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Pointwise multiplicative inequalities and
Nirenberg type estimates in weighted Sobolev spaces

by

AGNITSZKA KALAMAJIK A (Warszawa)

Abstract. We prove pointwise multiplicative inequalities on hounded domains with
the cone property and on infinite cones, and derive a certain class of multiplicative in-
equalities in weighted Sobolev spaces with Muckenhoupt weights. We also find some new
formulas to represent fanctions by their derlvatives,

1. Introduction and statement of results. The investigation of in-
equalities for intermediate derivatives originated in the 1914 papers of Lan-
dau and Hadamard (see [La], [H]). It was developed in 1939 by Kolmogorov
([K]), who first derived them in a multiplicative form (supreroum norms,
one variable). Nirenherg ([N1], [N2]) and independently Gagliarde ([G]) ex-
tended this result to the case of nonweighted L” norms in several variables.
The nonweighted case is well understood by now (see e.g. [A], [BIN], [I], -
[Sol, [Mi]). Weighted inequalities for functions defined on R™ in which the
integrability exponent of the intermediate derivative is the same as that of
the function and of the second ovder derivatives were proved by Gutiérrez
and Wheeden [GW)] (see also the references given there).

In this paper we derive pointwise multiplicative inequalities, where a
pointwise value of the maximal function of an intermediate derivative is es-
timated in terms of the maximal Functions of the function and of its relevant
darivatives, Those estimates easily imply LP multiplicative inequalities with
Muckenhoupt weights, The idea of pointwise multiplicative inequalities is
presented in Theorem 1. In the rest of the paper we extend it to the vector-
valited ease, Our estimates involve certain families of differential operators,
We also obtain integral representations in terms of this class of operators.

As far as T know such representations are missing in the literature, al-
though there are many ways to represent functions by their derivatives (see
BIN], Sec. 7, [3]).
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276 A, Katamajska

The inequalities presented in this paper correspond to those of Bojarski
and Hajlasz (see [BH]); however, the approach is different and independent.

2. Preliminaries. Let p € L{ (£2). We denote by LD(f2) the space of
functions f for which [, |f[Fedz < co. If £2 = R" then we simply write L],
If p = 1 then p will be omitted in notation.

Qur basic tool is the following Sobolev integral representation fernla
([Ma], Th. 1.1.10/1).

Let 2 C R™ be a bounded domain, starshaped with respect to a ball
B with B C £2. Choose w € C§°(B) such that [, wdz = 1. Then for any
fewmi(2),
(*)  fz)=

Pl f () o Z fli z,)DYfly)dy  ae on 2

le|=m £2

where

(PI=!f(=) is a polynomial of degree less than m) and

(=1)"m @y -z T
f (m +t|y

Pre = [ (x Dﬁ( o (y)))f(y)dy
al |y -z

|Bl<m
)tu Y dt
[y~ 7|

Note that K, € C°(R" x R™\ {z = y}) and it depends only on w.

The formula is obtained by multiplying Taylor’s expansion of f by w and
integrating over (2.

We will also use another representation formula holding for any f € Cg:

Kolz,y) =

() f= 3 H.xD%f
|er|=m
where
(—=1)™m x®
Hol(z) = temsdo
(=) alnw, fz"

and wn, denotes the volume of the unit ball in R™ ([Ma], Th. 1.1.10/2).

If f is a locally integrable function then M f denotes the Hardy Little-
wood maximal function of f (see e.g. [T]). Note that M f is a function well
defined at every point and may sometimes be infinite. For f vector-valued,
the maximal function is defined as the sum of the maximal functions of
the coordinates. It was proved by Muckenhoupt that if o € A, (le pisa
Muckenhoupt weight), p > 1, then the maximal operator is bounded in LY

(see [T] or [M]). If 215 & bounded domain and f € Li,, then f, f dx is the
average of f on £2, that-is {£2]7* [, f du.
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Let P; = (Pj1,...,Pu) {(§ = 1,...,N) be scalar differential operators
acting on vector-valued functions f = (f1,..., fi) by
k
Pif =Y Piiki.
i=1

Denote by Pyi(x,€) the corresponding characteristic polynomials. We write
sitnply Pji(€) if P; has constant coefficients.

We say that the family {P;} satisfies the condition (C) if
(1) all the P; have constant coeflicients,

(i) Py is howogeneous of order my for some natural number m; (that
i, all nonzero components Pj; are homogeneous of order m;),

(ifi) the matrix {P;;(€)}Z 71"'.'.'N has rank k for any complex §; (i =

a’”’)w (Ela""‘fn) %( ?"‘90)'

In the scalar case (iii) simply means that the P;(£) with £; complex have
no common zeros except £ = {0,...,0). Note that the family {Pa}|aj=m.,
where P, f = D*f (acting on scalar functions), satisfies the condition (C).

We will be interested in the Sobolev type spaces of vector-valued func-
tlons

L #H@) = {] = (...
where the family {P;} satisfies the condition (C) and 0 € Agin, {p,1-

v fu): fi € DY, Py f € LEI(2)}

An easy calculation shows that if p; < pa then 4, NA,, = A, . Therefore
ﬂ 'A‘.'Pf

If p = 1 then we omit g in our notation. If 2 =
LyTimid,

AminJ {n;}
R"™ then we write simply

We define the related subspace
R {fe={fi, ... fu): fieD, Pjf=0forj=1,...,N}.
In the case of the space

Lgl.,p(”) o {f o (fl, e

R iy the set of functions whose coordinates are polynomials of erder less
than m (here V™ f stands for the vector with components D% f, |a] = m).

We denote by DL 9% F2) the space of functions which are in L{P:»s}
o1 every compach subset of 2.

By ¢ we denocte a general constant, It can vary from line to line.

e fie DY VT e L)}
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3. Pointwise estimates in terms of gradients. Let ug start from

LeMMA 1. Let ¢ € L* be a radial-decreasing function, and f € L.
Ther for almost every = the convolution ¢ * [ satisfies

|6+ f(z)] < Clldlinr M (=)
with C independent of f.

Proof. This follows from easy calculations based on. dividing R™ into
disjoint subsets {25 < |z| < 2¢'} for k€ Z. =

LEMMA 2. If (2 is o bounded domain starshaped with respect to o ball B
then for all = € 2 the function y K. (z,y) is identically zevo near the
boundaery of 2.

Proof. Let z € £2. Denote by V the convex hull of z and B. Tt follows
from the assumptions on {2 that V', is a compact subset of (2. Moreover, il
y & V, then x + tl—%{%l ¢ B for any t > |y — x| The assertion follows casily
from this observation. =

COROLLARY 1. The representation formula (x) holds for every [ €

Wige' (£2)-
Proof. Let f € W (52). Choose 2' C 2 such that £ C 12, B &

and [ is starshaped with respect to B. Since f € W™1(£2) we have
F@)y=Pr )+ Y [ Kale,y)DYF(y) dy
||=m (2

almost everywhere on (2. Since K, is supported in V,, & 2 we can write
as well

Fle) =PI f@)+ Y, [ Kalz,y)D*fly)dy

|| =2y £2

almost everywhere on 2. But 2’ was almost arbitrary, so the inequality is
satisfied almost everywhere on {2. m

LEMMA 3. Let v > 0. Then for any y, z € R" and any r,e > 0 we have

: 1
® J WX{I:E_yIZs}dm
B(z,r)

1 oy
= C{mlz T XUz} € ”;r,xﬂzwmsw}} ~

. 1
(if) f |¢ _ y‘ [ X{je—yl<e} 3
 Blar)

]. 1 .
< C{WX{\zmyszs} -+ STEX{|z_y|527,}} .
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r rogfu By a simple change of variable we may assume that y = 0. Let
us start from 1x:cquality (). Denote by I its left hand side. We distinguish
two cases: » < g|z| and r > }|2]. In the first case we have 3zl < lz] < ||
and I < Cf[="*7. But if 2| < Ze then B(z,7) N {|z| 2 ¢} = 0. Therefore

, C
I< WX{Maze/g}-

I r 2 4iz] then
. Loy 1 ¢ _
I= ?»'*?Wz! Ty Xllalzel dr < e,

Thus in any case,

1 1
I's O(Wx{zz%/a} +e “’;;;X{lzszr})-

Now let us prove (ii). Denoting by I the left hand side of the inequality
wo find that if r < §|z| then

o
I's prssXisises -
Ou the other hand, if 7 > 4|2/ then

1 1 C
. Y P+ Y
I < P f |(12|""’"‘ dr < rn.g '
B(0,&)

Thus in any case I can be estimated by
¢ L v 1
‘z|n-qX{EzIS2E} +€ o X{[z|g2r} ) - ™

Similar estimates are obtained in Lemma 2 of [BH].

Il h i a function defined on £2 then by stands for h extended by zero
ontside f2,

TUROREM 1. Let 2 be a bounded domain, stershaped with respect to a
ball B, Chovse w € C°(B) with [wdw = 1. Then there emists o constant
Cf wueh that for every 2 € R™, every £ € W) and every multiindes 8
with |B] = k, 0 <k < m,

MDP(F =Pyt f)xa)(z)

< CQA((S = Pixa)&) (30 M xa)(@)

jex|=mn

where P is any polynbmvia,l of degree less than m.
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Proof. Let f € Wy, (02, and let B be any multiindex of order k. From

loc
the Sobolev representation formula (+) and Corollary 1,

l Z f])ﬁ u 'U)D”f('f}) (1’2}

|ar|=mm {2

\DA(f — P f)(2

for almost every x € Q Let c/) € C‘[, be a radial function such that ¢ == (
for [z| £ 1/2 and ¢ = be(x) = ¢(2/e). We Lave
DFKa(z,y) = ¢elz — y)D,{f Ko(m,y) + (1 = ¢ (@ = p) DKo (2, w)
= Ac(z,y) + Be(2,1)
Since A.(z,-) € CF°

we have

[ Ac(z,9)D*F(w) dy = (=1)!*! fD"AE z ) (F ~ P)y) dy
2

(£2) (Lemma 2) and D*f are distributional derivatives

where P is any polynomial of degree less than m. An easy computation
shows that

o
|D3Aa(ﬂ3,y)| L ! 'l,'ln'i""" e X ey 2o/ 2}

c
|Be(z, y) < T oy Xl

Thus, for almest every © € R™ we have the estimate
|D?(f — P27 fxa(w)]

1
s C( J Tz — gk X{la—ylze/2}(f = P)(y) dy

2 g

T ol e y|<E}D f(y)d'l/)
|a|=m 2

J|n

Now let us estimate the average of |[DP(f-P~L f)x o(x)| over a ball B(z,r)

Integrating the last inequality over the ball, and applying the Fubini theorem
and Lemma 3 we obiain

1D (f = Pt )xa(a)| dz
B(z,r)

1
s O[ J ( f)mm R X levize/2) dm) (f = P)y) dy
Biz,r ’ .

Ie]
1
+ 2 f( f|w_y"“”'—“‘|n+kmm><{m—m<a}dw)13“f(y)dy]
ja]=m {2 B(z)"") )
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- 1
< Cf|; j WX{EQ*ZRE/S}UM P)(v)dy

-l-*— f X{|y-z<2r} (F = P)(y) dy

7”

+ Z f IU VMVH\ mx‘”y ~z| L2 E}Daf(y)dy
|re|==4n £2
g R

"*"";:r f Xtly-eg2rt Dy )dy}-

Ol‘)viouqlv

= f X(la—s1<ant(F = PYy) dy S Ce ™ M((f — P)xa)(),

gm= 1\.
f Xily- <oy D2 F(y) dy < Ce™*M (D fxa)(=).

To the remaining parts of the sum we may apply Lemma 1. Namely, let

1 1
|n»-—m+ic X{lulge) -

. 1 :
) w— Y e oo
61(v) nnn{imn_i_,c E,,M}, o) =1

Ohbviously both functions satisfy the assumptions of Lemma 1 and [ordy <
Cle™ ", [ady € Ce™k Moreover, since

1
Wl”“ X{plzessy S Coily) and Iyw-{-kw'nzx{ly\ﬁk} < Céaly)
it follows that

[P = Pot F)xale)| do

B(z,r)
< C(eM((f ~ Phxa)e) + e T MDD fxa)(z)
M

The assertion follows immediately from the last inequality by choosing ap-
propriate £ and r. =

Remarlks. 1) Sinee K, depends ounly on the cholce of w we see that the
coustant ¢ depends only on w,

2) The inequality of Theorem 1 may be written in the form

M(VH( - P2 xal(=)

< C(M(f — PYxa) (@) H ™M (V"™ fxa) (=)™

where V! fx g stands for the vector (D% f)|4|=i extended by zero outside 2.
We will sometimes also use this notation.
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Tt is known (see e.g. [Ma], Lemma 1.1.9/1) that bounded domains with
the cone property are finite sums of starshaped domains {“starshaped®
means starshaped with respect to some ball). This together with Theorem 1
implies

THEOREM 2. Let 2 be a bounded domain with the cone property, Then
there exists o constant C such that for every z € R™, every [ € W' (42)
and every 0 < k < m we have

M(V*fxa)(2)
< C[ifllprgan + (MF = PYxa)(z)) 5 (MT" Fxa) ()]

where P is any polynomiel of degree less than m and §2' a8 some scb such
that 2 C 12.

THEOREM 3. Let f € W™, a € R", and r > 0. Then for any = ¢ B

and any 0 < k < m, e
M(V*f)(2)
1 .
<Olsimar f Ufldat QU7 - PRI OHT"

Bl(aR,rR)
where P is any polynomial of degree less than m.
If additionally limp—.c R—k‘)‘iB(aR,wR) |Flda =0 then
M(V*f)(z) £ CM(f = P)(2)" M ™ (M (V™ f)(z))™ .
The constant C does not depend on f.

Proof. By a simple change of variables we may assume that Bla,r) €
B(1) (where B(1) is the unit ball with center at zero). Since B(1) is star-
shaped with respect to the ball B{a,r) it follows frorn Theorem 1 that

M(V* Fxpy)(2)
< Ol siamy + (M((f = P)xm) (=)} ™M V™ Fx ) (=)™
Rescaling, that is, substituting for f the function fr{z) = f(He) we ohtain
M(kaXB(R))(z)

1
< G[EE o Aflde
Blalt,rR)
+ (M{(f ~ P)XB(R))(Z))lnk/m(M(vmeB(R))(3))k/m_

with the same constant.
That implies the assertion since if h € L{,, and A > 0 we have

M(hxpr))(z) Roge Mh(z) forevery z€R™. m
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Remarks, 1) The assumption im g R"’“jfB(a RirR) |f| dz = 0 of The-
orem 3 s satisfied for every f € W™ (1 < p < 00).

2) The saine arguments as in the proof of Theorem 3 show that inequal-
ities of the form

M{V* fxo)(z) € COM(S = Plxa)(=)' ¥ ™MV fxa)(2)"™
hold on every infinite cone, provided lmp—.o R_kf.rmﬂ(ﬂ) [flde = 0.

3) I F is integrable with any power then M(f — P) is finite only if
D = coustant,

4. Integral representations

LaMMA 4. Let {P(E)}y=1,..nv be a family of polynomials of n comples
wariahles £ = (€y,...,&,) which have no common zeros except € = 0,...,0).
Then there exists a positive integer | such that for any mulltiindez o of order
[ we con choose polynomials a.,; satisfying

N
=S an g (E)PHE).
=1

Proof. It follows from Hilbert’s Nullstellensats (see e.g. [L], Chapt. 10.2)
that there exist numbers ki,..., k%, and polynomials @y, ...,an,; Wwhich
satisfy &8 = Xi\r] wi,; ()75 (€). Multiplying both sides by a suitable power
of & we may assume that ky = ... =k, = &, Set | = nk. If ¢ is a multiindex
of order [, then there exists at least one coordinate o, with a; 2 k. That
casily implies the assertion.

TarorEM 4. Lat £2 be o bounded, starshaped domain, and {Pj}i=1,...N
be o family of differential operators acting on vector-valued functions
f= (f1y.-., fx) and satisfying the condition (C) for some positive integers
Wity oy Then there ewist vector-valued functions K H{xy) G =1...
coa N R =G K i), satisfying the Following conditions:

(1) Ky € ¢ (R % R {a = y}),

(i) &K i, ) 2 0 near the boundary of Q, for v &

(iil) H)‘l)}')ﬁ Nyilay )| € ey el 18l for any ,y € 12,

(iv) there ewdsls a positive tnteger L no smaller than max; m; and scalar
differentiol operators Piie (=1, 0 Ny b= 1,0k lx| = 1), homoge-
neous of order -y, with constunt coefficients such that

Kule,y) = 3 (Praa)yKalz,p)

EIES

where (Py i)y indicates that the operator Pji.q acls on functions of v,
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(v) if 1 is as in (iv) then for any [ € C™(12),

+Z II{”(T VP f ) dy

j=1 1n

file) =P5 fulw

where PYfy is as in (%),

Proof. We will consider separately the cases 1) k=1 and 2) & » [, Lot
us start from Case 1. Let f € C*(2).

It follows from Lemma 4 that there exists an integer I and polynomialy
Ge,; () homogeneous of order [ — my such that for any multiindex o of
order !,

N
“ =Y a,(€)P(€)
J=1

Denote by a,,; the differential operator corresponding to . ;(£). Rep-
resenting D™ in terms of P; (where || = [} and substituting it into (%) (see
Corollary 1) we obtain

Fla) =P fla) + ZZ [ Eale,p)acgP;f (y) dy
: ac|=t j=1 £
for any z € 2.
But since K(z,) vanishes near 802 (Lemma 2) and |DY Ko (2,9)]

C/lx — y|*~+ 17l it follows that in every integral we can integrate by parts

(substitute first K3 (2, y) = de(z — y) Kol y) for K, where ¢, is as in the
proof of Theorem 1, a,nd let & — 0). That gives

f@) = PL f(a) Z J {0 () Kl ) ) Py £ w) dy.
d=l 2 e
Set
Ki(m,y) = 3 (=1 ™ (a0, K (1)

x|t
It is easy to see that the K 4 have the required properties.

Now we will prove the second case. Let f = (f;,.. ., Fidy fi € O°°(02), We
will use the method described by Smith ([S], Th. 1.2), Let J = (710 v duh
1<jr <N, and Dy(€) = {dwi(€)}r4=1,...x Where dri(€) = Py, 4(€). Denote
by ds(§) the determinant of the matrix D;(¢). Let d’(€) be the algebraic
complement of dn;(€) in D;(£). Since the d 7{€} have no common nontrivial
zeros and are homogeneous, by the previous case there exist kernels J J
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which satisfy

j( ) PE sz +Z fKJ dff'b( )

where dy is the differential operator wn;h chara,ctcrlbtic polynomial d;(&).

Define L = 37 [0 Ky(m,0)dsfily) dy = > omr Jo Kile,y)amds £i(y) dy,
whoere &, 1% the Kronecker delta. Ol)wou::ly

mrdf ZP, m )

That rives

L= 3" [ Ko, )d5 Py, o fuly) dy
ey Jar £2

where d'} is the differential operator corresponding to the polynomial di(g).
By the same reasons as in the previous case we can integrate by parts in
every integral to obtain

=2 [

i, e 2

dm) K (2, ) Pjm fin(y) dy

where s{ 7) denotes the degree of the polynomial P(£). We group expressions
with jp = 1
N

-3 ¥ ¥ [

J=lordije=g m

N i .
=3 f( S (_:L)s(dfm(dy)ym(m,y))ij(y)dy

i=1 2 g

DAy K (0 y) Pyon fra () dy

Set

Eju(ay)= 3 (=1"W)d5), K ().
rod g
Obviously the fnetions K = (K, ..., K;) have property (v).
Lot 14 look at the congtruction more closely. For some { € N we have
£ om L  fiew,eby for any mnltiindex o of length 1 From Case 1 we have Ky =

2w € '*(”‘“ ot 1)y K. Thus, sinee s(dfaq,g) = [ -~ m; we obtain

j\:.r,: =13 (-m»l)lhhm‘-‘: Z Z (d?}licl(‘:”})yl‘{w .

|ee|e=t 7S ifpemg
That easily implies the assertion. m
Almost the same arguments ag in Theorem 4 but applied to the repre-
sentation formmila (kx) give a result similar to [S], Th. 4.1.
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THEOREM 5. Let {P;}i=1,..N be a family of differentiol apc-:rrat(yr'.'f‘a‘cf;-
ing on vector-valued functions f = (fi,..., fi) and satisfying the condition
(C) for some positive integers mu, ..., my. Then there exist pector-vafuod
functions H;(z), H; = (Hj, ..., Hj), satisfying the following conditions:

(i) Hji{z) is smooth except at © =0,
(i) Hyi(2) is homogeneous of order —(n - my),
(iil) | DP Hy(w)] < C/lw| 8l for oll € R,
(iv) for any f = (fi... ., fx), fi € C§°, and any x & R" we hove

N
fi@) =Y [ Hye - y)Psfly)dy.

i=1R"

The condition (iv) of Theorem 5 may be written as é; = E:{KI PriH (e
1,...,k), where 8;(fi,-.., fx) = fi{0). Using arguments similar to [Maj, Th.
1.1.2/1, but with the fundamental solution of the pelyharmonic equation
replaced by the family {H,;}, we derive

COROLLARY 2. For any domain 2 the space L1Pi'() consists of lo-
celly inlegroble functions.

Next, standard methods, similar to [Ma|, Th. 1.1.5/1, give

COROLLARY 3. Let 2 be any domain, and (2 any compact set contained
in 2. Then for any f € LTPi1H(02) there emists a sequence f, € LIPH1HN
C%°(2) such thai

Fo—o Fin LMD and Pifa — Pif in LD).

Remark. If 2 is a bounded domain with continuous boundary theu
the functions f, can be taken smooth in a certain neighbourhood of 2 {(see
[Mal], Th. 1.1.6/2).

As a consequence of Corollary 3 and methods from Corollary 1 we obtain

THEOREM 6. Let {2 be a bounded, starshaped domain, and {Py} i, N
a family of operators satisfying the condition (C). Then the representation
formula (v) of Theorem 4 holds almost everywhere for every f @ L ‘-L}(I 2).

layes
Remark. It follows immediately from Theorem 6 that if £2 is a bounded,
starshaped domain and {P;} satisfies the condition (C) then the space R
corresponding to {P;} consists of polynomials.

5. Pointwise estimates in terms of nongradient operators. Having
the integral representations from Theorem 4 it is.a matter of routine to
extend the results of Theorem 2 and 8 to a more general form.,
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THROREM 7. Let (2 be a bounded domain with the cone property, and
{Ps}y=t1,..v o family of operators satisfying the condition {C). Then there
cuists o constant O such that for every f € L{Pj’l}(ﬁ), SeR, and » € R™,

loe
M{V* fixa)(2)

= ClILA

N
wriary + DM ((F = S)xa) ()™ (M Py fxa) ()™

Je=l

where 0 < k < ming{my} end 2’ is some set such that 2 C 2.
TurorsM 8. If « € R™ and r > 0 then there cxists a constant C such
that for every f € L{P*"1}, SeR,and z e R™,

loe

M(V*f)(e) < ©

il
iiup-ﬁﬁ f | fi| d

>0 BluR,rR)
N .
D _(M(f = 5) (@)™ (M (P f)(z))}“/mj]
Je=l

where 0 < k < ming{m;}.
If additionally limp....o BF {, BlaRR) |fildz = 0 then
N

MT*£)() £ O S0 = §)(@) 4™ (M(P,£)(@))H™ ]

gl

Remark. Inequalities of the same type as in Theorem 8 hold in an
infinite cone (see Remark after Theorem 3).

6. Nirenberg type estimates. The inclusion Ly (2) € LIP3} (£2)
for bounded domains, Theorems 1, 2, 3, 7 and 8, Holder's inequality and
Muckenhoupt’s theorem immediately imply

TruowsM Y, Let 12 be o bounded domain, starshoped with respect to a
ball B, Choose w € CFU(B) with [wdaz = 1. Assume that 1 < r, p < cc and
0 € Awin {pprir Then there exisls o constant C such that for every z € R™,
cvery & L (E)NLL(82) and every multiindes B with [8] =k, 0 < k < m,

o
X . k/m
Lz(m)lwwm( Z 1D f Lg(n))

AR
| x| mrn
L_Lh (1o k)]
g zm m/nr

and P is ony polynomial of degree less than m.

Ly & cif-r

where
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TuroreM 10. Let 2 be a bounded domain with the cone property, let
{Pj}g':l,...,N satisfy the condition (G): l<r, py<o0, Q€ Amin{yn‘...,yw,‘f‘}a

and for any 3, I,
1(_1_ 1)~1(l_1>
mi\p; T mi\p r/)

Then there ezists o constant C such that for every f € L,(£2)N !;i,'PJ’IJJ}(IJ),
8 € R and any multiindex 3 of order k with 0 < k < wing my,

1D? fill L2y
N

Ly + 9 (f=8

j=1

selis @) (Pl )

where
1 k1
-=-—+(1——"’-).1-.
qg Mypy mi )T
TuEOREM 11. Let {P;} satisfy condition (C), 1 < r,p; < o0, p €
Agsin{py,.,pnrp and for any j, 1,

_1*“(}"__1)“1(1 1
mi\p; T mi\p r)

Then there ezists a constant C such that for every f € L, ﬂL},‘P" il }, SeR
and eny multiindez § of order k with 0 < k < miny my,

N

”Dﬁfi[f;,g < C’[Z(”f_ SHLE)l-«k/_mJ(“pijij)}u/mj]
=1 e
where
1
_mmffmi+(1~j;_)g_

Proof. We use Theorem 8. The only nontrivial thing is to show that if
f € Lj, then

. 1.
Rlilio_R_" f |f|dsz for some a € R™,r > 0.
B(uR,rR)

That is a consequence of the following property of A, weights:

1/
ffdmsO(T;g-EE [ \fTede)

Q Q

}v}?zri )Q is any cube in R™ (C does not depend on f and @, see {T], Th.
e 3 | .
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Rermarks, 1) The inequality |f(z)] < M f(2) < | fllre implies that we
have the corresponding supremum norm estimates.

2) Tf we want to prove the inequalities of Theorems 1, 2, 3, 7 and 8
with the maximal Mnction of an intermediate derivative replaced by the
intermediate derivative itself (this is possible since |f(z)] £ M f(z)), then
the proofs mueh simplify, In particular, we do not need to apply Lemma 3.

3) Similar mwethads imply the analogous estimates in L'-norm. We will
show that for 2 = R", Applying the methods from Theorem 1 to the rep-
roseutation formulae of Theorew 5 we deduce that if f € L{P'} we have

VeS¢ [ ool

eyl |JJ v yln

: 1
PN Wlpjﬂyﬂ dy]

i |wey|<e
almost everywhere. Now it is enongh to integrate over R™.
4) 1t is known that there are estimates of the form

D7 fll 2o < COD™ il ) oo (1D Fllpna JB¥

-“ N N
where v = 3oL iy, 0 < py < L Sy =1 /g = 3,0 (1/p;)py and
1 < p; < oo (that is, v is an intermediate derivative of {rx,-i, see [BIN], Th.
15.7). We cannot expect inequalities of the form

M(D7f)(2) £ C(M(D™ F) (@) .. (MDY f)(=))™

with ,a; and ju; as above. If such inequalities existed they would imply
the corresponding inequalities in supremum norms. But Boman [Bo] found
necessary and sufficient conditions for supremum norm estimates to hold.
They are not always satisfied if 4 is any intermediate derivative of {ay}.

5) Obviously, a purely pointwise inequality, that is, the inequality
V0 f(z)] < Clf{)|' B/m V™ f(2)|5/™, does mot hold. To see that, it is
enough to take f(r) = sinz and m =2, k= 1.
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Restrictions from R™ to Z" of weak type (1,1) multipliers

by

NAKHLE ASMATR (Coluubia, Mo.),
FARL BERKSON (Urbana, IL) and
JEAN BOURGAIN (Bures-sur-Yvette and Urbana, T}

Abstract. Suppose that {175 is o sequence of weak type (1,1) multipliers for
LYY such that for each j, ¢ is continuous at every point of Z™. We show that the
vostrictions ¢;1Z", § = 1, are weak type (1,1) multipliers for LN(T™). Moreover, the
weak type (1, 1) norm of the maximal operator defined by the sequence {o; }3";] controls
that of the maximal operater defined by the sequence {¢;|Z" 155, This de Leeuw type
restriction theoram for waxinal estimates of weak type (1,1) answers in the affirmative a
question about single multipliers posed by A, Pelezyriski. Our central result, from which
this restriction theorem follows by sultable yegularization srgiments, 15 another maximal
Wiearem regarding convelution of a finction in L1 (E™) with weak type {1,1) multipliers,

1. Introduction. Let n be a posilive integer, and let (7 be either the
additive group R™ or the multiplicative group T™. Denote by I" the dual
group of ¢, For ¢ € L™ (), we symbolize by T the corresponding multiplier
transform on LA(G): Ty f = (q’)f)v . The function ¢ is said to be a multiplier
of weak type (1,1) (in symbols ¢ € M 1““)(1’)) provided that T is of weak
type (1,1) on L'(GH M L*((). Given a sequence {¢;};21 & MU, we
denote by N ,“”){{ b }iz1) the weak type (1,1) norm of the maximal operator
on LN M L2 defined by {Ty, bz

[ [4, Problesn 5, p. 412], A, Peteuyniski posed the following question,
which seeks an annlogue for weak type (1,1} multipliers of a de Leeuw
restriction theorem for strong type multipliers [3, Proposition 3.3):

il @ A5 RY, and ¢ is continuous at each point of Z*, is it necessarily
true that the restriction ¢|Z" belongs to M o (gmy?
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