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On quasi-multipliers
by

ZI¥YA ARGUN (Ankeara) and K. ROWLANDS (Aberystwyth)

Abstract. A quasi-multipliers is a generalization of the notion of a left (zight, double}
muléiplier. The first systematic account of the general theory of quasi-multipliers on a
Banach algebra with a bounded approximate identity was given in a paper by McKennon
in 1977. Further developments have been made in more recent papers by Vasudevan and
Gloel, Kassern and Rowlands, and Lin. In this paper we consider the guasi-multipliers
of algebras not hitherto considered in the literature. In particular, we study the quasi-
multipliers of A*-algebras, of the algebra of compact operators on a Banach space, and
of the Padersen ideal of a C™-algebra. We also consider the strict topology on the quasi-
multiplier space QM (A) of a Banach algebra A with a hounded approximate identity. We
prove that, it Mj(A) (resp. My(A)) denotes the algebra of left (right) multipliers on A, then
M{A) + Mn(A) is strictly dense in QM (A), thereby genetalizing a theorem due to Lin.

1. Introduction. A quasi-multiplier is a generalization of the notion of
a left (right, double) multiplier, and was first introduced by Akemann and
Pedersen in ([1], §4). The first systematic account of the general theory of
quasi-multipliers on a Banach algebra with a bounded approximate iden-
tity was given in a paper by McKennon [14] in 1977. Further developments
have heen made as a result of more recent contributions by Vasudevan and
Goel [21], 22], Kassem and Rowlands [11], and Lin [13]. In this paper we
study the quasi-multipliers of algebras not hitherto considered in the liter-
ature.

‘We begin by outlining the necessary background results on quasi-multi-
pliers nnd then proceed to consider the quasi-multipliers QM(A4) of an A*-
algehra, A; in particular, we improve a result due to Vasudevan and Goel
([21], Theorem 3.4) on extending a quasi-multiplier from an A*-algebra to
its auxiliary norm completion. The result enables us to define an “auxiliary”
norm on QM (A) and, in the special case when QM (A) is a Banach algebra,
we prove that under certain conditions @M (A} is an A*-algebra. In the
literature topologies other than the norm topology have been defined on the
quasi-multiplier space and properties established for the resulting 1oca,lly‘
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convex spaces (see, for example, {11] and [13]). In §3 we consider the strict
topology on the quasi-multiplier space of a Banach algebra A with a bounded
approximate identity. In particular, we prove that, if M;(A) (vesp. M,.(A))
denotes the algebra of left (right) multipliers on A4, then M;(A) + M,(A4) is
strictly dense in QM (A), thereby generalizing a theorem due to Lin ([13],
Theorem 9.3).
In §4, A is the algebra of approximable operators on a Banach space
X (that is, operators that can be approximated, in the operator norm,
by operators of finite rank), and our investigations lead to characteriza-
tions for QM (A4) and QM {A*). For example, if X* has the bounded ap-
proximation property then QM(A) is topologically isomorphic to My(A)
and, if in addition X* has the Radon-Nikodym property, then QM (A*)
is topologically isomorphic to Af;(A**). In the final section we study the
quasi-multipliers of the Pedersen ideal K 4 of a ('*- algebra, A. In this case
the quasi-multipliers are not necessarily continuous. Nevertheless, the space
§(K4) of quasi-multipliers on K4, with the quasi-strict topology v, has
a number of interesting properties. In particular, we show that §(Ka) is
y-complete, and, for certain C*-algebras, K4 is y-dense in § (K4). We also
establish a characterization for the dual space (§(K 4),~)*.

2. Preliminaries and quasi-multipliers of A*-algebras. Let A be &,

Banach algebra. A mapping m: A x A — A is said to be a quasi-multiplier
on 4 if

(2.1} m(ad,c) = am(b,c) and m(e,bc) = m(a,b)c
forall a,b,c € A. Let QM(A) denote the set of all bilinear jointly continnous
quasx«multlphers on A. If A is a Banach algebra with a bounded two-sided

approximate identity (abbreviated to a.i. in the sequel), then every quasi-

multiplier belongs to QA (A) ([14], Theorem 1), and QM (A) is a Banach
space with respect to the norm

Im]l = sup{[lm{a,b)| : a,b € 4, |lafl <1, |Ib]| < 1}
([14], Theorem 2). If the products a o m and m o ¢ are defined by
(@om)(z,y) =m(ze,y), (moa)(z,y)=mlz,ay)
(m € QM(A), z,y,0 € A), then QM (A4) becomes a Banach A-module.
A mapping T : A — A is called a lefi (resp. right) multiplier on A if
T(ab) = (Ta)b (resp. T(ab) = a(Th)) for all a,b in 4, and T is called a
multiplier if it is both a left and right multlpher on A. Let My(4) (resp.
M;(A), M. (A)) be the set of all continuous linear (left, right) multipliers
on A. Then both M;(A) and M,(4) are closed subalgebras of the Ba-

nach algebra L£(A) of all continuous linear operators on 4 and MD(A)
is a closed commutative subalgebra of £{4). A pair (&, T) of mappings
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5T :+ A — A is said to be a double multiplier on A if aSb = (Ta)b
for all a,b € A. If M{A) denotes the set of all continuous linear double
multipliers on A, then, for each (S,7) € M(A), we have § & M;(A),
T € M.(A), and ||(5,T)] = max(}|S],||T|]) defines a norm on M{A) rela-
tive to which it is a Banach algebra. For further details on the algebras of
left, right and double multipliers on a Banach algebra we refer the reader to
(120], §3).
Each of the linear mappings
B A— QM(A),

g M.(A) — QM(4),

defined respectively by

(@(a})(m,y) = xay, ()‘<S))($r ?;J) =Sy,

(Q(T))(ﬂ:,’y) = (Tm)yﬁ W{Si T) = )‘(S) )
is a norm decreasing embedding; if, in addition, A has a minimal a.i. {ea :
o € I'} (that is, |jen]| £ 1 for all & € I), then the mappings are iSOIIlEtI'.lC.

A bounded a.i, {eq: @ € I'} in A is said to be an ultra-approzimate iden-

tity if, for allm & QM (A) and a € A, the nets {m(a, es)} and. {m(eq,a)} are
Cauchy ([14], p. 110). In this case A and o are surjective; for, if m € QM(A),
the mappings 9,7 on A defined by

A Mi(A) — QM(A),
¥ M(A) — QM(A),

Sa = 1imm(ea, @), Ta= liénm(a,ea) ,

belong to M;(A) and M,(A) respectively, and A(S) = m = p(T"}. Under
these circumstances we can use either of the isomorphisms A or p to define
multiplication in @/ (A). Thus, for example, the equation

(my ® my)(a,b) = mi(a, licr:nmg(em b))

defines a product in @M (A), and, if we assume that the ultra-approximate
identity is minimal, then QM (A) becomes a Banach algebra, with A (resp.
0) an isometric algebralc isomorphism of M) (A) (MT(A).) onto QM (A).

A bilinear mapping m: A x A — A can be extended in two Inatx-l:ral ways
to & bilinear map 4™ x A** — 4**; we outline the construction in stages,

ag follows:

(i)  m':iATxAd- A (b m*(f,a)} = {m(a, b) >
mw:Am* XA* —-FA*,. (a 'm**(F f>:""< ( ,
M A kAT s A, (fm™ (ELG)) = (m **(G f) F),
()  (m)*:d x A" — 4%, (b, (m)(a, £)) = {m(ba); F),
(M) AT x A = A e, () () = (m ’) {a e,
('m;")*“ ALY AN —- A (f,( )#**(F G)) - (( f)** 1, F) G)
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(a,6 € A, f € A* F,G € A**). It is easy to check that when m is contin-
uous then m*, m™, m***, (m')*, (m/)**, (m')*** are continucus. Moreover,
by routine calculations we can show that, if m € QM (A), then m*** and
(m')*** are quasi-multipliers on (A**,.) and (A**, ) respectively, where -
(resp. ) denotes the first (second) Arens product on A**. (For the defi-
nitions of the Arens products on A**, we refer the reader to ([20], §4); in
particular, we note that (A**,) (resp. L(4**,«)) has a right (left) identity
if and only if 4 has a bounded right (left) approximate identity ([3], p. 146,
Proposition 9)). It is also straightforward to show that m***(a, b) = 'm(a B)
for all a,b € A,

The following is a simpler proof of ([21], Theorem 2.1).

THEOREM 2.1. Let A be o Banach algebra and suppose that E (resp. I is
a right (left) identity tn A** with respect to the first (second) Arens product.

Then the mapping m — m™*(E,I) is a topological linear isomorphism of
QM(A) into A**, with

lmlt < [lm™* (&, D < fml | 1] (7]

Proof. It is clear that the mapping m — m**(E, I} is linear. For any
a,be A,

(. bl = llm(a, b}|| = |m*** (&, )|,
and since n*** is a quasi-multiplier on 4** we have
Imia, )|l = & - m™*(E,1I) - b|| < |m**~(E,D)|| ||a] [11],
which implies that
|| < [lm* (&, 1)

The right side inequality follows from the fact that m*** € QM (A**, )
and that [[m***| < |m||, =

CoroLLARY 2.2. If ||E|| = ||I]| = L, then the mapping m — m***(E, I)
i3 isometric.

Similarly we can show that m — m***(I, E) is a fopological Imc,al iso-
morphism of QM{A} into A**. The following generalizes a result due to
Vasudevan and Goel ([22], Corollary 3.1).

THEOREM 2.3. Let A be o Banach algebra. The image of ${A) under
the mapping m — m***(I, E) is A.

Proof. We show that, for each a € A, (#(a))**(I,E) = 4. Since E
(resp. I) is a right (left) 1dent1ty in (A*, -) (vesp. (A**, %)), E (resp. I) is
the weak™-limit of a bounded right (left) a.i. in A. Thus, for any f in A%,
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{(@(a))™(E, £}, I) = lim{&s, (#(a))™ (B, f))
{(2(a))"(£,%), E) = lim lim{ea, (#(a))"(f, €))

¥
1(£nllén(egaem fy={a, £},
)

{f, (®(a))™" (I, E))

il

H

which implies that (#(a)

Let A = {F €A™ :a.-F-be Aforalabe A}. It is easy to show
that A%* is a closed subspace of A** and the equation

c(F)ab)=a-F.b (a,be 4, FeA™
defines a norm decreasing linear mapping o of A%* into QM (A). The ker-
nel of & is (AA*A)*. For the sake of completeness we give the following
properties of .

LemMMa 2.4 (cf. [21}, Theorem 2.4). Let A be a Banach algebra and sup-
pose that E (resp. I) is a right (left) identity in A** with respect to the first
(second) Arens product. Then

(i) F € A% if and only if there exist an m in QM(A) and o G € kero
such that F = m*“"‘(L‘ I+ G, and

(i) o maps AX* onto QM(A).

Proof. (i) Suppose that F' € A%*. Then the mapping (E,E) —a-F-b
defines an element of @M (A) and so, since QM (A) and QM (A} are isomor-
phic (via the correspondence m -+ m™**| 2}, there exists an m € QM (A)
such that m**(@,5) = a- F - b. Thus, for any f € A%,

{(fra-m™(ETI)-b)={f,m"™ (@, By = (f,a-F b,
which implies that a- (m**(E, I) —F).b==0; that is, m***(E,I)—F € kero,
and so F = m***(E,I)+ G for some G € ker o, as required. o
On the other hand, suppose that F' € A** has the representation F' =
m*** (1, I) + G for some G € kero and m € QM (A). Then
a: F’bmm***(a b +a G b=m""{a,b)
since G € kero; that is, FF € ' "
(ii} Let m be any element of QM (A). Then m**™*(E,I} € A and it is
easy to show that o(m***(E,I)} = m; that is, o is a surjection. .
We now turn our attention to Banach #-algebrag. If AT' is a Banach
s-algebra, then we can define an involution in @M(A) by setting
m*(a,b) = (m(d*,a"))*. .
It is clear that, if @ — a* is continuous in A, then m — m” is a continuous
mapping in QM (A).

*(I,B) =g, as required. =
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THEOREM 2.5. Let A be o Banoch *-elgebra and suppose that E (resp.
I) is o right (left) identity for the first (second) Arens product on A™. If,
in addition, (AA*A)t = {0}, then m —» m™*(E,I) is a continuous linear
*-isomorphism of QM(A) into A™.

Proof. In view of Theorem 2.1 it is enough to prove that m* -—
(m***(E,I))*. (In this proof we are using the *-notation in different senses
but it should not give rise to confusion.) First it is easy to show that the
identities {a, f*) = {(a*, f), {(fL.F*Y = {(f*\F) (a € A, f € A*,F ¢ A**)
define involutions in A* and A4** respectively. A strajightforward application
of the above identities enables us to prove the following:

(b f-a) = a* % f* - B%, a-F* - b=(b F-a*)".

Thus, since m* is a guasi-multiplier on A4, (m*)*** is a quasi-multiplier on
A, and so
a- () *(B, 1) b= (m")"™ (@,B) = m(a})

= (m{5*,a*))* = (m** (6", &))"
= (b* - (B, T) - a")* = a- (m™* (B, 1))* -b.
It follows that (m*)***(E,I) — (m***(E,I))* € (A4*A)*, and so we have
m* ) (E, 1) = (m***(E,I))*, as required. m

The following is an improvement of a result given by Vasudevan and
Goel in ([21], Theorem 3.4),

THEOREM 2.6. Let A be an A*-algebra with o bounded a.i. and lel I be
its ougiliary norm completion. Then, for each m € QM(A), there exists a
unigque M in QM (U) such that m = | 4xa.

Proof. Let |- | denote the auxiliary norm in A. By ({19], Corollary
4.1.16) there exists a positive number g such that |a] < f||a|| for all a € 4.
It follows that, for each g € U*, the restriction of g to A, g4 say, is an
element of (4, - |)* (abbrevxated to A* in the sequel), with |gal| < 4|g].
Thus, if F € A**, the functional F' on U* defined by (g, F) = {ga, F) is an
element of L™**.

Let m be any element of QM (A) and let G = m***(E, E), where £ is a
right identity for the first Arens product and a left identity for the second,
Now G € A%*. We show that G € U™, where U/** is defined in an analogous
way to A%*. First we prove that, for a,b € 4,

(2.2) mu(o(G)a, b)) = mu(a) - G - my(b),

where 74 denotes the canonical embedding of U in U**. For any g € If*,

(2.3) {9, mu(o(G)(a,b))) = {(¢(G)(a, b}, g) = {o(G)
= (QA, a-G-b)=

(a,0),94)
(b *gA @, G) .
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On the other hand,

(9, mu(a) G - my (b)) =
and sinece (bxg-a)s =bxg4 - a, we have
(2.4) {g:mu(a) - G - my(b)) =
Thus (2.2) follows from (2.3) and (2.4).

Let u,v € 4. Since A s | - |-dense in I{, there exist sequences {a,}, {bm}

in A such that ap — u, by, — v, with respect to the auxiliary norm on 4.
Thus

((b*g'a)AaG> )

(b*ga-a,G).

Lilg]i (G ) G- Tt (b ) = 7y () .G my (v},

and so by (2.1),
mu(u) G my(v) = 11ni1TIr1L T (G} an, bm)} .

It follows that my(u) -G - my(v) € my(ld); that is, G € I{**, as required.
Let 7 = o(G). Then i € @M (), and, for a,b € A,

(e, b)) = my(a) - G - my(B)
=y (0(G)(a, b)) = my(m(a, b)),

which implies that 7 4x4 == m. The uniqueness of m follows immediately
from the fact that A is auxiliary norm dense in /. m

The above result enables us to make the following,.

DeriNrTION 2.7, For each m € QM[A), we define the “auxiliary” norm
on QM (A) b

m| = |ml;

our use of the terminology will be justified later.

Before we make a further study of the space (QM(A),|-|) we require

some results on the double multipliers of an A*-algebra; the theorems proved
ave variants of ([12], Theorems 8.3-3.7).

TusoriM 2.8. Let A be an A*-algebra with o bounded a.i. and let U
be its auziliary norm completion. Then each (S,T) € M(A) has o unique
ertension to a double multiplier (5, T e M(U).

Proof. We first show that each S € M;{A) has a unique extension to an
element §* € M(/). With E as in the proof of Theorem 2.6, let F = §*".E.
For g & U4*, the equation {g, F) (ga. F), where g4 denotes the restriction
of g to A, daﬁm,s an element F € Ll** Moreover, F - a € my(A ) (a € A);
for, F- o = F - a and since F- o0 = - Sa, it follows that F . a € my (4). Since
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U is the | - |-closure of A the above implies that F - u € my (U) for all w € U.
This enables us to define a mapping §' : U — U by

(2.5) (S =F-my(u) (u€elU).

It is straightforward to show that S’ € M;{l/). Moreover, S’ is an extension
of S; for, if ¢ € A, then

mu(8'a) = F - myla) = F-a=8a=my(S),

which implies that §’'a = Sa; that is, 8|4 = 9. The extension is unique
since A ig |+ |-dense in I/ .

In a similar way we can prove that each T' € M,.(A) has a unique ex-
tension to an element 7" € M, (U). The equation corresponding to (2.4) is
given by

T (T'w) = my(u) - F.

It. follows- that, if (5,7} € M(A), then (§',7") is its unique extension to
M), =

THEGREM 2.9. Let A be an A*-algebra with o bounded o.i. Then M(A)
is an A*-algebra.

Proof. We recall that M{A) is a Banach algebra with respect to the
norm [|(S, T} = max{||S{, |T]). In addition, since 4 is a *-algebra, M (A)
is a Banach *-algebra, the involution being defined by (S, 7)* = (7™, 5%),
where S*a = (Sa*)* and T"a = (T'a*)* (a € A). Thus it is enough to show
that we can define an auxiliary norm on M({A).

By Theorem 2.8, each (5,7) € M(A) has a unique extension to an
element (5',T") € M (). Define the auxiliary norm on M(A) by |(5,T)] =
[(8",T7)]. It is easy to check that (ST*)" = §'(T")* and (S*T)" = (§')*T",
and so

(5, TS, T)| = [((ST™)', (§°1))] = [($"(T")", (8")*T")]

= (8" TS, Ty = |(8", T

since M (U) is a B*-algebra. Thus [(S,T)(S, T)"| = |(S, T)|?; that is, M(A)
with the norms ||(-,-)|| and |(-,-)] is an A*-algebra. m

By using the same arguments as the ones used to prove ([12], Theorem
3.5) (resp. ([12], Theorem 3.7)) we can show that M(A) is algebraically *-
isomorphic and auxiliary norm isometric to the subalgebra K = {(V,W) €

MU): V(A) C A, W(A)C A} of M{U) (resp. to a subalgebra of (U**, ).

THEOREM 2.10. Let A be an A*-algebra with a bounded a.i. and let U be
its auziliary norm completion. Then QM(A) is linearly *-isomorphic and
auziliary norm isometric to a subspace of QM (U).
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Proof Let P = {m € QMU) : m{4 x A) C A}. Clearly P is a
x-gubspace of QM (U). If € P, then m|ixa is a quasi-multiplier on A,
and so, since A has a bounded a.i., m|laxa € QM(A). Let ¥ denote the
mapping of QM (4) into P defined by ﬁ(q) = T, where g is the unique
extension of ¢ € QM {A) as given in Theorem 2.6. It follows that ¥ is a linear
surjection of QM (A) onto P. It is routine to show that, for m € QM (A),
F(m*)|axa == (F(m)|axa)*, which implies that T(m*) = (¥(m))*; that
is, W is a #-isomorphism. Finally, it is clear from Definition 2.7 that ¥ is
anxiliary norm isometric. w

If A has a minimal ultra-approximate identity, then QM{A) is a Banach
algebra. In this case the above theorem may be strengthened to give the
following.

TueoreM 2.11. Let A be an A*-algebra with a minimal ultra-approxi-
mate identily. Then QM(A) is algebraically *-isomorphic and cuziliary
norm isometric to a subalgebra of QM{U).

Proof Let {e,} denote the minimal ultra-approximate identity in A.
For my, mg € @M (A), the product m; © mq is given by

(my ©ma)(a,b) = mi(a, lirlxn maleq b)) .

We now extend the above definition to define a product in P.

Since A is an A*-algebra there exists a positive number 3.such that
o] < Bllal| for all a & A. Moreover, since A is auxiliary norm dense in I/, it
follows that, for m € QM(A) and u € U, the nets {i{eq, u)} and {Mm(u, ea)}
are Cauchy in U and hence convergent. Thus wa can define a product in P
by setting

(7 © 71) (4, ) = T3 (u, lim (e )

so that P is a subalgebra of QM (U). We also note that iy © izl axa =

my O my, and so _
' T O Mg = n1 @ ma -

It follows from the above and Theorem 2.10 that ¥ is an algebraic

*igomorphism of QM (A) onto P. w

With A as in Theorem 2.1%, the mappings A, ¢ and ¥ are isometric
mmmWﬁMuwnuMwuumﬂm&anwmw
into (QM(A),| - |). If, instead, we consider the aumha.ry norms on M (4)
and QM (A), then we have the following . e e

THEOREM 2.12. Let A be an A*-algebra with a m‘iﬁimal ul‘tm-appifo-méa
mate identity. Then there exists a positive number 0 such that

ﬁ“—l‘(sﬁ T)‘ < |!F(S, T)l < I(S:T)l fm" all (S: T) € M(A)! ' e
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(i) B7YS| < [A(S)| < [S] ($ € Mi(4)),

(iii) 7HT| < o(T)] < IT| (T € M,(A))-

Proof. (i) Let {e,} denote the minimal ultra-approximate identity in A.
Since A is an A*-algebra there exists a positive number 3 such that |a| <

Bllal| for all @ € A. If (S,T) € M(A) and (§',7") its unique extension to
M (U4), then, for any u € U,

| S uf = lim leq S u] = lim (S, T ea,u)| < BIF(S, T |,

which implies that |§'| < 8|@(8', T')|. (We are using the same notation to
denote the embeddings of M(A) in QM(A) and M(U) in QM (U) but this
should not cause any confusion.) Since (¥(S',T"))|axa = ¥(5,T), we have
(S, T)| = [w(8,T")|. Now |(S,T)| = |(§',T")] = |§'], and so it follows
that 87(5,T) < [#(S,T)|. The right hand side inequality holds since
¥ (M(A),!-]) = (QM(A),]-]) is norm decreasing.

(i) and (iii) may be proved by the same methods. m

THEOREM 2.13. Let A be as in Theorem 2.12. Then, for any m &
QM(4),

B Y mf* < [m e m*| < 8%m|?.
Proof Leti m € QM(A). Since ¥ is surjective there exists an (3, T) €
M(A) such that m = &{S, T). We also note that m* = ¥((5, T)*). Thus
lm & m*| = (S, T) @ #((8,T)")| = [#((S, T)S, T)*)|
< f(S,T)(S,T)*! = I(SzT)|2
since M (A) is an A*-algebra by Theorem 2.9. By Theorem 2.12(1),
Im @ m*| < 8%m|*;
also
mf* = 12 (S, T) < |(5,T)* = (8, T)(S, T)"|
< B(S,T) o w((8,T))| = Blm o m”|,
and so
B7Hmf* < lm @ m*| < g¥ml?,
as required. =

COROLLARY 2.14. If B = 1, then |- | satisfies the B*-condition and
QM(A) is an A*-algebra.

The above corollary justifies the use of the term “auxiliary” norm in
Definition 2.7. : ' ‘
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3. Quasi-multipliers and the strict topology. Let A be a Banach
algebra with a bounded a.i.

DerINITION 3.1. The left strict §;, right strict 3., strict # and quasi-strict
v topologies on QM (A) are defined respectively by the following families of
semi-norms:

(i) m — |Jacm],

(i) m — [moal,

(ili) m — |l@ e m] and m — ||moall,

(iv) m — ||ja o m o bl
(a,be A, m e QM(A)).

Clearly v € 8 and f, € 8. The properties of (QM(A),~) have been
studied in some detail in ([11], §3); in this section we turn our attention to

(QM(A),B).

THEOREM 3.2, QM (A) is B-complete.

Proof We first note that, for each a € A and m ¢ QM(A), the map-
pings S, and T}, given by

8,(b) =mfa,b), T,(b)=m(b,a),
define elements in M;(A) and M, (A) respectively, and it is easy to show
that A(S.) = aom and p(T,) =mcoa.

Let {mq : @ € I} be a B-Cauchy net in QM(A) and let a € A. It
follows from the definition of the S-topology that the nets {\(Sa)a} and
{o(T,)o}, where (Sa)ab = mq(a,b) and (To)ab = ma(b, a), are norm-Cauchy
in QM(A). Since ) and p are topological embeddings, the nets {(S.)a} and
{(To)a} are norm-Cauchy in M;(A4) and M, (A) respectively. Both M, (A)
and M, (A) are Banach spaces and so there exist S(® in M;(A) and T in
M,.(A) such that

i(Sa)a — S(a)“ =0, |(Ta)a — TMH — 0.
Since ¥ C A, the net {mg} is v-Cauchy. The space QM(A) is y-complete
([14], Theorem 6) and so there exists an element mg in QM (A) such that
limme (2, y) = mo(z,y)

for all z,y € A. For any b,c € 4,
(AS))(b,0) = 1iLr¥n(,\((Sa)a})(b, ¢) = limbma(a, ¢)
= (aOmQ)(b: C) 5. : ‘
which implies that A(§®)) = a o mo: Similarly we can prove that (T =
mo © & Thus ST PP _
lla © Mg — a0 mo | = |A(Sa)e = ASE)I < 1 (Saa = S@) w0
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and
Imaoa—myoall = o(Ta)a — o(T) < |(Ta)a — T — 0,
which implies that mg is the 8-limit of the net {m,}; that is, QM(A) is
fB-complete, as required. w
Since v C 73, every S-bounded set is y-bounded. But the v-bounded and
norm bounded subsets of QM (A) coincide ([11], Theorem 3.2), and so every

B-bounded subset of QM (A) is norm bounded. Clearly every norm bounded
subset of QM (A) is f-bounded. We thus have the following

THEOREM 3.3. (QM(A),3), (QM(A),v) and (QM(A),| - ||) have the

same bounded sets.

Our next aim is to generalize a theorem due to Lin ([13], Theorem 9.3).
Let
Ar={FeA” :F.acAforallac A},
A ={FeA™:a-FecAforallac A},
A ={FeA™:q-F.-beAforallo,be A},
The strict topology on A™ is defined to be the locally convex topology de-
termined by the semi-norms F — ||F-al and ' — ||a-F|| (a € 4, F € A**),
It is clear that A7" + A}* C A%*, but, in fact, more is true:

LeMMA 3.4. A)F + AS* is strictly dense in A%*.

Proof Let {ea : @ € I} be a bounded a.i. for A, with ||e,| < C' (e € 1),
and suppose that F € A3*, Foreacha € I,let Fl, = eq F—eq-F-eq+F e,.
Clearly Fe, € Af* and e, - F € A", and so to complete the proof we show
that F,, converges strictly to F. Let a € A. Then

la-Fy—a - F|<|a-F-e,— aey Foeg| + ey F—a- F|
< lla - ceall ||F]| C + laea —al| [|F|| — 0;
similarly we can show that |F, .a—F.a| — 0. n

THEOREM 3.5, Let A be o Banach algebra with a bounded o.5. Then

Mi(A) + M, (A) is strictly dense in QM(A).

Proof Let m € QM(A) and suppose that {¢, : o € I} is a bounded
a.i. for A, with |lea|| £ C' (@ € I). For each o € I, define mappings S, and
Ty by

Sala) =m(ea,a ~epa), Tala)=mla,e,) (a€A).
Clearly 5, € Mi(A) and T, € M.(A).

Let F' = m™~(E, E), where F is a weak*-cluster point of {&,}. For each

@ € I we prove the following.

(1) (Q(Ta))***(E:E) =F *€aq,
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(i) (A(Sa)))""(E,E)=ea-F—e, - F - ea.

For (i), (£, (e(Ta)) (B, B)) = {(o(Ta))**(E, ), E) (f € A*); routine
calculations show that (o(Te))**(E, f) = T2(E - f), and so, since f is arbi-
trary in A", it follows that

(3.1) (e(Z.))"™ (E,F) = T2*E.
Also, for any f in A%,
TG E) = (Tof B) = lim{ep, To f) = lim{m(ep, ea), f)
== 1ién(eﬁ,rn** (B, £)) = (£, m™*(E,E.))
= {fym""(E,E % &)} = {(f,m""(E, E) - €5},
which implies that
(3.2) T B = m**(E,E) - e, .
(i) follows from (8.1) and (3.2).
For (ii), we first note that, if S € M;(A) then §** € M;(A*", ). For each
5 e Mi(A), let A(S**) be the element of QM (A**, %) defined by
(AMS™)(F,G) = Fx§*G.
A routine calculation shows that
((AS))™(F.G) = (AS™))(F.G),
so that, in particular, for each o € 1,
(3.3) (M8 )™ (B, B)=E* S E=5E.
For each o € I and f € A",
(f, S E) = 1'1{1511(5’;",‘,7”, €a) = 1ig1(m(ea,eg —eqs), I}

= lién(ea,m*(f, eg - eqtp)) = (m"(f, _ea),.E — &g - B)

= (6, (B —eq B, [)) = (f,m"™" (€, B —ea E));
which implies that Si*E = m** (8, E — €a)-
NOW 6y F' = @y F'e € 2= o ™ (B, E) — o -m™**(E, E) - e and since
m*** ig an element of QM (A*", ), we have
Ep - B € -F-é'ﬂ = m** (B, B — €a) -
Thus
(3.4) SV E =gy F—ta-Fta.
From (3.3) and (3.4}, : & C o
(A(Sa)) )™ (B,E)=eq - F—ea-Frea .

proving (ii).
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Since a - m***(E, E) - b = m***(a@, A) = m(??b), we have F' € A**. Thus,
by the proof of Lemma 3.4, e - F — ey - F'- ex + F - e, converges strictly
to F; that is, for each a € 4,

(3.5)  I(((A(Sa)))™ (B, B) + (e(Ta))™*(E, B} — m"**(E, E)) -af — 0
and

(3.6) lla- (((A(Sa)))""(B, B) + (o(Ta))*™ (B, E) ~ m™*(E, E))| = 0.
Next we require the following identities:

(i) (m/)**(E,E)-a=m"*(E, E) - a,

(iV) (m o a)*** - m*** OE,

(v) (a o m)*** - a o m***

(m € QM(A), a € A). We prove (iit) below; (iv) and (v) can be proved

using routine calculations and the property that m*** is a quasi-multiplier

on (A**, ). Since (m')*** is a quasi-multiplier on (A**, «)
(£, ()" (B, E) - a) = {f,(m')""(E,2))

= (o, (M) (£, E)) = {(m')*(a, f), E)

= (m**(av f):E) = (f,m***(E,E)) )

H

which implies that

(m'y**(E,E) - a=m"*(E,E) -a.
It follows from {iv) that

(moa)™"(E, E) = (m*™* o3)(B,E) = m"™*(E,E)a,

and from (v) that

(aom)**(E,F)=a-m"*(E,E}.
Thus, from (3.5), (iii), and the above we have

M [|((A(Sa) + o(Ta) —m) 0 a)**(E, E)| = 0.

It follows from Theorem 2.1 that

lim [[(A(Sa) + e(Ta) ~ m) o a = 0.

Similarly we can show that limy (@0 (A(Sa)+ 0(Ts) —m)|| = 0. Thus A(Sq) A
o(T.) converges strictly to m; that is, M,(A) + M,(A) is strictly dense in
QM(A).

4. Quasi-multipliers and the algebra of compact operators. Let
X be a Banach space and let A = Kp(X), the algebra of bounded linear op-
erators on X which can be approximated, in the operator norm, by operators
of finite rank. In this section our first aim is to establish a characterization
for the quasi-multipliers of A. We begin, however, with some definitions and
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necessary background results, Full details of the results given may be found
in [4]. A Banach space X is said to have the approzimation property if, for
every compact set K and ¢ > 0, there exists a linear operator Tk of finite
rank such that [Tk ¢(2) -zl <efor all z € K. If, in addition, there exists
a positive number C', independent of K and e, such that || Tk .|| < C, then
X is said to have the bounded approzimation property. If C = 1, then X
is said to have the metric approzimetion property. If X* has the bounded
approximation property, then Ko(X) = K(X), the algebra of all compact
operators on X ([4], Theorem 3.5), and K (X) has a bounded a.i.; the latter
property follows from ([4], Theorems 3.10 and 3.11), ([4], p. 93), and ([3], p.
59, Proposition 6).

The tensor ®z’ (z € X, ¢’ € X*) determines a bounded linear operator
on X according to the equation ‘

(4.1) (z@a)y= ("W (yeX)
and so the elements of the tensor product X @ X* are operators on X which

are of finite rank. If v € X ® X* and u = 3 7| z; ® 2}, the right hand side
of the equation

el “ﬂup{!fj<mnf><ms,m fex', Fex”)
je=]l

is independent of the representation of u and defines a norm on X ® X'*,
called the inductive tensor norm. The completion of X @ X™* with respect
to || ||Y is denoted by X&X* and it is straightforward to show that X&X*
is isometrically isomorphic to Ko(X). _

The projective tensor norm on X ® X* is defined by

k3 n
ol = it {37 ) il s w =Y wi @i},

PE i=l
where the infimum is taken over all representations of u. The completion of
X @ X* with respect to ||| is denoted by X®X* and is called the projective
tensor product of X and X*, The mapping ¢ of X @ X* into £(X) as defined
by (4.1) is & norm decreasing mapping on (X ® X*,|-||") and so induces a
contraction from X&X* into £(X). Clearly its image is linearly isomorphic
to the quotient space X &X*/ ker ¢; ¢(XBX™), equipped with the quotient
norm, is denoted by N(X). The elements of N(X) are called the nuclear
operators on X and the norm is called the trace norm. In fact, if u € N(X),
then the trace norm of v is given by ,

o e .
ol e = inf { 3 il ot 0= > mi @ 2

i=l izl

where the infimur is taken over all representations of .
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A bounded linear operator T on X is said to be an integral operator if
there exists a constant C' > 0 such that

‘ i(Twi, )| < C“ i T; ® T
= i=1

i=1

for all 3" z; @ #; € X ® X*, where || - | denotes the operator norm on
£(X). The infimum over all possible constants C is called the integral norm
of T and is denoted by |T||;. If I(X) denotes the integral operators on X,
then (I{X),] - ||z) is a Banach space ([23], p. 258). Every nuclear operator
is integral, its integral norm being dominated by its nuclear norm. The dual
of Ko(X) is isometrically isomorphic to (I{X*),| - ||r); the correspondence
F « f between (Ko(X))* and I(X™) is described by the relation

n
(4.2) (u, F) = (es fo)
==
where u =Y.  z; @z € X @ X*.
For our investigations in this section we require, in addition to the above,
the following properties of integral operators.

(i) I{X) is & two-sided ideal of £(X) and, for f,9 € I{X), T € L(X),
NfoT og|r <Uflz[ITN l|ollz; the proof is routine.
(ii) An operator f on X is integral if and only if f* is integral and
£l = 11 £*iz {[B], p. 236, Corollary 11).
(iii) An integral operator on X is weakly compact ([4], p. 228, Corollary
3.6) and so f** maps X** into X ([4], p. 227).

The bilinear functional (z', 2"} — (@', z") on X* x X** induces a unique
linear functional ¢ on X* ® X** such that

(@3 w0 at) = Solahel)

(f € (X)),

iy

i=1 i=1
([3], p. 232, Theorem 6). It is clear that % is a continuous linear functional
on (X*® X**, |- ||*) and so has a unique continuous extension, ¢ say, to

X*®X**. Since the right hand side of (4.3) is independent of the represen-
tation of u = 31 [ ® z!, we refer to it as the trace of w and it is written
tr.u. In particular, if g € £(X*), then gou= Y, g2} ® =/, and so
k) k3
tr.(gou) = Z(gm;,mg’) = Z(mg,g*mg’) =tr.(uog).
=1 =1
IffeI(X*)anda=28s € X®X", then o* = ' ®7 and so tr.(a"0 f) =
(@, f*%) = (z, fr') = tr.(f o 2*) = {a,f) (by (4.2)). It follows that, for
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any a € Ko(X),
tr.(foa") =tr.(a*o f) = (a, f).

We let 7 denote the canonical mapping of X*®X** into I(X*) (in fact,
the image of X*®X** under  is N(X™*)). If X* has the bounded approxi-
mation property, then 7 is injective g[zl], p. 80, Theorem 3.4), so that N(X*)
is the projective tensor product X*@X** of X* and X**. In this case tr.u is
well defined for every u € N(X™). The dual space (X*®X**)* may be iden-
tified (isometrically and isomorphically) with £(X**), the correspondence
h— T (he (X"@X*)*, Ty € L{X**)) being defined by the relation
(4.4) (' @ 2" h) = (&', Tpa') .

Thus the adjoint 7* is a mapping of (Ko{X))** info L{X™**).

LemMa 4.1, Let X be a Banach space and suppose that o € Ko(X).
Then %@ = a**.

Proof. Let z' € X* z" € X*™. It follows from (4.4) that, for any
a € I{Q(X),

(%’I, (ﬂ_*a)mr‘l) : (:l’,'f ®ZB“,’JT*E) — (ﬂ_(ml ®$H)’a)
4
oy

H

(2’ @ 2")) = tr.(a* o w(z’ ® )

{
_— .(rr(a,*w’ ® w”)) = (o*z, 2") = (2, a*z"y,

which implies that (7*@) = a**. w

For the remainder of this section, unless stated otherwise, we assume that
X* has the bounded approximation property and in the sequel the algebra
Ko(X) is denoted by 4. We also use cx (resp. ¢x-) to denote the canonical
embedding of X (resp. X*) into X** (resp. X***} and, for each h & L(X™"),
the “h-flat” mapping is the element of L{X*) defined by h’ == t% o h* oux-.

TuroreM 4.2. Let X be o Banach space and suppose that X* has the
bounded approwimation property. Then o is a topological isomorphism of
M.(A) onto QM (A). '

Proof Since X™ has the bounded approximation property, A has a
bounded two-sided approximate identity and so g is a topelogical isomor-
phism (isometric if X* has the metric approximation property). Thus to
complete the proof we have to show that p is onto: : -

Let m € QM(A) and let B be a right (left) identity with respect to thbe
first (second) Arens product on A**. Let F = m***(E, E) and g = (w* F)"
The algebra M, (A) is isometrically isomorphic to £(X %) (see, f@zﬁ*faxa.m@le,
([20], Theorem 19 and Corollary 1)), and the correspondenceir which maps
g € L{X™) onto 1, € M,(A) has the property that £x¢ Tola) =a"rogtoux
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foralla € A, Thus, for any a,b € A, x € X, 2’ € X*, we have
(o, ex ((ry(a}b)2)) = (&, (a™ 0 g*)bz)
— (0™ o (e FP(5R))
and since (h")*|¢ = h for every A € L(X™*), it follows that

(&', ex ((rg(a)b)z)) = (2, (a™ o w"F o b** 01y )x)
= (2, (T*Gon*F o n*b o 1y )x)
by Lemma 4.1.
The mapping 7* satisfies 7*(F - G) = #*F o r*G for all F, G € A** ([9],
Proposition 3.2(iii)) and so

(@', ex((rg(a)h)2)) = (&', w*(a - m**(E, ) - b))

= (@', (" (m™* (3, B)E) = (&, (r* (m{a, b)))%)
= {2/, (m(a, ))"8) = (', (m(a, b))z},

i (
which implies that 7,(a)b = m(a,b); that is, o(r;) = m, proving that p is
surjective, as required. m

COROLLARY 4.3. Let X be a Banach space and suppose that X* has the
bounded approzimation property. Then QM (A) is topologically isomorphic
to L(X™*); the topological isomorphism is an isometric one if X* has the
metric approrimation property.

COROLLARY 4.4 (Vasudevan and Goel ([22], Lemma 3.2)). If H is a

Hilbert space and A = K(H), then L(H) and QM(A) are isometrically
wsomorphic,

Proof. The result follows immediately from Corollary 4.3 since every
Hilbert space has the metric approximation property. m

Before our next result we explain how we consider left, right and double
multipliers of A**; our approach is due to Grosser ([9], p. 547). Suppose that
V is a left module over a Banach algebra A; that i, V is a Banach space
and there is a continuous bilinear mapping A x V — V such that a(bv) ==
{ab)v (a,b € A,v € V). A right multiplier of V is defined to be a mapping
T: A — Vsuch that T{ab) = aT'b for all a,b € A. If A has a bounded
right a.i., then every right multiplier is linear and continuous. Following the
notation introduced in §2 we denote the set of all linear and continuous right
multipliers of V by M. (V). The space M;(W) of all linear and continuous
left multipliers of a right A-module W is defined analogously. ¥ V is an
A-bi-module (that is, a left and a right A-module simultaneously satisfying
a(vh) = (av)bfor all a,b € .4 and v € V), then the space M(V) of continuous
linear double multipliers of V consists of all pairs (S,T), § € Mi(V) and
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T € M,(V), satisfying aSh = (Ta)b (a,b € A). In particular, A** is an
A-bi-module and so the right, left and double multipliers of A** are defined
in the above sense, If S is a linear continuous mapping of A into A** and S*
denotes the restriction of its adjoint to A*, then it is not difficult to show
that S is a left multiplier of A** if and only if S*(a« f) = a* §'f for all
a €A, fe A* Similarly, a continuous linear operator 7' : A — A** is aright
multiplier of A** if and only ¥ T*(f-e¢) =T*f-aforalla € Aand f € A*,
and the pair (9,7) (where S,T': A — A** are continuous linear mappings)
is a double multiplier of A** if and only if (b, S¥(f - a)) = (a, T (b f)) for
all a,b € A, and f € A* Thus we may regard M;{A**) and M, (A**) as
subspaces of £{A*) and M(A**) as a subspace of L(A*) x L{A*).
We now return to the algebra A and to the spaces M, (A**) and Mg (A**).
In ([8], Theorem 1) Grosser proved that M,(A**) is isometrically isomor-
phic to £{X**) and that M;{A**) is isometrically isomorphic to £(X*). We
note that the characterizations do not require X* to have the bounded ap-
proximation property and are therefore valid for any Banach space X a:nd
A = Ko(X). For the sake of completeness we give the results in the following
theorem using the notation and terminclogy developed in this paper.
THEOREM (CGrosser (8], Theorem 1). Let X be a Banach space and A =
Ko(X). o :
(a) The mapping o+ L(X*) — M(A*™), which acts on A* according to
the equation ' |
ol(f)=gof (geL{X"), fed),
is an isometric isomorphism of L(X™) onto M;(A**B. _ |
(b) For each h € L(X™) and f € A*, (ho f*) € A*‘.‘C.'a'f'meguently,
the mapping T 1 L(X**) — M, (A*"), whose action on A is given by the
equetion
T(f)=(ho £*),
is an tsometric isomorphism of L{X**) ento M.(A™). o
The isometric isomorphism between A* and the Bagaqh algebra
(I(X*), || - 1) of integral operators on X* enables us to define a pfod—
et on A* which makes it a Banach algebra. Consequently, we can co;qg'sLQer
mappings ¢ : A* x A* — A" which satisfy the guasi-multiplier _COIJ:d_:Lthn
(2.1). As in §2, we let QM (A*) denote the space of all jqint]y continuous
quasi-multipliers on 4*. - S o ST
" Tugowmd 4.5 Let X be a Banach ,spaggand_-.ﬂg.:g{g(g{); Then the
equation et SIS W .-'n:.i:; Lo . Mo
O(R)(F.0) = (i F) og - (& LN Fige Ao
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defines o norm decreasing linear isomorphism between L(X**) and a sub-
space of QM{A%).

Proof. We recall that A* = (I(X*),| - I|1), the integral operators on
X*, and I(X*) is a Banach algebra with respect to the integral norm. We
first show that # maps £{X**} into QM (A*). Let h € L(X**) and f € A*.
We first note that (r; f)* = ho f* for if 2’ € X*, 2" € X**, then

(@, (mf)a") = {(mf)z',2")
"o(xr otk o o b oy )l
" (ho f*)*Z') (since tx~ oty =id.X")
93,, (h o f*).’L‘”> ,
which implies that (v} f)* = ho f*. Thus, for f,g € A,
(Th(fog))" =hog* o f*=(fom(g)),
and so 74 (f 0 g) = f o 7}g. It follows that, for f,g,l € A*,
0R)(fog,l) =m(fog)ol=Fforigol=fob(h)(g,1).

Similarly, we can show that 8(R)(f,g o 1) = 8(k)(f,g) oI, so that O(h) &
Q@M (A™). The linearity of 8 follows immediately from the linearity of /. We
show that 8 is continnous, as follows:

16R)(F, 9)llr = [1(BCR)(£,9))" |1z = I(mhf o g)* |1z
=llg"oho f i < g™ lzlinll 1571 = llglz |l fllallal,

which implies that 6 is continuous, with ||| < 1.
Finally, 8 is injective. Suppose that 6(h) = 0. Then 7/ f o g = 0 for all

frg € A*. In particular, for any 2’ € X and 2 € X**, 7} fow(2' ®z") = 0.
Thus, for any y' € X*,

0= (mfor(a’ @)y =y, 2")(rf)e,

which implies that, since 2', 3’ and z" are arbitrary, 7{ = 0. Since 7/ is an
isomorphism, A = 0, as required. =

=
2(1}
=<x
=

DEFINITION 4.6. Let A be a Banach algebra with a bounded approximate
identity. A mapping m : AxA — A™ issaid to be a quasi-multiplier of A™* if

m(ab,c) = @-m(b,c) and mla,bc) =m(a,b) - foralla,b,ce A.

Let QM (A**) denote the set of all bilinear and jointly continuous quasi-
multipliers of A**. Then, as in the case of quasi-multipliers on A, every
quasi-multiplier of A** belongs to QM (A™) and QM(A**) is a Banach
space. We note that QM (A) is the subspace of QM (A**) which consists of
those m &€ QM (A**) such that m(A4,.4) C A.
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We extend m € QM (A**) to a linear map on A** x A** in the following
way:
m® AT X A — A", defined by (b, m*(F,a)) = (m(a, b), F),
m™ A™ X A — A%, defined by (@, m™* (F, F)} = (m*(F, a), Fy,
M ATOCAT — AT, defined by (F,m™*(F, Q) = (m™ (G, F), F)
(a,b € A F,G € A, F & A™*).
We use the notation - to denote the first Arens product on the algebra

A** and for convenlence we also use - to denote the corresponding first Arens
procuct on the algebra A**,

LuMMA 4.7. For a,be A, 3 - m**(E, E) -5 € A,
Proof Let F be any element of A4***. Then

~ -
-~ o~

(F,@-m™*(B,E)-b) = (6. F -8 m"*(E, E))
= {m"™(E,b-F G),E) = ]igl(ea,m**(E,E. F-a))

-~ o~
-~ o~

=lm{m*(b-F 8, eq4), E) = limlién(eg,m*(b F T, eq))
23 [}

= limlim (m(ca, eg) b F - 8) = lim liza {5 F, 8- m{ea, €s))
(11 .

~

= lim 11[1311(.55','&- MGy £5) - D) = liza B0 (., 40+ (@~ m{ea, €) )
o

e

= lim lién(f', taxs (m(aeq, epb))) = (F,m(a, b)),
[¢]

which implies that G - m***(E, E) b ma,b) € A as required.
THEOREM 4.8. Let X be o Banach space and suppose that X* has

the bounded approzimation property. Then the mapping A : M(A**) —
QM(A*™), defined by

AS)(a,b)=8-8b (S € Mi(A™™), a,bE A),
is o norm decreasing linear mapping of Mi(A**) onto QM{A™).

Proof. It is clear that A is linear and norm decreasing. Therefore to
complete the proof it is enocugh to show that A is a surjection.

Let F = (m***(E, B))|4:. In the sequel we regard F as an element of
A" Let g = (7*F)". Then g € £{X*); we recall that £(X™) is isometrically
isomorphic to M;(A**), the isomorphism o’ being given by ay(f)y =gof
(9 € £L(X*), f € A*). It follows that the identity

(f,50) = (@ ol(F)) (a€ Ay 1o
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defines an element 5 of M;(4**); for,
{f, S(ab)) = (ab, oy (f)) = (a,b* oy (F))
= (a,0y(b* f)) = (b* f,Sa) = (b, f  Sa},

which implies that S(ab) = Sa  b.
Thus, for all a,b € A, f € A%,

{f,@-8b) = (f - a,5b) = {b,04(f - a))
)

= (b, (7" F) o (- )

={b,(f-a)x F) ([9], Proposition 3.2(ii))
=+ (f-a)F)=(F-(f-0)F)

= (f,a F b= (F,3 m™(B,E) b)
={f, ’;,‘)) by Lemma 4.7

which implies that & - 5§b = m(a, b). It follows that A(S) = m, as required. =

Remark. If E is an identity for the first Arens product (this is the case
if, for example, N(X™) = I(X™*); see ([9], p. 560)), then X is a topological
isomorphism. For, in this case; A(S)(eq,a) = €45y o E - Sy=8, for all a €
A, which implies that A is injective and A~! ig continuous. If, in addition, X*
has the metric approximation property, then A is an isometric isomorphism.
Moreover, since L{X™**) = M;(A**) we have L{X™*) & QM (A**) in this

case.

5. Quasi-multipliers of the Pedersen ideal. Let A be a C*-algebra
and A denote the C*-algebra obtained by adjoining the identity 1 to 4. An
element a € A is said to be positive if it is self-adjoint and Sp(a) € R..
(Sp(a) = {X € C: a4~ Al is singular in A}); the set of positive elements of
A is denoted by AT. A subcone J of A% is said to be an order ideal if the
condition z € y for y € J and x € AT implies that z € J. An order idea} J
of A% is said to be invariant if a*Ja C J for all ¢ € A. A %-subalgebra B of
A s said to be order-related if BT is an order ideal in A" and B is the linear
span of BT In ([16], Theorem 1.3), Pedersen proved that every C*-algebra
contains a minimal, dense, order-related, two-sided ideal K& 4. This ideal has
subsequently become known as the Pedersen ideal. If X is a locally compact
Hausdorff space and A = Cy(X), the complex-valued functions on X which
vanish at infinity, then K4 = Coo(X), the functions in Cp(X) which have
compact supports ([7], p. 109, 7E and 7F) If A = By(H), the C*-algebra
of all compact operators on a Hilbert space M, then K4 = Boo(H), the
operators on H of finite rank ([15], Theorem 2.4.7 and Theorem 3.3.3).

Quasi-multipliers 239

Lemma 5.1, Let A be o C*-algebra and let K 4 denote its Pedersen ideal.

If {z;} is o finite set of elements in K4, then the order-related C*-algebra
generated by them is contained in K 4.

Proof. See ([16], Proposition 4). m

We shall require the following version of the Cohen-Hewitt factorization
theorem.

THEOREM 5.2. Let 4 be a C™-algebra and let {z;: i =1,...,n} be a
finite set of elements in Ka. Then, for each £ > 0, there exzist elements

Yiseovslny 2lseroy2n 00 Ko and a,b € K7 such that
i —wll <&z -2l <k,
and Ty =ay; = b fori=1,.. ., n

Proof. Let B be the order-related C*-algebra generated by {z; : ¢ =
1,...,n}. By Lemma 5.1, B ¢ K4. Every C*-algebra has a bounded a.i.
consisting of positive elements (see, for example, the proof of ([18], p. 11,
Theorem 1.4.2) and so, without loss of generality, we may assume that B
contains an ad. {e, : & & I} consisting of elements in BT. By the Cohen—
Hewitt factorization theorem there exist elements y1,...,Yn, #1,..., 2n, and
a, b in B such that x; = ay; = ;b and

oy — il <&, lwimzll<e (E=1,...,n).
A close examination of the proof of the Cohen-Hewitt factorization {as
given, for example, in ([6], Theorem 16.1, p. 93 et seq.)) shows that o (resp.

b) is the limit of a sequence of elements in B, and so, since BT is closed
in B, a (vesp. b) € BT, Since BT C K, the proof is complete. m

A quasi-multiplier on K 4 i3 a mapping of K 4 x K4 — K 4 which satisfies
conditions (2.1). The Pedersen ideal is not in general a Banach algebra and
we cannot therefore make a direct appeal to ([14], Theorem 1) to deduce
that the quasi-multipliers on K4 are (i) bilinear and (ii} jointly continu-
ous. However, an application of Theorem 5.2 enables us to establish (i) as
follows.

Lat m be a quam-multlpher on K4 and let w,z,y € Ks and o € C. By
Theorem 5.2 there exist elements z € Kj and w,v € K4 such that ¢ = uz
and y == vz, Then ‘ o

moz + g, w) = m{{au+v)z,w) = (ou +v)m(zw)
== am(uz, w) + m(ve, w) = o:m(:ii w) -+ m{y, w).
Similarly we can prove that m{w, oz +y) = am(w w) + m(w y); that | is, m
i3 hilinear. B gt

Let §(K 4) denote the space of all quaspmultxphers on K 4 The: members-_

of §(¥ 4) are not, in general, continuous: However;for amy m iy & (a1t is
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easy to show that aomob € QM (K 4) for a,b € K4, and that [aomob|| <
|m(a, b)l|. Thus we can define the quasi-strict topology v on 8(K4); that
is, ~ is determined by the family of semi-norms {7a» : a,b € K A}, where
Yap(m) = ||aomob]| (m € §(K4)). Since every C"-algebra has a bounded a.i,
it follows that K 4 has a bounded a.i. Suppose that {eq : & € I'} is a bounded
a.i. for K4, with ||es| < C for all o € I. Then, for m € §(K4), a,b € Ka,

#(ma,0)(%. % )|

=3 lim Jeam(a, blea| = =5 s lm{a,b)]

lacmob| = Hgﬁ(m(a, b))|| = Hm sup

C
Thus
C*laomob] > [m{a,b)]| > laomobd|,

which implies that the -topology on §(K4) may also be defined by the
semi-norms m — |Jm(a,b)]|. In the sequel we find it more convenient to
work with this family of semi-norms to establish properties of the locally
convex space (6(K4),7).

THEOREM 5.3. §(K 4) is v-complete.

Proof. Let {ms} be a v-Cauchy net in 6(K,4). Then, for a,b € Ka,
{mq(a,b)} is a Cauchy net in K4 and so lim, ma(a,b) exists in A. Define
m(a,b) = limymgy(a,b). It is clear that, for all ¢,d € K4, m(ea,bd) =
cm(a, b)d. By Theorem 5.2 there exist elements v, v, w,w’ in K4 such that
a = wu and b = vw’, and so

m(a,b) = li;nwma(u,v)w’ e K,

Thus m € 6(Ka4), and since y-limyme = m it follows that §(K4) is
~-complete. m

The Pedersen ideal is a »ideal ([17], Lemma 1.1), and so the equation
m’{(a,b) = (m(b*, a*))"

defines an element of §{K4). The mapping m — m* defines an involution
on §(K 4) and is continuous with respect to the y-topology; for, if m = -
limg, Mg, then, for any z,v € K4,

limmg (2,y) = lim{mq (3", 27))" =
= (m(y*, z*
which implies that m* = y-lim, m%.

For the next two results we assume that K4 contains a bounded central
a.i. This is the case if, for example, 4 is a quasi-central C*-algebra. The

(1i£nmo,(y*,m'*))*
Nt =m(z,y),

icm
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notion of a quasi-central C™-algebra was considered by Archbold in 2], where
a C*-algebra is defined to be guasi-central if no primitive ideal contains the
centre. A ("-algebra is quasi-central if and only if it has a bounded a.i.
which belongs to the centre Z(A) of A {[2}, Proposition 1), and Archbold also
proved ([2], Theoreny 3) that, if I is an ideal of A, then TN Z(4) = In Z(A4).
Thus, in the special case when I = Ka, K4 N Z(4) is dense in Z(4), and
so, if Z(A) contains a bounded a.i., then K 4 contains a bounded a.i. which
is central.

THHORKEM §.4. Let A be o C7-algebra and suppose that K4 contains o
boundod central ad. Then K4 i y-dense in (K 4).

Prool Let {e,} be an a.d in K 4 with the required property and suppose
that e & 6{K 4). Then, for any a,b e K4,

m(a, b) = lime,m(a,b)ey = limm(eqa, beq)
24 [4]
= lim am(eq, q)b = lim {mleqs, eq))(a, b)),
o 2

which implies that m =

y-lime, B(m(en, ea)); that is, K4 is y-dense in
H{Ep) =

THEOREM 5.5, Lel A and B be C*-algebros and suppose that K4 has o
bounded central a4, If ¢ is o x-homomorphism of A onto B, then
(i) ¢ can be extended to a x-linear mapping é of §(K,4) into 6(Kg),
and B
(ii) the mapping ¢ is y-continuous.

Proof. We first note that ¢ is norm decreasing ({18], p. 16, Theorem
1.5.7) and that ¢(K 4) = Kp ([17], Corollary 6). Let b1, b2 € Kp and suppose
that 21, 29,71,z are elements of K such that #(m) = ¢(y1) = by and
d(wy) = ¢(ya) = by. If {ea} is & central bounded a.i. in K 4, then, for any
m € §(Ka),

hlmley,wy)) = li}xn Pleam(zy, 22)e) = ligl p(m(z1eq, €a®2))
e 11(];!’1 d)(.’m )C}b(’m(em ew))‘#‘(m?)

- lirin Dy )d(m(ea, ea))dlyz) = d(mlyi, v2)) -

Thus the equation ¢(m)(b1,bs) = é(m{zy,v2)) defines a mepping d(m) :
Kp % Ky — Kg. It is routine to show that é(m) € §(Kp) and that the
mapping m - c:’;( ) of §(K 4) into §(Kp) is linear and is an extension of

é. To complete the proof of (i) we show that m* — (B(m))*. Let a,b € Kg
and supposo that a = ¢(z), b = ¢(y), where z and y are in K 4. Then, since
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¢ is a *-homomorphism, a* = #{z*) and &* = ¢(y*). Thus
(B(m")(a,b) = ¢(m* (z,y)) = ¢((m(y",2*))") = (¢(m(y*, z*)))"
= ((g(m))(b*, a"))" = ($(m))"(a.b);

that is, ¢(m*) = (g?;(m))*, as required.
To prove (ii), let b1, b2 be any elements of K'p and suppose that @, 20 €
K 4 are such that ¢(zy) = by and ¢(xs) = by, Then

| $(m) (b1, b2) | = llé(mler, z))l| < [[mler, )]l
which implies that ¢ : (§(K4),v) — (6(K3),7) is continuous. w
LeMMA b5.6. The sets
Vap = {m e 8(Ka):|m(a,b)j <1, a,be K1}
form a neighbourhood base at 0 for the y-topology on §(K 4).

Proof Clearly ¥, is a y-neighbourhood of 0 in §(K 4} for each 4,0 €
KI. On the other hand, let U7 be any ~y-neighbourhood of 0. Then there
exist elements %1,...,%n, Y1,---,Ym in K such that

{m € 8(Ka): [Im(es,y)| £ 1 (i=1,..,m, j=1,...,m)}CU.

By Theorem 5.2 there exist a1,b1 € KF and wy, ...y tUn, v1,..., 0 in Ka
such that

zy=uey (i=1,...,n} and y;=bw; (J=1,...,m).
Let M = max{|ju;|| [|v;|: 1 €¢<m, 1 <j<m}and let o = VMay, b=
VMby. Then a,b € K and, forany m € Vo, i=1,...,n, j=1,...,m

(@, ys)ll = [m(usas, brug)lf < Jlusl] Imdag, )| [log
< |lmfe, B} < 1,
which tmplies that 1V, , C U, as required.
We now establish a characterization for the y-dual of §(K 4).
THEOREM 5.7. Let A be a C*-algebra and K4 its Pedersen ideel. Then
(6(Ka),v) ={a-g-brabe K}, ge A*},
where a-g-b is the functional on §(K 1) defined by (a-g-B)(m) = g(m(b, a)).

Proof. We note that when a - g - b is restricted to A it agrees with the
usual Arens product of a,b and g; this justifies our use of the notation to
define the functional a - g+ b. Since

|(a-g-B)(m)i < ligll Im(b,a)l| (m € 8(Ka4))
it follows that a-g-b € (§(K4), )" for each a,b € K} and g g A*.
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On the other hand, suppose that f (6(K4),%)*. By Lemma 5.6 there
exist a, b € I} such that [f(m)| < 1 whenever llm{b,a)]! < 1. This implies
that, for any m € §(Ky), |[f(m)| < |Im(b,a)||. On the subspace Wep =
{m(b,a):m € 6(Ka)} we define the functional g by

glm(b,a)) = f(m).

It is clear that g is well defined and that g € (Wyp, | - [)*, with |g < 1.
By the Hahn Banach theorem g has a continuous extension to all of A4; we
retain the notation y to denote the extension so that ¢ € A* and ||g]] < 1. By
the first part of the proofa.g-b € (6(K 4), ). Moreover, for any m € §(K 4),
(a-g-b)(m)=glm(ba))= f(m); thatis, f=0a-g-b u

Let {A; @ € 1} be a family of C*-algebras and let 4 = (37,27 4s)o;
that is, A consists of those elements @ = (a;) such that, for each € > 0, the
set {4 € I: |la;]| 2 €} is finite. With the usual operations of addition and
multiplication, 4 is a C*-algebra, the norm being given by ||a| = sup; ||a:i|
and the involution by a* = (a}). If K4, denotes the Pedersen ideal of 4,
then the Pedersen ideal K4 of A consists of those elements (a;) such that
a; € Ky, and a; = 0 except for a finite number of the #’s. We let y and ~;
denote the quasi-strict topologies on 8(K 4) and §(K 4,) respectively.

THEOREM B.8. Lat {A;: i € I} be a family of C*-algebras and suppose
that each A; hos a minimal central a.d. If A= (30,1 Ai)o, then 6(Ka) is
topologically *-isomorphic to [[;c; 8(K4,), the topology on §(K4) being -y
and that of [z, 6(Ka,) being the product of the spaces (6(Ka,),v)-

Proof For each i € I, ¢;(a) = a; (@ = (a;) € A) defines a natural
¥~homomorphism ¢; of A onto A;. The hypothesis ensures that A has a
bounded central a.d. and so by Theorem 5.5 each ¢; has an extension to
a *-linear mapping, ¢; say, of 8(K4) into (K 4,). Each ¢; is given by the
equation

(hilm))(ai, bi) = ¢i(m(@, b)) (m € 6(Ka)),
where a; = 7 15 the natural embedding of K4, into K4.
We define a mapping & : 8(Ka) — [Tier 6(Ka,) by

£(m) = (¢i(m)).
Clearly € is a #-linear mapping, It is also surjective, as follows. Let (m;) be
any element of [T, 6(K4,). If 0, b are any elements of K 4, then a; = 0 and
b; = 0 except for a finite number of i’s and j’s and so mi{a, b)) = 0 except
for a finite number of 4’s. Thus the equation

(m(a‘rb))w} = m*i(ais b;) (i€ I

defines a mapping m : K4 x K4 — K4 and it is easy to see that m € §(K ).
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Moreover, £(m) = {m;); for, if § is any index in [, then
(85 (m))(aj,b5) = b;(m(@;,b5)) = (m(@;,55)); = my(az,b;),
which implies that ¢j {m) = m;; that is, {(m) = (m;), as required.
It is clear that £ is injective. Finally, we show that £ is topological, Let
U be any neighbourhood of 0 in J];.; 6(K4,). Then there exist clements
ai;, bi; € Ka,, (L <7< n)such that
{(my) : my, (o, b)) €1, 1< Sn}p QU

Let a = 375 Gy, b= 3% 3” and V = {m € §(K4): |m(a,b)|] < 1}. If
m& V, then, for 1 <7 < n,

(63, (m))asy, bi, Y| = |15, (@, by -

Since ¢y, (di;) = ¢i;(a) and ¢y, ('l;";j) = ¢;,(b), it follows from the proof of
Theorem 5.5 that

s, (m(@s, i) | = [, (mla, B))]) -
Thus

i[(qszj (m))(ai_ﬂ b%)” = ”(m(a’: b))ij H = “mij (a"l:j y b‘t_,)” <1 3
that is, £(V) C U, and so £ is continuous.
On the other hand, suppose that a,b &€ K4. Then a; = 0 (resp. b; = 0)
except for ¢ (resp. 7) in a finite set of indices, say I (resp. I3). Suppose that
(my) satisfies |{my(a;, b;)|| € 1 for 4 € Iy UL, Then

||§_1(mz')(ﬂ,b)\f = Sl:_-p Hmi(a@, bi)“ <1,

which implies that £~ is continuous, as required. w

The authors would like to thank the referee for several heipful sugges-
tions.
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