrar] " for g€ (0,00),
¥]

supyso dw({z > 0: |f(z)| > A})M?

“fl]P’q{w =
for ¢ = oo

First we determine which pairs of Lorentz spaces X = L"'(v) and ¥ =
LP9(y) fall into the category M(Tyy), where

r=s=1 orr=s=o00, orr € (1,00) and s € [1, 00],
(3.3) and
p=g=1, or p=g =00, orpE(l,oo)anqu{l‘,oo],

Let us recall again Sawyer’s result mentioned above as Example (i), It
shows that as far as H is concerned, the parameter p plays no part in the
problem whether or not (L™ {v), L»4(w)) falls into M(H). This is a bit
surprising since » realizes the Boyd index of LP9(w). However, our next
result shows that it is no longer true when we switch to general operators
Ty

The result may be summarized as follows,

THEOREM 3. Let p, ¢, r, s satisfy the condition (3.3). Put X = L™ (v},
Y = LPY(w) and suppose that one of the following four alternatives is sat-
isfied:
(i) max(r,s) < min(p,q), or
(3.4) (i) ¢ =1 and max(r,8) < g, or
(iil) ¢ = 1 and ¢ < min(p,q), or
(ivi¢g=v=1ands<q.

Then (X,Y) = M(Tgy) with K = 4. Conversely, if (3.4) is not valid, then
there exist functions ¢, 4, v and w so that (X, V) & M(Tyy).

As a consequence of Theorems 1-3 we obtain

THEOREM 4. Suppose that the parameters p, g, v, s and functions ¢, 9
satisfy the conditions (3.3) and (3.4). Then the operator T = Ty is compact
from L™ (w) to LP9(w) if and only if
(35) B=supBR = su o0 fogty KOO

sup (R) sup 18X (R,00) lp.g00 190, R) 1,57 0 ;

and one of the following alternatives holds:
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(i) g <o0ors>1, and

i, sup [éX(za

,w”@bx 0,R) Hr 8 O
R VS

3.6
0 tios sup x00 =0
b0 hat R oo
or
(ii) ¢ = 00, § = 1 und either p % co orr # 1; moreover, (3.6) holds and

for each o & (0,
(8.7} lim |[|¢
ey ©

o) we have

or lim “’IJJX(Q,E) Hr',oo,v =0,
a—rcrt
and

(3.8) lim [i¢hx w=0 or

lim“ wa(xja)ur’,oo,u =0.
"=

Remarks. (a) fp = g= 1 orp € {1,00) and ¢ € [1,00}, then as
LP(w) has absolutely continuous norm (see [BS]) the conditions (2.6), (2.7)
are satisfled if ¢ < co oxr 8 > L :

(b) As L™ has no non-trivial function with continuous norm, the oper-
ator Ty ¢ L (v) = L% (w) cannot be compact for any choice of weights.

(¢) Using the inequalities

H ’ Hpm W ” ) pr,w = H'“pw

and | ||r,00,0 S r > 1, and the fact that L?(w) and L™ (v)
have absclutely contmuous norm, we see that (3.7) and (3.8) are satisfied if
pell (w),p<oc,oryg & Lr (v), r > 1.

(d) The condition (3.7) or (3.8) is not always satisfied. To see this take
a=1,putv=mw=1,and ¢(z) = 11— z"?, ¢z} = [L —2|"*/" ina
neighbourhood of 1.

Using the fact that a BFS which has absolutely continuous norm contains
a dense subset of functions with compact support we find, as a consequence
of (i), the previous Remarks and Theorem 2,

THEOREM B. Suppose that the parameters p, g, 7, 8 and functions ¢, v,
v, w satisfy the conditions (3.3)-(8.6), and ¢ < oo or s > 1. Then

giJ < a(Typ) 47,
with J from Theorem 2 and with X = L™*(v) end ¥ = L»(w).

4. Proofs ‘ '
Proof of Lemma 2. Sufficiency. Given £ > 0, we associate every
o € [a,b] with ¢, d, ¢ < o < d, such that

(4.1) léxeally <€ or oxiemlx <&
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and
(4.2) l¢x(aaqily <€ or [[¥x@manlx <&

with the usual modification if &« = o or & == b. Then the union of the
(c,d)’s taken over all & € [a,b] is an open covering of [a,b]. Choose a finite
subcovering {(c;, d:)} with corresponding interior points a;. Obviously the
points ¢;, a; and d; divide [a, ] inte a finite number of closed intervals, say

I, i=1,...,N, with pairwise disjoint interiors and on each I; we have
(4.3) léxnlly <& or |loxlx <e¢.
Put I; = [B;-1, B;] where Sy = a and By = b. Define
Bi-1
Sif(z) = xi,(= f wfv, j=1,...,N, Sf(z Z Sif

=1
Obviously, S is a finite rank opera,tor. We have

Z xy (z)d

Hence, by definition of the operator norm,

|Top—S)x—v < sup sup Z S #(@)e(

IFlx <1 “9”1" 1.5 I

@) [ ) Fehie)

Bi-1

(4.4) T f(z

‘c)clm-fw(t)f(t)'u(t) dt.
L

Now, let Ay = {j: |léxy; Iy < e} and Ay ={j : |¥xr, | x < e} Then

(45) sup  sup Z fqﬁgw fwf'u<a sup Z f:,bfu

<
Iflx< Lnguwﬂj% i IFlx =1 jeq, 1,

< elPxianllx < eCa.
Similarly,

(4.6) = sup sup
“.f”x<l\|g\|y.~<1

Since 4; U Ay = {1,...

> S dgu- f¢fﬂ<€|F¢X(a nlly < eCy.

jedqs I
, N}, we obtain
[Tap = 8| x v < e(Ch+Cy).

As ¢ was independent of o, b, we see that Ty is a limit of finite rank oper-
ators, and therefore compact.

Necessity. Assume that (2.6) does not hold, i.e. there are a € [a,d) and
g > 0 such that

J'

[#X(amm)lly 2 € and |lxiar,)lx: > &
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for a sequence I, | & a8 n — oco. By the converse of Hélder's inequality,
given v € (0, 1), there exist functions £y, g., supported on la, R.], such that
[ fullx < 1, llgnliy: <1, and

Ry Ry
!] 'f/).fn'“ > ’YH":‘[)X(&.R") ”X’: f qbgnw = "/H@L'X(W,Rn) ”Y .
o o

By the continnity of the integral, there exist 3, € (o,
im Ry
[tz Pl [ ¢gaw 24 éxanlly
[“r” ﬁn
Put Fry = faX(a, 1, Now let m, k, n be such that Ry, < B, < Ri < fn.
Then
1T Eors whully 2 HX (B Ri) (Top Frn — awb ) ||y

”)fW (Bun ) (B ()0 t)dt“

R,,) such that

= “X ﬁﬂe:RM)

= wamv xipn0 ¥ 2 ( fmwfm”) ( f o)
B fm P

= vie? > 0.

Hence, 7%, takes the bounded set {F,} te a set from which no convergent
subsequence can be chosen. Therefore, T,y is not compact.

We have proved the necessity of (2.6). The necessity of (2.7) can be
obtained in a similar way using the fact that Ty is compact if and only if
(Tws)' is compact. It is left to the reader. w

Proof of Theorem 1. Sufficiency. For 0 < a < b < oo write ¢, =
(]5)\‘ 0,a)r gbub ¢7)€ (a, b} qbb == @X(b o) and do the same for TP Put 7, = Td’a’%"a!
= Tp,p, and {(as above) Ty = T%w,ab Then
(4-7) T =Ty T+ Top + (T:#ubwa + Tq'JWJu + T¢b“{”ab) .

Each of the three operators in brackets is ope-dimensional and therefore has
no role for the purposes of Theorem 1. By (2.2) we have ||¢x(aplly < oo
and Yy mlly < oo, By Lemma 2, (ii) is equivalent to the compactness

[} T,J,h.
Let & = 0. Using (2.3) we obtain

(4.8) 1Toll € K sup |dxerelvil¥xorlx
R&(0,a)

and

{4.9) 1Tyl € K sup  |#x(r,00) ¥ [[¥x(s,m) 1%
Re(boo) o
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By (2.4) and (2.5) there exist a,b, with 0 < a < b < oo, such that ||Ti,[| <e
and {|T}|| < . By Lemma 2 and (ii), the operator Ty is compact. Hence T
is compact, as it i5 a limit of compact operators.

Necessity, As for necessity of (2.4), suppose the contrary. Then, given
v € (0,1), there are ap — Oy, Ry € (0,a,), some & > 0, and functions f,,
with || fullx € 1, such that

R,
[ wfar = vxoralx and 98X, anliy [¥x0R0 [ x 2 €.

0
By continuity of the integral, there are 8,, € (0, R,,) such that

B
[ ofav 2 Plexory | x
Br

Set Fy, = fnX(a,,r,)- Then for m and n such that a., < 4, we have

“TFm - TFTL”Y Z ”X(Rmxﬂ'm)(T'Fm - TFW’)HY
R
= %R am) TEmlly = f Lm0 - 16X (R vam) 1Y
ﬁ'ﬂl
2 76100, R |20 [ 9X( B o v 2 ¥PE > 0,
and thus T' is not compact, Necessity of (2.5} can be established in a similar

way, obtaining a contradiction with the compactness of 7", and is left to the
reader. The necessity of (ii) follows from Lemma 2. w

Proof of Theorem 2. First, obviously (with the notation of the
proof of Theorem 1)

a(l) < afT, +Tp) < || Tal| + | Tl
since Ty is a limit of finite rank operators. Therefore, the upper bound for
a(T) follows from (4.8) and (4.9).
As for the lower bound, we shall employ the method from [EH], Lemma

2,2. Suppose first that ¥ has a dense subset of functions with compact

support in (0,0c). Let A > «(T). Then there is a finite rank operator, say
X7,

N
Ffx) =3 ai(fgilx),
dem ]

with a;(f) € R and ¢; € Y, such that a(T) < ||T ~ F| < A Applying
the density assumption to the functions gy,..., gx we can find a finite rank
operator Fy such that supp Fof C [ag, bg] for some ag, by, with 0 < ap <
bp < oo andall f€ X, and [T~ Fy|| < A. Take f € X such that ||f]|x < L
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Then, for a € (0,a4),

Az M xomlx 2 1T x0.0) — FolFxo.0)]x0,qly

F
= || Ty flly = f fv |ox(rally
0

for B € (0, a). Taking the supremum over all such f and B we obtain

Az osup idxraily ¥xomllx -
Re(0,a)
As the left hand side does not depend on ¢ we have A > Jy. Similarly we
obtain A 2> Jp and so A 2 %’»(J’L + Jr), which implies o(T} > %(JL + Jr).
In the case when X' has a dense subset of functions with compact support
in (0, 00), we proceed in a similar way with the associate operator T, using
the fact that a(7") € 2a(T). w

For the proof of Theorem 3 we shall need some preliminary work. First,
if g < g, then

(4.10) ”f Padyw $ Il-f[lp:Q!:'W? f € Lp,q(,w)_

Further, for the norin of the characteristic function we have ||xellp.ew =
w(EYW? (p € [1,00)). A key to the sufficiency in Theorem 3 is the following
lemma, basically due to Chung, Hunt and Kurtz [CHK] (see also [S]).

LEMMA 3. Let 0 < p < 00, 0 < g € 00, (0,00) = |J By, By disjoint and
measurable.

(1} Let o = max(p,q). Then
(‘1'11) Z HXE» f“g,tg,w < Hf“;,q.w -
k

(i) Let o < min(p, q). Then

(412) z “XEme;g,q,w Z ”ngast '
b
In the necessity part of Theorem 3 we shall make use of functions fq s
introduced by Sawyer [S]. Put
Jup(x) =271+ [log =)™

The following properties of fa,s can be easily verified. We wivrite A= B
if A/B ig bounded from above and below by positive constants independent
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of z. We have
o0
(4.13) [ fap<oo@a=1londg>1;
0
(=4}
(4.14) [ fap ™ fasrp(®) ifoa>1;
o
o
(4.15) J fas® facrp(z) o<
0

Proof of Theorem 3. Sufficiency. We shall only prove that (i) of
(3.4) implies that (X,Y) € M(Tyy). Other cases can be handled in the
same way as in [S] (proof of Theorem 1} applied either to T or to 7", Let
us recall that in the case (ii) Sawyer’s proof is based on the fact that ¢ = 1,
which implies that the function ¢(z) fom Yfv is non-decreasing in «, and

6xa0m) e = (J7 )",

We give the proof for the interval (0, c0), that for intervals I ¢ (0, o)
being similar.

Suppose that (i) of (3.4) is satisfied and fix £ > 0. Let m be an inte-
ger such that [°4fv € (27,2™1], Then there is an increasing sequence
{ze} 7 _ o such that

D Lol
(4.16) = [yfo= [ g0 fork<m-1,
: Q0 Tk
and
(4.17) = [ s
0
If we put Ey = [z, 2it1), b <m — 1, and L1 = 00, then
(4.18) | Bx = (0,00), E; disioint.
k<m

If f;° 9 fv = oo, then (4.16) holds for all integers k and (4.18) remaing valid.
(In this case put m = 00.) By the assumption, (4.16), and (4.17), we have

(4.19) Tf(z) < d(x) 2" forze By, k< m.

Choose o so that max(r,s) < ¢ < min(p, ). Then by (4.18), (4.12), (4.19),
(4.16), Hélder’s inequality and (4.11), we have, with B given by (2.2)

1T~ 2 Tf xm| <3 175 X270
. Pyg,w k<m

k<m

b

Compactness of integral operators 87
N LERY -
< 2 2 oxm, |17 =47 3 27D gy e
k<m k<m

<47 Z ( fw.fv)”mbxmh,m)”;,q,w

R @y .|
= 47 Z “fXE'k ,.1”'?,3,1;
Rern

< (AB) A7 o

proving the sufficiency part.

Necessity, Tor the converse, agsume that (3.4) is not valid. We consider
several cases separately and give a list of corresponding counterexamples.
The first two cases were treated by Sawyer [S]. Let us recall them for the
sake of completeness. :

(a) f ¢ < s,put v = ¢ = ¢ = 1 on (0,00), w(z) = (p/rNa~?/"-1,
[(@)= fan(2), where a = 1/r, g < 1/ < s. :

b)) s < g<rputod=f=1on(0,00), viz) = fisle) () =
fo1,-p(@), where 8 & (1,r/q), w(z) = f,s(z), where y =p+ 1, § = Gp/r.

Sawyer proved that in both cases (a) and (b), | fllns0 < 00, B < oo, and
1T f||p.gw = oo, (Note that obviously By < B for all I.)

Now, the parameter p will come into the picture.

() Ifp <a<yqg, put

¥ =1 on (0,00),

W"X(O,mxﬂ) |if-',sf,wH¢X(mmoo) ||;1Q9w

¢e) = frea,-5(z), v(@) = fiorg(z), where S=r

(i1
w(e) = fislz), where f= > (S ¥ p),
fla) = fro(z).
We ghall show that [[f|rse < o0, B < 00, and || T'flipew = oo. Note
that we can suppose that r > 1.
Using (4.10) and p < ¢ we have

o]

1/p.
18 R.00) [, S [[BX(Rioo) lpss = ( / -fP(ﬂ’“1)+1-ﬁ-5P) ~ fr-18i-6(F)
R

by (4.14). Further,

R 1/
”"/)X(O,R)”W,S’.u = ”X(O,R)“T’,S’,u = ( f ?J) R flf-r,éfrf(R)_
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by (4.15). Then
sup B(R) = sup |#xX(r,00)llp,a, 19X 0,R) |07
R>0 R>0

< O sup (1 + [log B))P~)/Up) o5,
R>0

Let us calculate the norm of f. By (4.15) we obtain

T | . 1/a
[ £lls0 = ( f st ({z>0:1/z > t})S/rdt)

(fsts' 1(f )" a)”
< ([ artgeatoyra) = ([ )" <o
0

by (4.13), as 8s/r = (s + 3p)/{4p) > 1. Now, we calculate ||T'f|| ;.. Using
(4.15) we have

Ti(2) = fot-5(@) [ Fro0) Frons(t) 3 2 frmy s (@) fioms (@) = 1.
0
Then
1/p
||Tf“psfb (‘fflxﬂ ) =00,

as f={s+p)/(25) < 1.

The remaining case is when p < r.

(d) Ifp < r, we put ¢(z) = v(z) = wx) = =z, P(z) = 2, flz) =
Xtap) (), 0 < a<b < oo.

First, one can easily check that

1
EX(R,OCJ)(:E)

R and  |laxg,ry (@) ~ R,
g, l/m

which implies that B < co. Further, we see that

Tf( ) (1_"))511-5( )+u>((bm)( )

whence

: b~a a
z>0:T > Al = 4 _b-a ¥ 1 =
{ flz) > A} (1_)\, T ) for A< 1 7

With the choice Ap = (b —~ a)/(2b) we obtain w({T'f > M} = log(1 +b/a),
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and thus
H:‘mf||w.',w Z ”Tfnp,oo.'w 2 )‘[Jw(‘[Tf > Aﬂ})l/p

b-a AL
=% (10g(1+a)) .

sw = (log(b/a))/".
As 1/r < 1/p, letting b/a — oo we see that {2.3) is satisfied for no X and
hence (X,Y) & M(Tpp).

Now, the case (iv) of (3.4} is covered by the counterexample (a), the case
(iii) is covered by (a) and (¢), and (i) is covered by (a) and (b). For the case
(1) of (3.4) we have to use all the counterexamples (a)-(d). m

On the other hand,

Remarlk. The counterexamples (b) and (c) also work without the as-
sumption s < ¢. The assumption is there only to simplify the calculation.
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Spectrum preserving linear mappings in Banach algebras
Ty

B. AUPETIT (Québer} and H. du T. MOUTON (Bloemfontein)

Abstract. Lot 4 and 73 be two unitary Banach algebras. We study linear mappings
from 4 fuie I3 which preserve the polynomially convex hull of the spectrum. In particular,
we give conditions nuder which such surjective linear mappings are Jordan morphisms.

1. Introduction. The theory of spectrum preserving linear mappings
originates from Hua’s theorem on flelds which has very interesting geometri-
cal applications. This theorem says that an additive mapping o : K1 — Ko,
where K7y, Ky are two fields, such that o(1) = 1, and e(z™!) = o(z)~! for
& % 0, I8 an isomorphism or an anti-isomorphism. If ¢ is & linear mapping
from a Banach algehra A, into another one Az such that @(1) = 1 and
d(z)"1 = ¢la™") for w invertible, then using exponentials it is.easy to prove
that ¢ is a Jordan morphism, that is, ¢(z?) = ¢(z)? for every z in 4. In the
situation of Banach algebras the problem was enlarged by 1. Kaplansky [5]
to the following one: if ¢ is linear, satisfies ¢(1) = 1 and ¢ maps invertible
elements into invertible elements, is it true that ¢ is a Jordan morphism?
By Lemma 4, page 30 of [1], this question is equivalent to the study of linear
mappings which preserve the spectrum. o _ .

Almost at the same time, in 19671968, A. Gleason, J.-P. Kahane and
W. Zelazko proved that if A and A are Banach algebras, with B commutative
and semigimple and if ¢ 1 A —» B i3 a linear mapping that satisfies ¢(1) =1
and z invertible in 4 implies ¢(x) invertible in B, then ¢ is a homomorphism
(see 2], pp. 69-70, for the simple and elegant proof given by M. Roitman
and Y. Sternfeld).

In the case of matrices the general problem is justified by a result of
M. Marcus and R. Purves [6] which says that if ¢ 1 Ma(€) — Mp(C) is
a linear mapping which preserves eigenvalues and their multiplicity then ¢
is either of the form @(T) = ATA"' or (T) = AT*A™* (incidentally, the
same conclusion is true if ¢ preserves only the greatest eigenvalue),
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