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The Taylor transformation of analytic functionals
with non~bounded carrier

lzy

GREBGORZ EYSIK (Warszawa)

Abstract. Lel L be a closed convex subset of some proper cone in C. The image of
the space of analytic functionals (L) with non-hounded carrier in L under the Taylor
iransformation ay well ag the representation of analytic functionals from, Q'(L) as the
houndary values of holomerphic functions outside L are given, Multipliers and operators
i QL) are described,

Lot £ be an . -connected open subset of C, le. a subset such that
together with any point = € {2 it contains the half line z -+ R _. In the paper
[7] (see also [4]) B. Ziemian introduced the class M (£2) of distributions
we D(R,) extendible onto B such that the local Mellin transform

Mu(z) = u [x()e "],

where y is some cut-off function and Rez is sufficiently small, extends holo-
morphically to 2, and used it to describe regularity of solutions to Fuchsian
type partial differential equations. For u € M) the set C\ 2 may be
regarded as the set of those exponents which enter into the asymptotic ex-
pansion of w at zero in powers x.

1t follows fron our paper that in the case £2 = C\ L, where L € £ (see
notation), a distribution u € M(£2) whose local Mellin transform satisfies
some growth conditions in fact belongs to the space OF of holomorphic func-
tons on some subsel of the universal covering space of C\ {0}, To prove
that, wo extend the definition (given in [3]) of the space of analytic func-
tionals ¢ (L) with carrier in L to the case when L € £ has a non-hounded
imaginary part. Then the Taylor transformation gives an isomorphism of
O'(L) onto @, Tt is natural to call an clement of OF a generalized analytic
funetion ([8]). On the other hand, the (modified) Cauchy transformation is
an isomorphism of AL puto the cohomology class Hi and allows us to treat
OF as a subspace of M(C\ L).
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In the final section we describe multipliers and operators acting on Q'(L)
and OF. We also give an example showing that functions from Ok appear
as solutions to singular differential equations (Example 5).

Since the facts given in Sections 1-3 are a straightforward generalization
of those given in [3] we state them without proofs.

0. Notation. Let { > 0. We denote by E(t) the universal covering space
of the punctured disc B(¢)\ {0} € C and by C the universal covering space
of C\ {0}. Recall that any point x € B(t) can be written in the form
z = |z| exp(iarg z), where |z]| < &.

For A C C we set

A. ={z e C:dist(z,4) <¢e}, £>0,
A+s={z€C:z=a+sforsomeac A}, seR.
The supporting function of 4 is given by

Hulg,n) = sug(&Rez +nlmz), §&nelkR.
z€

Let —0o < k1 < ko < oo. Denote by £*1#2 the collection of all closed
convex subsets L of C satisfying: for every & > 0 there exists Oy such that

(k1 —8)Re( —Cs <Im( < (ka+68)Re¢(+Cs for¢el.
We put
L= LJ [huka

k1 <k
For unbounded L € £ we define

kf = sup{k, : L € £rh} kY =inf{ks : L € chukey
By rotation of L we can assume that k¥ < 0 < k£, In this case we put
b = { (be)™t i k{ <0, o _ [(k)) ik >0,
—oo  ifkf=0; 2 0o if bt = 0.
We set
I ={zeC:kfRez <Imz < Fc.‘zLRez},
I’ ={z€C:RezRel +ImzIm¢ >0 for ¢ € L,Re( > 0}

and call them the approzimative and the dual cone of L, respectively. Ob-
viously (L%)0 = 72»,

We also set
IR —feeC:|al< texp(min(ky argz, ke arg2))}, TIF = I“t’“f'kﬂb .
Observe that I'Y is the sum of all I'*''** such that I, € £Fke,
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We abbreviate
d ~ d
De—, D=x— and t.,=texp(—#) fort>0, &>0.
dir dr

O(W) denotes the set of holomorphic functions on an open subset W of
some Riemann manifold. The value of a functional S on a test function ¢ is
denoted by S|

1. The space ((L,1}. In this section we define the fundamental space
Q(L, t) and state some basic properties of the dual space Q'(L,¢).

DEFINITION. Let L e £, 6 >0, & > 0 and ¢ > 0. We define

QuiLitw) = {p € COULS) N O(Ls) : 05,5ip) = sup lp(¢)EZ5) < 0o}

CeLs

Q(L,t) is the inductive limit of the Banach spaces @y(Ls, 1) over § > 0
and & > 0.

ExAMPLE 1. If I € £ and = € I'* then the function { — & belongs to
QL 1)-

Proof. Indeed, if argz > 0 and la| =t.., exp(kf arg z) for some &y > 0,
then for any & = 0 and K < K1,

05, (2) == sup exp{(x — £0)€ + arg (ki€ —n)}
el
< sup exp{(r — k1)€ +argz(ef +C)} < o0
(& Ly

for o sufficiently small. The same is true if arg 2<0 and |z|<texp(kf arg ).

Observe that if L is a compact subset of €, then the function ¢ — xb
belongs to @(L,t) with arbitrary ¢ > 0 for every « € C. - .

We call an element of the dual space Q'(L, t) an analytic functionol .wm.th
carrier in L of exponentiol type . A linear functional S‘ on Q(L,1t) is in
Q' (L, t) if and only if for every 6 > 0 and & > 0 there exists a constant ¢/
guch that

19Tl = Cosnle)  for o € Qulle o).

If Ly 18 a compact convex subset of L € £ then by the Runge theorem.Q{L, t)
is dense in @(Lp). Hence by the I aln -Banach theorem we may confsmler the
gpace of analytic functionals with carrier in Lo as a subspace of @ (L,t).

PRopOSITION 1. Let &y < tn. Then the natural mapping Q' (L,tz) —
Q'(L,tqy) 48 injective.

Proof. Since multiplication by # ig an isomorphism of Q(L,1) onto
Q(L,t) we can assume that £y = L and put ¥ =1 > 1. By the Hahn-Banach
theorem it is sufficient to show that Q(L,1) is a dense subset of Q(L,t). To
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this end take @ € Q(L,t), put p,(¢) = t7¢/"p(¢) for ¢ € L.,n €N and
observe that Q(L,1) 3 v, — w in Q(L,1).

2. The spaces RE(C\ L,¢), RE(C,t), HL(C,t) and I} (C,¢). Tn this
section we use the following version of the Phragmén-Lindelof theorem (see

1l [3])-

THEOREM 1 (Maximum principle). Let L € £ and R > 0. Suppose that &
is a holomorphic function on Ly and continuous on Ly such that for some
M > 0 the function

Li 3 z — exp(—M|z|)F(z) is bounded.
If |F(2)] < K on the boundary of L, then |[F(2)| € K on Lp.
DermiTION. Let Le £,0 <e < R, £ > Oand ¢ > 0. We define
RBu(Lp\ Le,t-y)

={F e CULr\L)NOGnt{Lp\ L)) : sup |F2)t*,| < oc},

2€Lp\Ls

Ry(Lg,t_.)={F € C°(Lr) NO(Lg) : sup |[F(2)t* ] < co}.
#E€LR

Bo(Lr\ Le, t—y) and Ry,(Tg,t_,) are Banach spaces, and by the restric-
tion mapping the second space is contained in the first one. The following
lemma follows from Theorem 1.

LEMMA 1. Ry (Lg,t_ ) is a closed subspace of Byu(Lp\ Le,toi)

Let 0 < g1 €« e <« R < Ry and 0 < Ky < & Then the diagram of
restriction mappings

Ry, (LR1 \ Lsutﬁm) - Rb(LR \ L., t“h‘-)
T T
R]J(ZRI:t~K1) - Rb (Eﬂ,?t-.‘ﬁ)

is commutative and the horizontal mappings are compact.
Thus, we can define the spaces

R{(C\L,t-) = limproj Ry(Lg\ Le.t.n),

—+ 0, E— ()

RE(T, 1) = Yimproj Ry (Tp, o).
R—oo
It follows from Lemma 1 that RE(C,t_,) is a closed subspace of
RE(C\ L,t_,) and we can define

‘ RE(CN\L,t.,)
Hi (C,t ) = = A707me]
L,b( h-) R%(C,t_um}
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LEMMA 2. Let ky < k. Then the notural mapping @ : Hf (C,t-,) —
HE (€l ) s injective.

The proof follows by Theorem 1.

Farther, we define

RY(CN L, t) == limproj RE(@A\ L1,

o=}

RMC#) = lmproj BE (T, t) .
Y

I4is casy to show that B¥(C, ) is a closed subspace of RE(TN L, #).
DerINFrtoN. (1) We define the space
. RMCN L)
THE 8 )
Hi(Ct) = REC.D)
(i1) Further, we define

BT, 1) = 1111191(')03' Hi 3, (Coton)-

By the definition an element f of H +(C, %) is defined by a function F €
O\ 1) such that for every > ¢ > 0 and & > 0,
sup  |[F(2)t,] < oc.
On the other hand, an element g of H +(C, 1) is given by a set of functions
G, € OC\ L), £ > 0, such that for every R > ¢ >0,
sup  |Gu(2)i2,] < 0o,
z& L\ L,
and for every R > 0 and k1 < &,

sUP th(z) - Gm_(z)_ulj-'i;: <00
e hin

To Lhat case g will be denoted by [G(, +0)] or [GF 0)-
Theoren 1 yiclds the following

LisMMa 8. The nobural mapping i« I (C,6) — Hp(C,t) is injective.

3. The boundary value transformation. Let pe@(L, t). Take g0 >0
and my > 0 such that p € Qu(Luylong). Then for F € R(C\ L,t) the

integral

J elOF() &

L,
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converges abgolutely and uniformly in ¢ with gy < £ < g;. So it does not
depend on g < &y and can be written as

[eQF(Q .
8Ly
For F € R(C\ L,%) we define a linear functional b(F) on Q(L,t) by
1
WF)el = 5= [ PlOF(C) .
8Ly
Since for ¢ € Qu(Ley,tny), €1 < € < &p and k < Ko,

Bl < 5= [ (ORI

AL,
ReC — Re
: 2 Bif [F(O| Mho CSQ-I‘DIZU J[79{0“5”"50 ¢ < CQE(JMO(‘P)
with
1
C=o s [F(QORR/ [ exp(n— ko) Re¢dC,

(Eligg\Le, L.
we get the following:
PROPOSITION 2. For F' € R(C\ L, t) the functional b(F) is continuous
on Q(L,t). If F € R¥(C, 1) then b(F) =0.
Thus, we can define a continuous linear mapping
b HL(C,t) — Q'(L,1).
We call it the boundary value transformation.

Suppose that [G o] € HL(C,t) is given and let w € Q(L,t). Then ¢ €

Q(Leg, bty ) for some g5 > 0 and sy > 0. By the Cauchy integral theorem
the integral

J (G d¢
BL,
is independent of 0 < & < g, 0 < & < Ky, and the choice of G, from the
cohomology class [G4o]. We write it

[ o6t

AL,

(¢, +0)]d¢ .
We define the functional
Heuallel = o [ o(Q)[G, +0)] .

8L,
As in the case of Proposition 2 we get
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PROPOSITION 3. If g & I}(C, 1), then b(g) is o continuous linear func-
tional on Q(L,1)

We call the mapping
b HE(C,8) = Q' (L, 1)
the modified boundary velue tronsformation.
[unediately from the definitions of the mappings 4,5, b we get
Prorosition 4. The following diogram of continuous linear mappings
ig cornanaututive:
Q'(L,t)
b B
HL(C,t) = HE(C,e)
Remark. It can be proved that all the mappings in the diagram are
topological isomorphisms (see [3]).

4. The modified Cauchy transformation. Denote by X o 0<F<r,
any cut-off function (not necessarily smooth) supported by [0,7] and equal
to one on [0,7], 't

r
(1) G (Q) = j Xip (@)™ da

n
It is casy to note that G, extends to a holomorphic function on €\ {0}
with siraple pole al zero with residue —1. Furthermore, it satisfles

Cr-Ret for Re¢ = 0, [(] > 1,
v -

(2) !Cw-,'r(q | {C‘fr -~ Rod for Reg < 0 lc‘ > 1.
The function Gy, will be called a modified Cauchy kernel. In the above
definition we can also take ¥ = r and put

. ‘ ’r__ﬂq
G‘I',r(q) = ":”Ea 4 7é 0.

Lumma 4. Let (g, be the modified Couchy kernel with r <t. Then
C\NL 32— Gpplz=()

Furthermore, it belongs tlo

for Red < 0.

i o QUL,)-valued holomorphic  function.
RY(C\ L, 7).

Proof, In fact, for z € C\ L, Rez > ~R, & < dist(z,L) and & such
that r < .., we get

=~ Rez e Rz

) e G
sup |Gla oz — )70 € On csup [FSZ5] = Ce o rT
CG;L'IW ‘ »’r,r( C) h.l ! € CELe
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THEOREM 2 (The Cauchy integral formula). Let L € £ and ¢ € Q(L, ).
Choose eq and kg such that e € Qu(Ley, boy ). Let Gz p be a modified Canchy
kernel with t_., <7 <t. Then

(3) w(() = E—% f B(2)Grp(z— ) de for( €L, e<en,
aL,

and the integral converges in the topology of Q(L,t).

Proof. Fix ¢ € L, and denote by 4 the boundary of the set {z € I, :
Rez < d}, where d is big enough. Then by the usual Cauchy integral formula
we have

() = —

=5 f w(2)Grrlz—()dz for (€L, and Re¢ < d.
i
T

The integral over the segment {z € ¢ : Re# = d} is bounded by Cdt?, x
rBe=4 “and hence, converges to zero as d — co. Now for k1 such that

T < i, We have, by Lemma 4,

sup f o(2)Gs (2 — () dz|t§if
CELEIQ 8Ls!¢

< Cep, f e(2)r ®%dz w0 asd— oo,
BLgq
where 8L g = {2z € dL, : Rez > d}.

DEFINITION. Let G, be a modified Cauchy kernel. We define the (7, 7)-
Cauchy transformation of S € Q'(L,t) by

1
CirS{z) = 2—m:S[G;,T(z - forz¢ L.
It follows by Lemma 4 that C; .5 € RE(CN\ L, 7).
LeMMA 5. Let ¥ <F1 <t and § € Q'(L,t). Then the function
F(Z) = CF.T'S(Z) - CFl.*‘LS(z}J =& L,
extends to an entire function which belongs to RE(C,7).

Proof. Indeed, the holqmorphic extension is given by
1
Fz) = =8[(Gsrp — Gr, vy ) (2 — 3, zec,

2mrd
where Gz G5,y 18 an entire function bounded by Cri~R*¢ for Re¢ > —R.
By Lemmas 4 and 5 the set of (7, r)-Cauchy transforms of a functional

5 € Q'(L,t) defines a cohomology class €3 = {CsrSYice] in 1?}%{(@, 1),
which we call the Cauchy transform of §.
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THROREM 3. Let CS € E’i‘(@, t) be the Clauchy transform of S € Q'(L,1).
Then the following inversion formula holds:

Slel =~ [ @(=)[CS40(z)ldz  Jor € Q(L,1).
oLy,
In other werds, ho = id. Purthermore, C ob = id.
Proof By the Cauneliy integral formula (3) for § € Q'(L,t), p € Q(L, %)

and ¥ elose Lo t, we derive

[ wlz)Cs o) ds = ~ [ p(2)Cp8(z) de

i DL,
| 1
=i [ p(2)8[Gh0 (2~ )] do
2wi
O,
o | .
= :‘“““S[ j P(2)Cre(z - -)dz] = Sly].
Qa1 oh,

7 ; L

Take now g € M} {(C, 1), 1t is given by a set of functions G. € Ry(C\
Lntoo)y b O, such that G~ Gl € Rl’; (Cytey) for ky < k. Lot p € Q(.L_, t).
Then @ € Q1{(Foegsbug ) Tor some g0 > 0 and kg > 0. By the definition,

Bg) = S 14 given by
8] ==~ f p(2)Gy(z)dz  for = < ey, k< hg.
Blis

By the first part of the theorem, for ¥ > . we have

Slel =~ [ @(2)S[Gralz — N dz.

Hlig
S0
(4) f plehhe(z)dz =0,
By
whore

Tﬁ,‘- (:}) (;M(‘:) e JSF[G-P‘W(E: e ’)] for z € C \ L. '
Wo now show that v, € RE(C\L, t.,) and that +h, extends holomorphically
fo a function ¥, € RI(C, by ). To this end put
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Lemma 4 we have G‘K(z) = ),{z). Thus, if we put

~  [1he(z) forzeC\L,

Pn = Gu(z) for z € L.,
then (,:K is an entire function, which by Theorem 1 belongs to R{;(C,tm,‘,).
Hence [t,] = 0 in HL(C,#) and g = C o b(g).

COROLLARY 1. Let Ly, Ly € £, Ly C Ly, and ty < ty. Then the nuiural
mapping @' (L1,t1) — Q'(La,t3) is injective.

Proof. By Proposition 1 we may suppose t1 = ¢z = ¢. Now it follows by
Theorem 3 that it is sufficient to show the injectivity of the natural mapping
H} (C,f) — H} _(C,t). But this is obvious since for every k > 0,

REYCA Ly, tow) N REZ(C 6 € REH(C, 1)

5. The Taylor transformation

DEFINITION. Let L € L. We define the Taylor transform T'S of § &
Q'(L,t) by
TS(x) = 8,[z%
By Example 1 and the formula
(5) D(TS) = T(a$)

it is a well defined holomorphic function on Ik,

for 2 € I'* .

In order to describe the image of Q’ (L, ) under the Taylor transforma-
tion we define the space

OF = {ue O(IEY - for every e > 0,1> 0
there exists a constant C = C'e, x) such that
lu(z)] < Cexp H_ 1, (~In carge) for 2 & f‘f‘jﬂm}.

THEOREM 4. Let S € Q'(L,t) and u(z) = T8(z) for w € Ik, Then
u e OF.

Proof. Indeed, forany e >0,k > 0 and z € F.f:m we have

&

[ufz)| < CCSHIP leSt= ¢ < o exp H.p, (~In|zf, arg 2)

6. The Mellin transformation. By Theorem 4, TQ'(L,t) ¢ OF. In
fact, the Taylor transformation is an isomorphism between TQ'(L,t) and
OF. The inverse mapping is given by the composition of the Mellin and
boundary value transformations. To show this we need to recall the definition
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of the first one (cf. {6]). In this section we agsume that k¥ < 0 < k& which
can be obtained by rotation of the original L.

LieMMa 6, Lelw € 5{, 0<r<tandbl <b<bl. Put
yop == fa € DF 2= rexp(~(1+ib)p), 0 <y < oo},
My pulz) == f w(z)e ! du
Yo b
where (2, = {2 € C:blmz > Rez+ Hy(~1,0)}. Then My pu € O({) and
Jor every a > My, (~1,b), .
| M ul2)] < Cupr™ B for bImz 2 Rez+a.
Proof Let z € §2;. Takes > 0 and § > 0 such that g|b|-+6+Hp(~1,b)+
Rez ~bimz < 0, Then
| M pu(z)]
o
pe f (1} = ib)ulrexp(—1 — ib)p) exp(l + ib)pz dip
)

for z € §2,

< (p Ros T explH 1, (~Inr+ @, ~bp) + p(Rez — bImz)] dp
0
< (o ee
since by the properties of the supporting function, for ¢ large we have
Ho g, (~ur 4@, ~bp) < (Hu(-1,0) +e(l+bl))e + &
Observe also that the constant € is uniformly bounded on {bImz Z Rez+
a}, a > Hp(~1,b).
To study the relations among different M pu we need the following
corollary from Theorem 1.

COROLLARY Y. For by < by put

U Y by -

by by

»Ff)L.ng,T‘ s

Let v & O, ) N OV (T, pg,e) be such that
()| < Clal A Jor© € Ty, with some 0> 0,430

and that

(z)| < Clal®? forz € o Y Yt with § > 0.

Then

w*t for £.€ iybar

lo(z)] € €
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- Proaf. Indeed, the function
F(p +ib) = (rexp(—1 — ib)g) %o (r exp(~1 = ib)ep)
is holomorphic on the strip
Ly gy = {p+ib:0< @ <00, by <b< by}

and satisfies the assumptions of Theorem 1. By that theorem we get the
conclusion.

LeMMAa 7. Letu € (5;5, D<r<tandbf <b <by < b;’g. Then
Mopu(z) = Myp,ulz)  forz e (2, N2, .

Proof. It is sufficient to show that for some ¢ > max {7, (~1,b),

Hr(—1,b)) and = satisfying b;Imz > Rez+a, j = 1,2, we have
My ulz) = M, poulz) .
To this end, put v(z) = w(z)z™*~! for z € I'E. Then v € O(T iy b ) N
CI'b, por) and for € Ty, 4, 1,
[o(z)] < Cexp Hop, (~In 2|, arg z)r~ R** L exp(Re 2 4 1 = b Im Z)p
< CrmRe*lexp|(Rez — bImz + 1+ Hy(~1, ) -+ e(1 + 1)) -+ 6]

< Cilz ™ with A= sup (Rez—~bImz+a-+1).
bisbsby

Forz e Trbys J = 1,2, we obtain

(6) Jo(z)] < G2l with some § > 0.

Thus, by Corollary 2, (6) holds for z € Iy, by For d < r put
Ya={e € Dy p,r:x=dexpib by <b< ba}.

Then | fw v(z)dz| < C1d® — 0 as d — 0 and the hypothesis follows by the
Cauchy integral theorem.

It follows by Lemmas 6 and 7 that for u € OF k> 0 and b < b < bk,
the function M, __,u extends to a function M u holomorphic on €\ L
such that for every § < b = min(b¥, —-bf)

IMt_Nu(z)} < C@Et:émz for z g C\Lg, where LY = @\([21,1,4‘“ 125 .5) -
1 0
LEMMA 8. Let k1 < k. Then

Glz) = My u(2) ~ M, u(z)

-1

is an entire function satisfying

Gl < { O forRez <o,
- Ot:f‘ez for Rez > 0.
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Proof, In fact, we have

by

f w(x)z™* 'de forzeC.
fin

Glz) =

Thus, for every & > 0, the set of functions {M;_, v} defines an ele-
ment g of the cohomology class H }J +(C, ). Since
(] HLA (€t = () QL 6) = Q'L t) = HL(C,¥)
80 0
we obtait the mapping
M OF — HE(C, ).
FxamMpPLe 2. The power function 2 — ¢ belongs to 5{’ if and only if

o € L, In that cage
t()i—-:z
M, (&) (z) = ==

a—z
Now we are in a position to prove the main result of the paper.
TuROREM 5. Lel v € OF, f = [Mu) and S = b(f). Then
u(e) = T8@) forx &I,
Proof. Take z & I}, Then z € It and || = t_y, for some § > 0 and
s > 0. For simplicity suppose that bf > —oc and b < oo. Let
-0 6

ot [P 7.} y
K < min (2b{‘+6’25%~5) 0

for z  a.

and € > 0. By the definition of b we have

TS(a) = - [ My u(@e*de =~ [ M u(z)a”dz
O L aLt/?

. . 5/2
gince the function z — My u(z)e® decreases exponeﬁ.tmlly on Lg'* \ L as
Rez -+ oo, Indeed, we have either 0 < arge < ko(by +6) or 0 = argx >
-‘ﬁn(bé" ~ §). In the first case we devive, for z # L,

My u(2)a] £ C exp((k - so) Roz — Im zarg 2)

Clexp(s— ro)Rez : 1f Tmz = 0,
¢ expl(r — ko) Rez + ro(bf -+ 6)Imz) ifImz <0,

-

and for z & Lg’/'&’

&
(H? - h‘.(_|) Re # -+ .‘i()(bf - 5) Imz £ (h’. + Nom) Rez+Ch.
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In the second case we get the analogous estimate, Decompose 8]22/ ¢ into the
union of two half lines Ly U La, where Ly lies above and Ly under L. Denote
by w the common starting point of Ly and Lp. Then for z & Ly, j = 1,2,
we have

Mi_ufz)= [ u(Q)¢*dC,

7
where Y1 = 7,_, pp_s2 804 Y2 = Vi, pLys/a THUS

TS() = ~ [ [l dcardes [ [ Q)T do" d

o Ly s
- 7{ E%Q(W I{ (%)”dz>dC+ﬂf{ u_(CQ(L[ (%)zdz) .
wa—fwu(g) Gi)wlnwilng d¢ = u(z)

by the Cauchy integral formula in logarithmic variables.

COROLLARY 3. Let L € £ and t > 0. Then we have the following dicgram
of linear topological isomorphisms:

Q'(L,¢) =z OE
AN S M
HI(Ct).

Proof. By Theorems 3 and 5 we only have to prove that £ = Mo T\

To this end take S € Q'(L,1). Then for Rez small enough and any & > 0
we derive

M_, o TS(z) = fS[w iy
te
:S[ f ! dw} = Cp it Ol2)
0

Next by uniqueness of holomorphic extension both sides are equal on C\ L.

7. Multipliers and operators. In order to describe multipliers in ¢’
we introduce the following:

DEFINITION. A function P holomorphic in some neighbourhood Ls of L

is said to be of infraeaponential growth in L if for every € > 0 there exists
C. < oo such that ’

[P({)] < Ceexpell|  for ¢ € L.
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We denote the dpace of such functions by Infe(L).
If Iy ¢ Ly then lofr(Ly) C Infr(Ly). For a compact set L, Infr(L) consists
of functions holomorphic in seme neighbourhood of L.

PrOPOSITION B, The multiplication operator
Q(L,t) 2 p — Py e Q(L,1)

ig continuona if and only if P & Tufe(L). In this case by duality the multipli-
cation operator
QUL 28— PS¢ Q(Lt)

is also conlinuous,

Proof. The sufliciency is obvious. To prove the necessity observe that if
P ¢ Infr(L) then the function ¢ — (¢ $)a¢ is not in Q(L,t) for @ sufficiently
close o L.

DEFINITION, We define the action of the differential operator of infinite
order with symbol P € Infr(L) on a function v € 0’3 as follows:

P(D)u = T(P()b(Mu)) -

By Proposition &, P(D ) (DL — O"’ is a well defined continuous op-
eration, If P is a polynomial, then f’(D) is a usual differential operator.
However, in the general case it may not be local as shown by

Examresi 3. Let a € -19 and w € OF. Then
e"Pulr) = ule*s)

Proof. Indeed, the function a ~ e** belongs to Infr(L) if and only if
a ¢ ~LY. In this case

T'(e mb(M“))(fﬂ) e e""’"E(Mu)[m'] = u(etr),

for z € It

zelt.

ExAMPLE 4. Since
1 £33

e 2 f 2“do for lz| <1,

o L1V
0

for PP & Infe{[0, 00)) we have
P(TJ)(M«)W) f Pla)e® do for |zl < 1.

By the definition of the I'-function we also have (see [2], 14])

L Pt _M;lm e (—ing)?  for |z <1 Refd < 0.
D (mm = (~ing)? forls| <1,
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EXAMPLE 5. Let § > 0 and A > 0. The function

u(z) = exp [— I%‘r—(—m m)lﬂ

belongs to OF with

'rr
L:{ze@:llmz\écat W0 Re z

and solves the equation

d
((— lnm)“’sm% - )\)n =0.
Proof. Indeed,

ju(z)l = exp [— i _)'\_ 5 Re(exp(1 + 8) ln(~In m))]
=exp —7 j‘_ 5 exp{(1 + 6)1n Vn® |z| + arg? z)

) e agT
X €08 ((l + §) arctan (ln l-’”))]

for'z & I'l with some C < 00

and this is bounded by
CH_p, (~In|z|,arg z)
if and only if

. Jarg x|
" —lInlz|

< tan

"3y 5)}’

T
L> {z eC:|Imz| < cot (m> Rez}.

In order to describe multipliers in @F we introduce the space
Infe(IF) = {f € O(IF) : for every e > 0 and £ > 0
there exists O = C(g, &) such that
|F()| < Cla| = expleleagal) for @ & I .
PROPQSITION 6. The multiplication operator
OF 3 u— fuedf
is continuous if and only if f € Infr(IF).

o {a: € B(1)

Proof. The sufficiency is obvious. To show the necessity take f &
Infr(IF). By rotation we can assume that either

I — I < Ll : . ap ::?:_“
{1 mz| £ cot (2(1-1—6)) Rez} with some § >0 or L IR
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1Mut
w=inf{be R:b+ L C L},
wl) 2% oxp(~(—Inz) ) in the first case,
h w in the second case.
By the proof of Example 5 observe that Juéd 5{
LEMMA 9. f [ ¢ (D)) and R(y) = flexp(~y)) for y € LY — Int,
then Bt ¢ Infe( L« Int -+ &) for every s > 0, Conversely, if

e ﬂ lfr(L —nt+ &), [flx)= B(~Ina) forze k.
ol
then [ € In{']'(l”,"’).
Proof Indead, if £ & Infe(17) and y € LO--In t+x, then exp(—y) € .
and

|R()| = Clexpeylexp large™ Y|
< Cexple(Rey + [Tmy))] < Cexplely)

Hence, R € [nfr(LY 4 s) with #1 > k. On the other hand, if R €
Tofr( LY ~ It 4 &), then

|F()] = R~ Ina)| & C exple] - Inz|) € C|!~* exp(e|arg 2|}

for w € Il .

DirINrTIoN. Let R € (Vg nfr(L — Int + &), FHz) = R(—Ilungz) for
g & Il and 8 € Q'(L, 1), We define the action of the operator R(D) on .5 by

R(D)S = b(M{FTS)).

By Lemma 9 and Proposition 6, R(D)S is a well defined element of
Q' (L, t).

ExAMPLI 6. Lot R(y) = expay fory € LV~Int witha € —(LN0 = —L".
Then by Example 3,

Re n Infr(L" ~ It -+ &)

1l

anel for & ¢ Q'(L, £} we have

Bxampui 7. Let f(x) = (- Inaz)® for x € rf, Lo [0,00) and k € N.
Then f € Infr{l'{) and

DFS = BM((=In )T 8)).
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Weighted integrability and L'-convergence
of multiple trigonometric series

by

CHMANG-PAO CHEN ([Hsinchu)

Abstract, We prove that if 5, - 0 as max(|j], [k]) — oo, and
!:E; o - i
ST 3 ATk ) Auesl < o0,
[HENEREIEES

then fe, ) dlayi(y) & L) ad [ smn(y) = F9)l - [¢le)i(y)] dedy — 0 as
tmin{ra, 1)~ o, whare fu,y) i the lmiting function of the rectangular partial sums
sy (i 1) (e, ) el (4, ) fvre pire of type 1. A generalization of this result concerning L-
convergence s also eslablished. Bxtensions of these vesults to double series of orthogonal
Functions are also considered. These resulls can b extencded to n-tdimensional case. The
aforerontioned results generalise work of Balashov [1], Boas (2}, Chen (3,4, 5], Marzug [9],
Méricz [L 1], Mériez-Sehipp-Wade [14], and Young [18].

1. Introduction. Let T? = {(z,y) € R? : = € &,y < w}. Consider the
double trigonometric series
o =]

(L.1) )y

cjhev-(;lm%y) i
j tars oo 0Dttt v

We assume that there arve two positive, nondecreasing functions #(t) and
(1) defined on [1,no) such that

(1.2) egp 0 as max(lf], [k]) — 00,
do R - .
(13) SN ekl DI Avsess] < o0,
FIENERTIEES
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