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Operators on spaces of analytic functions
by

K. SEDDICGHI (Shiraz)

Abstract. Let A, be the operator of multiplication by z on a Banach space of
functions analytic on a plane domain G. We say that M, is polynomially bounded if
| Mz} < Cliplig for every polynomial p. We give necessary and sufficient conditions for
Az to be polynomially bounded. We also characterize the finite-codimensional invariant
gubspaces and derive some spectral properties of the multiplication operator in case the
underlying space is Hilbert.

Introduction. Consider a Banach space £ of functions analytic on a
plane domain G, such that for each A € G the linear functional e, of eval-
uation at A is bounded on £. Assume further that £ contains the constant
functions and that multiplication by the independent variable z defines a
bounded linear operator M, on £. In case £ = H is a Hilbert space the
continuity of point evaluations along with the Riesz representation theorem
imply that for each A € G there is a unique function k» € H such that
F(A) = {f,kx), f € H. The function k is the reproducing kernel for the
point A.

A complex-valued function ¢ on G for which of € & for every f € &

‘is called a multiplier of £ and the collection of all multipliers is denoted by

M(E). Each multiplier ¢ of £ determines a multiplication operator M, on
Eby Myf = wf, fe& Each multiplier is a bounded analytic function on
G. In fact [l@|lg < || M. A good source on this topic is [7].

Twenty years after the appearance of [7] it is reasonable to expect some
words explaining the motivation of such a study and of any developments in
the area. The description of invariant subspaces in abstract spaces has in fact
appeared under some additional hypotheses and one of the first results (for
simply connected domains) seems to be [6]. This kind of Beurling’s theorem
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requires some knowledge of exceptional sets, as the more recent paper [2]
seems to confirm. A good source on this topic is [3].

For G an open connected (not necessarily simply connected) subset of
the complex plane and o an ordinal nnmber, the set Gy is defined as in
Sarason [4, p. 525].

In this article we give necessary and sufficient conditions for M, to be
polynemially bounded, characterize the finite-codimensional subspaces and
give some spectral properties.

Polynomial boundedness of the multiplication operator. Let £ be
a Banach space of analytic functions on G such that 1 € &, point evaluations
are bounded linear functionals and M, € B(£). Recall that M, is called
polynomially bounded if || M| < C|pllg for every polynomial p. In this
section we give necessary and sufficient conditions for M, to be polynomially
bounded.

THEOREM 1. Let £ be o Banach space of Junctions analytic on a plane
domain G such that 1 € £, and for every X in G the Functional ey, is bounded
and 2 C E. If H®(Ga) < M(E) then the map W, : H®(G,) — B(E)
given by We () = M, is bounded. Conversely, if | Mp| < Clipllg for every
polynomial p then H™(Gl,) C M(E). Hence W, s well defined and bounded.

Proof Assume H®(G,) ¢ M(E). Then W, : H>®(G,) — B(&) is
bounded by the closed graph theorem. To see this let fn — [ in H®(G,)
and My — A Then 4g = lim Mjy,9 = lim fog. Since f,g — fg pointwise
we have Ag = fg. Therefore A = M r and consequently W, is bounded.

If M, is polynomially bounded we prove by induction that (N
M(E). If o =1 and p € H>(G), then there is a sequence {p,} of polynom
mials such that p, — ¢ pointwise boundedly. Since | My, Il < Cllpulle < Ca,
by passing to a subsequence we may assume that My, — A (WOT). There-
fore o is & multiplier and A = M,.

Now assume M, is polynomially bounded and H™(Gooy) € M(E).
Let f € H*(G,). Then there is a sequence {fa} in H®(Gy-.1) which is
uniformly bounded on G’ and converges to [ at each point of G [4, Theorem
L, p. 523]. Because H>°(Gy_1) C M(E) we conclude that We—y is bounded.
Hence ||My, ]l < Cllfnllea_, < Ci. By passing to a subsequence we may
assume that My, — A (WOT). Therefore dg = fg for all g and f is a
multiplier.

Suppose e is a limit ordinal. Let {(n)} be an increasing sequence of ordi-
nais such that o is the least ordinal exceeding every B(n). Let f € H®(G,).
Invoking the proof of Theorem 2 of Sarason [4, p. 525] there is a sequence
{fa} in H®(Gpeny} with f,, — f pointwise on Gy and sup,, | £l Gy < for

n) —

some M > 0. Since | fs g = || fnllc,,,, we can show that H>®(G,) CM(E).
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Proposition 4.9 of {1] along with Theorem 1 yields the following

CoroLLARY. M, is polynomially bounded if and only if H®(Ga) C
M(E).

In fact, if H®(G,) C M(E) then H>(Ga) C M(E) for every o and

M, is polynomially bounded. Even the inclusion of the uniform (on &)
limits of the polynomials, P(G), in M(E) implies that H > (G,) C M{E) for
every .

Next we point out the significance of Theorem 1 with an eye towards
its applications. In [3] we have shown that if & is finitely connected and
M, is polynomially bounded then it is reflexive. Hence for such a domain
G if a knowledge of multipliers is available so that H>°(G,) € M(E) then
M, is reflexive. In a sense the invariant subspaces of A1, are linked to the
way H*((G,) sits in the space of multipliers. In particular, there are quite
a number of spaces for which H>(G,) = M(E), hence (M, £) is reflexive.

Finite-codimensional invariant subspaces. Let G be a bounded do-
main in the complex plane. Let £ be a Banach space of functions analytic
on G satisfying the same conditions as before. We further assume that for
every A in @, ran(M, — A) = kere,.

Note that the continuity of ey (A € ) lmplies that the point evaluations
of derivatives of all orders are continuous with respect to the norm of £.
This is a consequence of an easy automatic continuity result: If a finite-
codimensional linear subspace Y of a Banach space X is the range of a
continuous linear mapping N on X, then it must be closed [8, Lemma 3.3].
Apply thisto X = kerey, Y = (M, —MX = ker(6x|x), where 6,(f) = f'(A),
to get the continuity of &, (first on X, then on the whole space).

A few comments are in order. Note that if A € G then ran(M, — X) C
ker e, . Therefore we only assume that if £ € £ and f{A) = 0 then f/{z — A)
is in £. A space £ satisfying the above conditions is called a Banach space
of enalytic functions on G.

In order to characterize the finite-codimensional invariant subspaces for
Banach spaces of analytic functions, we need the following lemma.

LEMMA 1. Let £ be o Banach space of analytic functions on G. Let p be o
polynomial that has all its roots in G. Then pE is a subspace of € invariant
under M,. Moreover, dim & /pE = degp.

Proof. Let degp = n. Suppose Ay, . .., An denote the zeros of p, repeated
according to muitiplicity. One can easily see that

pE=1{f€&:f(\)=..= f(A) =0},

in case of a multiple zero we require derivatives to equal zero appro_priately.
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In fact, if f € € satisfies f(\) =... = f(A,) = 0 then repeated application
of our assumption shows that f/(z — A1)...(2 — Ax) € € or equivalently
fept

The fact that point evaluations of derivatives of all orders are continuous
shows that p& is closed. Since p€ is the intersection of the kernels of n linearly
independent linear functionals, we conclude that the codimension of pé€ is
degp. =

THEOREM 2. Let £ be a Banach space of analytic functions on o plane
domain G such that o(M,) C @G and ran(M, — A) is dense in & for every
A € 8G. Let F be a closed finite-codimensional subspace of £ that is tnvariant
under multiplication by z. Then F = p€ for some polynomial p all of whose
roots lie in G,

Proof Let A: £/F — £/F be the linear transformation defined by
Alg + F) = zg -+ F. Since F is invariant under M, we see that A is well-
defined. If & is a polynomial then

R(AY(g+F)=hg+ F foreverygef.

Since A acts on a finite-dimensional space, there is a nonzerc polynomial A,
with degh < dim £/F, such that h(A) = 0. This shows that k€ C F.

Write A = pg where p is a polynomial all of whose roots lie in G and ¢
is a polynomial whose roots lie in C\ G. Now let Abe atoot of ¢. If A g &
then M, — X is invertible, so (z — A& = £. If A € 3G then by hypothesis,
(z — A)€ is dense in £. Therefore g€ is dense in &, hence p& € (RE)™ C F.
We also have

dim&/F < dim&/pf = degp < degh < dim E/F,

where the middle equality follows from Lemma 1. From the above inequality
it follows that £/p€ =£/F sopf =F. m

Remark. The technical assumption on the range density in Theorem 2
deserves some discussion providing us with an idea in which spaces it is
satisfied. For example, it holds for H? on the unit disc, but only for p < co
(z being inner, 1 — z is an outer function, hence the claim for A = 1 holds,
and so is the case for other A, |A| = 1, by rotation).

Spectral properties. Let H be a Hilbert space of functions analytic
on a plane domain G as in the previous section, i.e. ran(M, — A) = kere.
Our aim is to discuss the spectral properties of A, where A = M,. For a
treatment of such operators on Banach spaces of analytic functions see [3].
However, in the Hilbert space setting the proofs turn out to be simpler.
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PROPOSITION 1. Let M be an invariant subspace of A*. Then
Tap{A M) N G* = 0p{A7| )

Proof. Let A € G such that A € gap(A*| ). Let {f} be a sequence of
unit vectors in M such that [|(A* — M) fall — 0. Write f, = anky + gn where
gnLky. Clearly [|[(A* — A)gn|| — 0. Since ran(4* — ) is closed it follows that
A* — X is bounded below on {ki}*. Hence ||g,|| — 0. The sequence {a,} is
clearly bounded. By passing to a subsequence assume that @, — o. Hence
fo — aky,s0kyeaM. ®

PROPOSITION 2. If M is a cyclic invariant subspace for A then
oA ML) NGY = op (A% p4t).
Proof. Let M = [f]. Using Proposition 1 we only need to show that
Tol A" ) N G" C (Al p) = {h € G*: f(A) = 0}

where o.(T) denotes the compression spectrum of 7. Choose A € G* such
that f(\) # 0. If hL{(A* ~ A)M™) then for every g in M~ we have 0 =
{h, (A*=X)g) = {((A=X)R, g} so (A—A)h € (ML)+ = M. Choose a sequence
{pn} of polynomials such that p,f — (4 — A)h. Because

{pnfika) = (A = Nhyky) = (h, (4" = Xks) = 0
and f(A) 5% 0 we have p,(A) — 0. Let

gn(2) = (pul2) = Pa(N))/(z = A}
Then
(A= Ng(A)f = palA)f — pu(N)f — (4~ 1.
Since ran(A — A) is closed, 4 — X is bounded below on (ker(4 — A))* =
ran{A* — X) = H. Thus ¢,f — h, which gives b € M. Hence

(A" = DM (MH)*E.

Therefore A does not belong to the compression spectrum of A*|y 1. @
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Abstract. By following an idea of Nicodemi we study certain sequences of exten-
sion operators for multilinear mappings on Banach spaces starting from any given ex-
tension operator for linear mappings. In this way we obtain several new properties of
the extension operators previously studied by Aron, Berner, Cole, Davie and Gamelin.
As an application of our methods we show the existence of plenty of unbounded scalar-
valued homomorphisms on the locally convex algebra of all continuous polynomials on
each infinite-dimensional Banach space. This improves a result of Dixon.

Introduction. The problem of extending holomorphic functions from a
Banach space E to a larger Banach space F was first studied by Aron and
Berner [3]. They showed that the holomorphic functions of bounded type on
E extend in a natural way to B, yielding an extension operator from Hy(E)
into Hy (E"). To achieve their goal they constructed extension operators for
the spaces of multilinear forms and then used Taylor series expansions to
extend holomorphic functions.

It is in general possible to extend multilinear forms on E to £ in many
different ways. Davie and Gamelin [6], and Aron, Cole and Gamelin [4],
have established important properties of the extension operators of Aron
and Berner, and have given a different, much simpler, description of those
operators. Very recently Lindstrdm and Ryan [13] have constructed other
extension operators for multilinear forms by using ultrapowers of Banach
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