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Spectrum of multidimensional dynamical systems
with positive entropy

by

B. KAMINSKI (Torud) sad P. LIARDET (Marsellle)

Abstract. Applying methods of harmonic analysis we give a simple proof of the
multuhmemmmﬂ version of the Rokhlin-Sinal theorem which states that a Kolmogorov
Z-aciion on a Lehesgue space has a countable Lehesgue spectrum. At the same time
we extend hiy theorem to E™-actions. Next, using its relative version, we extend to
E™-actions some other general results connecting spectrum and entropy.

1. Introduction. One of the important results in classical ergodic theory
18 the Rokhlin Sinal theorem which states that every Kolmogorov automor-
phisim (Z-action) of a Lebesgne space has a countable Lebesgue spectrum
(¢f. [RS]). This theorem has been extended to measure-preserving Z%-actions
in [Ka]. The main tool used in the proofs of these theorems are perfect o-
algebras, The proof of their existence is complicated and it seems that it is
very difficult to extend it to measure-preserving actions of general groups.
It is worth mentioniug that it is still an open question, asked by Thou-
venot, whether Kolmogorov actions of any countable abelian group have a
countable Haar spectrum.,

In this paper we give a simple proof of the above mentioned multidi-
mensional version of the Rokhlin -Sinal theoram by a coucstrnction of two
groups of unitary operators satisfying a commutation relation of the Weyl
type. This mothod allows us also to extend this theorem to the case d = oo,

Our method {9 gimilar to that wsed by Helson in the investigation of
invartant subspaces (ef. [H]) and by Mandrekar and Nadkarni (cf. [MN]) to
sinplify the proof of the generalized . and M. Riesz theoram concerning
the quagi-invariance of analytic meagsures on compach groups.

The idea of our proof may be used without major changes to prove
the following relative version of the result mentioned above. Every ergodic
and relatively Kolmogoroy Z%-action 7' (1 € d < oc) on a Lebesgue space
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(X, B, p) of positive entropy with respect to a factor o-algebra H has a
countable Lebesgue spectrum on the subspace L?(X, p) © L*(H). From this
result it easily follows that Z3-actions with singular spectrum or with spec-
trum of finite multiplicity have zero entropy.

2. Preliminaries. For d € NU{oo} we denote by Z* the d-dimensional
integers if d € N and the countable direct sum of copies of Z if d = oo,

If A C Z%is a finite set then |A| denotes the number of elements of A.

A sequence (4,,) of finite subsets of 74 is gaid to be a Fglner sequence if
for every g € 22,

Tim |47 (g + An)Adn| = 0.

Let 2(Z4) be the set of all linear orders of Z? compatible with the group
operation. For w € 2(Z%) we denote by N,, the set of all negative elements
of 74 with respect to w. R

For a given finite measure ¢ on the dual group 7% we denote by 7 the
Fourier transform of o, l.e.

3g)= [ x(g)o(dx),

id

gezt.

Tt is well known that the group 74 is isomorphic to the d-dimensional torus
T4, We denote by A the Lebesgue measure on T? in the case d € N and the
Haar measure in the case d = co.

Let (X,B,u) be a Lebesgue probability space. We denote by A the
trivial sub-c-algebra of B. For a given sub-o-algebra A C B the symbol
L?(A) stands for the subspace of L*(X, p) consisting of all A-measurable
functions. We put

13(4) = {f € L3(4): [ fau=0}.
X

Let T be an action of Z* (briefly, a Z"-action) on (X, B, 1), i.e. a homo-
morphism of Z% into the group of all measure-preserving automorphisms of
(X, B, ). We denote by T the automorphism which is the image of ¢ under
T, for g € Z°.

Let H C B be a factor o-algebra, i.e. T9H = H for all g € Z%. The factor
of T determined by H is denoted by Ti.

A Z% action T induces a unitary representation U/ = Uy of 2% in L2(X, k)
defined by

Usf=foT9 fel*X,pu), g2’

For f € L?(X, i) we denote by o'y the spectral measure of f, i.e. the measure
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on 74 such that

Ut = [ xlg)os(dx),
ﬁd

We say that T hus o Lebesgue spectrum if the maximal spectral type of Uy
is equal to the type of the measure .

If, in addition, the multiplicity function of Uy is infinite we say that T
has a countable Lebesgue spectrum,

For a countable measurable partition P of X and a factor r-algebra H ¢
B we denote by H(P) and H(P | H) the entropy of P and the conditional
entropy ol 7 under H respectively. For the definitions and basic properties
of the above entropies the reader is referred to [Pal. Let Z denote the set of
all countable measurable partitions P with H(P) < co.

For P & 2 and w & $2(Z%) we put

Pp= \/ TP, P =P;=\/ T9P.

A g&N.,

AR

Arguing similarly to [Kil] one shows that for every Felner sequence (A,),
P ¢ Z and a factor e-algebra H the limit
i Ly g p
lim |A "\ T
YEAn

) =BT | H)

existy amd does not depoend on the choice of (A,). It can be shown in the
same way as in [Pi] that for every P € 2 and w € 22(Z%),
R(PT|H)y=HP|P;VH).
We define the relative entropy h(T | H) of T' with respect to H by
(T | H) = sup{h(P,T | H): P e 2},

and the relative Pinsker o-algebro w{T | H) of T with respect to H as the
simallest e-alpebra containing all P & Z with (P, T H) = 0.

It is clear that A(T | V) is equal to the entropy A(T") defined in [Kii].
The a-algelea (T 1 N) s called the Pinsker o-algebra of T.

3. Main result. A Zl-action 7' is said to be a relative Kolmogorow uction
(briefly K-action) with respect to H if «(0" | H) = H, and a K-action if
that equality holds for H = N

CENERALIZED PINSKUR FORMULA. For every P, Q € 2 and w € 2(Z4),

RPV QT =h(PT)+ H(@Q|QSV Pr).

Prool. Lel (A,) be a Falner sequence in 7% guch that A, C A,
n 2 1, and [J20 Ay = 74, Tt s well known that such a sequence exists
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(cf. [G]). For P € £ we put
= \/ 797, n=1.
gGAn
Let P, Q € Z and w € 2(Z%). Applying elementary properties of the con-
ditional entropy we have
H(PTLVQTL) :H(Pn) +H(Q'n. 1 Pn) P H(Prt)+H(Q7A | PT); nzl.
Dividing both sides by |A.| and taking the limit as n — o0 we get
R(PVQ,T)>hPT)+ HQ|QSV Pr).
In order to show the opposite inequality we take ng = 1 such that
O € Ap,, where @ denotes the zero element of Z%. It is easy to check
that A(P,,T) = h(P,T), n > 1, and therefore, using simple properties of
the conditional entropy, we have
R(PVQ,T) S h(PyvQ,T)=H(PoVQ I (Pa)gVAD)
=H(P, | (R, vVQI)+H@Q | (P)o VPV QD)
<hP,T)V-+HQ|Q,VE), n=ng.
Letting n — oo we get the desired result.

COROLLARY 1. For every P, Q € Z and w € 2(Z%) we have

Jlim J(P|P;VTIQC) = WPT).

Proof Since the proof is similar to that in the classical case we give
only a sketch.

Let g € N, From the Generalized Pinsker Formula and simple properties
of the conditional entropy we have

R(P,T)+ H(Q | Q3 V Pr) = h(P vV T9Q,T)
= H(P| P; VT'Q3) + H(Q| QG VTPV PJ)).
Hence
(1) H(P|F7vTQ.) =P T)+H(Q|QZ V Pr)
- H(@Q|Q, VTPV EN.

Since Veen, TPV P]) = Pp, we get the desired result by passing to the
limit as g € N,,,.

COROLLARY 2. If T'is a K-action then for every P € 2 and w € 2(74)

we have
N 7=
QENw

where P, =PV P .
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Proof For A € Ny, T9P. and the partition Q = {4, X \ A} we have
0= H(Q|T'P.) 2 HQ| Qs VTP,), ge&N..

Therefore it follows from Corollary 1 that A(Q,T) == 0. By our assumption
Q is trivial and so A € N

In the proof of the main result we shall use a property of Z¢ called
rigidity. We formulate it for more general groups.

Let G be an abelian, countable and torsion-free group written additively.
We denote by J(€&) the sot of all monomorphisms J : G — R. It is known
([Ru]) that J(G) = O

For g € (7 and y ¢ G we put {x,9) = x{g) and we consider the dual
homomorphism 7: & — ¢} defined by the formula

(F(t),g) = 2™ teR, geC.

Since the equality (7(8),¢) = 1 for all t &€ B implies g = O we see that 7{R)
is a densc subgroup of (. We denote by K(G) the subgroup of G generated
by the set ;e roey 70R).

We say that G is pigid if K(G) = G.

1t iy easy to show that every nontrivial subgroup of a rigid group is also
rigid. This follows at ouce from the fact that characters of a subgroup extend
to characters of the group (ef. [HR]).

Oue can also show that the class of rigid groups is closed under taking
direct products. We omit the proof because we do not need this property.

LEMMA. The group Z¢ is rigid.
Proof. It is enough to consider the case d = oo. Let x be a character

of Z%°, Tt s well known that there exists s uniquely determined element
w o () € T guch that

g=(ni,n2,...) € L™,

Let g = (ay,) € T™ be independent over Z and such that ¢4~ is also inde-
pendent over Z. The possibility of the choice of g with the above properties
may be shown ag follows, The group T is compact, connected and satisfies
the second countability axiom; therefore it is monothetic and A(S) = 1 where
S denotes the set of genorators of T (cf, [HR]}. Hence A(S N (S +u)) =
and so it 14 enough to take as g an arbitrary element of SN (5 - u), For
z = (@) € T wa put

I, g) = exp(2mi{n)ug + natin + .. ),

jfn(g) e Lt b Rely k.
It follows from the choice of g that j, and jyi.y belong to J(Z). Since
fg(“l) ‘3@-&!-,(” =X
we have ¥ € K (Z°), i.e. Z™ is rigid.
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Remark. The additive group Q of rationals s not rigid.

Proof Let Z® be the group of all rationals of the form m/p™ where
m € Z,n € N\ {0} and p is a prime number. We shall show that Z®), and
hence Q, is not rigid.

It is easy to see that for every j € J(Z!")) we have 7(R) = 75(IR) where
Jolg) = g, g € 2. Therefore K(ZP)) = 55(R). It is known ([HR]) that the
dual group of Z#? is isomorphic to the group [0, 1) x A, where A, denotes
the group of all p-adic integers and the group law is defined as follows:

(o,2)+ (By)={a+B~-a+ b, v+y—|a+flu)

where [f] means the integer part of ¢t € R and u = (1,0,0,.

..). The character
on Z®) corresponding to (o, z) is

Xt ) (g) =exp(migla ~ (zo + px1 + ... +p" T 2,0))),
g€ 2P, &= (2,) € 4.
Fort € R and g = m/p" we have

(Jo(t), g) = exp(2migt) = exp(2wig(t — [t] — (—[1])))
= exp(2mig{t — [t] — (= [t]) - w)) .

Hence it is clear that 75(R) is different from the dual group of Z®}, i.e. Z®
is not rigid.

Arguing similarly, one can show that if G is rigid then every nonzero
element of G has a {inite number of divisors.

In fact, if there exists go € G\ {0} such that the equation ng = gp has
an infinite number of solutions (n,z} € N x G then G contains a subgroup
isomorphic to a group of the form (J;7, p;*Z where (p,) is an increasing
sequence of integers such that p, |pn.1, n > 1. Proceeding as in the above
proof one shows that this group is not rigid and so G is not rigid.

THEOREM 1. Every Kolmogorov Z%-action has o countable Lebesgue
spectrum.

Proof. First we consider the case h(T) < co. Since T is ergodic there
exists a finite partition P with Pr = B (cf. [Ro]).
Fix j € J(Z%) and let w € 2(Z%) be the arder induced by the usual order

of R via 7, Since j(G) is cofinal with R it follows from the assumption and
Corollary 2 that

(2) m \/ TSP ﬂ TP, =

teR] (g)<t GEN,
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We put
Hy = La( \/ T*P), teR.

It is easy to check that (H,) is an increasing family of linear subspaces of
LA(X, p) and

(3) L Heo= L3(X, ),
LER

-
{4) if ty, " t then Hy = U ", ,

=l
(5) Hipjigy = U 8Hy, geZ® 1eR
It follows at once from {2) that
(6) () H: = {0}

HER

Let E; be the orthogonal projection on the subspace Hy, 1 € R. It follows
from (3)-(6) that the family (E,) is a decomposition of wnity in LE(X, 1)
with
(7) Lt
We put

=UEUY, gei' teR,
Vi f exp(2mits) dE, .
E
The family (V¢ & R) is a one-parameter group of unitary operators in
LE(X, ) and, by (7), we have
UVt = exp(2miti(g))V'U9, g€ Zh t e R.
Hence, for every g € 2%, t ¢ R and f € L(X, u) we get
Byip(g) = UV V) = exp(2riti(9))5;(9)
= (T, 9Y8 1 (9) = 80 (9) - F4(9)
and go
(8) oyip s by oy and oy = by R oy
Now, suppose the measure oy is of the maximal spectral type. It follows
from (8) that
Spy oy Koy, 7“)*(” € 0y
and so the measures 6; ) » oy and oy are equivalent,

Since Z* is rigid and the set of characters x € 7¢ for which the measures
bx *x oy and oy are equivalent is a group, we see that these measures are
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equivalent for every x € Z¢. Hence o 7 is equivalent to A, ie. the action T
has a Lebesgue spectrum.

Now, suppose A{T) = oo. There exists a sequence (B,) of factor o-
algebras of 7" with B, C Bay1, A(Ts,) < co,n = 1, and V2, B,, = B. It
follows from the assumption that T, is a K-action and therefore, by the
first part of the proof, it has a Lebesgue spectrum in L3(B,), n > 1.

Let f € L2(X, u) be such that oy is of the maximal spectral type. There
exists an increasing sequence (m,) C A and a sequence (f,) ¢ L2(X,u)
with fo € L§(Br,), 7 = 1, and ||F,, - f|| — 0 as n — co. Therefore we have

o5, KALoy, n=>1l.

Passing to the limit as n — oo we see that oy is equivalent to A, Le. T has
a Lebesgue spectrum in L2(X, p).

In order to show that the multiplicity of the spectrum of T' is infinite it
is enough to show that there exists a factor o-algebra 4 such that 7' has a
countable Lebesgue spectrum in LZ(A). This follows from the assumption
that 2(T) > 0. By the generalized Sinal theorem (cf. [Ki2]) there exists a
partition P such that A = Pr is a Bernoulli factor o-algebra. It follows from

[Kir] that T has a countable Lebesgue spectrum in LZ(A), which completes
the proof.

Now, let H be a fixed factor o-algebra of 7. Proceeding in the same way
as above one can show the following relative version of Theorem 1.

THEOREM 2. Buery ergodic and positive entropy Kolmogorov Z9-action

T with respect to H has a countable Lebesgue spectrum in the subspace
L(X, n) © L§(H).

The results needed to prove Theorem 2 are the following.
Let P, Q € Z and w € 2(Z4). We have:
(9) h(P\/Q,T|H)=h(P,TJH)+H(Q!Q;\/PTVH).
(10)  lmgey, H(P | Py VTIQ; VH) = h(P,T | H).

(in If T is a relative K-action of Z¢ with respect to H then for OVery
Pe Zandw e 2(Z4) we have

() (TP, vH)=H.
geN,,

(12) IfT is ergodic with A(T' | H) < oo then there exists a finite partition
Pwith PrvH =28 ([RO])

(13) I T is ergodic with A(T | ) > 0 then there exists a partition P of

& such that Pr is a Bernoulli factor o-algebra which is independent
of H ([T]).
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The family of subspaces used in the relative case is defined as follows:

Hy = fﬁ( \/ 9PV 'H) & L2A(H)
Flayt
where § € J(ZY) and P is a partition such that Pp vV H = B.
One casily shows, using (10), that every Z%-action is a relative K-action
with respect to « (7.

COROLLARY 3. Iloery ergodic Z-action with positive entropy has a
countable Lebesgue spectrum in the subspace LAH(X, p) & L2 (n(T)).

Hence we liave at once, as in the classical case, the following

CIOROLLARY 4. The Zh-aclions with o singular spectrum or with  spec-
trurn of findle mulliplicity have zero entropres.
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