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An application of two-parameter martingales
in harmonic analysis

by

FERENC WEISZ (Budapest)

Abstract. Some duality results and some inequalities are proved for two-parameter
Vilenkin martingales, for Fourier backwards martingales and for Vilenkin and Fourier
coefficients.

1. Introduction. Gundy and Varopoulos [11] have proved some inequal-
ities for one-parameter hackwards martingales generated by the Fourier se-
ries of a function.

Those results are here generalized to two-parameter martingales and to
backwards martingales generated by Vilenkin systems and the Fourier sys-
tem, respectively. First of all the usual martingale inequalities are proved
for such systems. Martingale Hardy spaces generated by the L, norm of
the maximal function or of the quadratic variation are equivalent to the L,
space when 1 < p < co. The Hardy space H, generated by the L, norm
of the conditional quadratic variation is, in general, different from the ones
above. However, all Hardy spaces considered in this paper are equivalent
for “bounded” Vilenkin martingales and for “bounded” Fourier backwards
martingales.

The dual space of Hy, (0 < p < oc) is found. It is Aa(a) for 0 < p < 1
(v = 1/p-1), BMOs for p = 1, and Hy for 1 <p < oo (1/p+1/q = 1).
Finally, it is proved that the I3 norm of the “defective” Vilenkin and Fourier
coefficients can be estimated by the Hi or Ly norm of the function.

2. Vilenkin martingales. In this paper 2 = [0,1) x [0,1}, A is the
o-algebra of Borel sets and P is Lebesgue measure. Let (p,,n € N) and
(gn,n € N) be two sequences of natural numbers > 2. Set Py = @Qp = 1
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and
I n
PTH-I = Hpks Qn+1 = H ak (‘J’L S N)
k=0 k=0

Every = € [0,1) can be uniquely written in the following way:

) 05$k<Pk>$k€N-

If there are two different forms, choose the one for which limg 0o 2 = 0.
The functions

2mz 27
ral) = exp TR gl (y) 1= exp ot
p’ﬂ q’!l

are called generalized Rademacher functions, where 1 1= \/—1.

- Let An and A]  be the o-algebras generated by {rg,...,r,—1} and by
{rgs- .-, 71,1}, respectively, and let F, ., be the o-algebra generated by
Ap X AL, il Frm = a(An X AL, Frce = 0{UreoFrk) and Fegm =

o(Upe g Fr,m ). It is easy to see that (F,, ) is nondecreasing and

fﬂ,m = g{[kP_l (k+ ) )>< [lQm >(l+l) )
0k <P, 01<Qnl.

The Kronecker product system of two one-parameter Vilenkin systems is
called a two-parameter Vilenkin system {w, m;n,m € N), ie.

&x

wn,m(may) = wﬂ 'm,(y H T’ﬁ(g‘)nk H ( )m;

=0

where n = 3 02 snpPr,o m = 32 mQy, 0 < ny < Py, 0 < my < @ and
g, My € N.

The conditional expectation operator with respect to J, ., will be de-
noted by By 1 (n,m € NU {0o}). For the (complex) space L,{{2, A, P) and
for its norm we use the shorter notation L, and | - ||,

The two-parameter Vilenkin-Fourier series and the Vilenkin-Fourier co-
efficients of an integrable function f are given by

@)~ > anwia(m,y) and  cpy = Jlk, 1) = B(fBr),
=0 =0

respectively. For simplicity we always suppose that f(k;,O) @ f((),ic) = 0
(k e N).

Let f,, m be the (F,, @.,)th partial sum of the Vilenkin-Fourier series
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of f. It is easy to see {[16]) that

Pr—1Qm—1

fnm Z Z Cklwkﬂ(m y)

-= Pan f f dP = En,mf(:r": y)

T (2,0)

where I n(z,y) denotes the atom of F,, ., containing (z,y) (n,m € N,
(x,y) € £2), that is to say, (fu,m;n,m € N) is the martingale relative to
(Fr.m) obtained from f.

The martingale difference sequence is given by

d11,+1,m+1f = .fn+1 mtl fn+l m fn. RO e + fn,m

Pogr—=1Qmp1—1

E 5 Cl,iWik 1,

k=Pp I=Qn
dgﬂkf = dk,D =0 (k < N) .

This can be rewritten as

Pa~1lgm—1
(1) rg1,mtr f = z E ’chfﬁz T
=1 j=1

where every vg,;’n) is Fp m-measurable.

The following notations will be used for a function f € Ly:

= (23 mr®) ",

n=0m=0

(Z Z By mtdn+1 m+1f]| )

fri=sup|faml,  S(f)

7,m

n=0 m=0
Since for 2,{=1,. — 1 we have
(2) Ey oc( ) =0, En,m('r:.q"'")ﬁ) =8(i - 1), |T7'L1,| =1,

we obtain

o o0 Pa~lgm—1

3) =Y S weae)”

n=0m=0 i=1 j=1

Denote by H, the space of functions for which

1#l15, = lIs()1], < co.

In martingale theory it is well known that if f € H, then f,,, converges
a.e. and also in LP-norm as min(n,m) — oo (p > 1, see [14]).
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Let us introduce the concept of a gtopping time. A mapping v which
maps {2 into the subsets of N2 U {oo} is said to be a stopping time relative
to (Frm) if the elements of v(w) are incomparable (Le. if (k. 1), (n,m) € v(w)
then neither (k,1) < (n,m) nor (n,m) < (&,1); of course, (k,1) < oo for all
k,1 € N) and if for all (n,m) € N%,

fw e (nm) € v{w)} = {(n,m) € v} € Fop.

We use the notation (k,1) < (n,m) if & < n and | < m hold at the same
time. For H C N? we write H < (n,m) if there exists a pair (k,1) € H such
that {k,1) < (n,m). So we immediately see ([20]) that  is a stopping time
if and only if

{r&inml}teFroima (n,meN).

1

As in the one-parameter case, we can define a stopped martingale (f;, )

for an arbitrary martingale f relative to a stopping time v

'nm' ZZ {y ?'J})ddf

i<nj<m

where x(A) denotes the characteristic function of a set A. Since {v &
(1,5)} € Fi15-1 it follows that (f7.;n,m € N) is a martingale (see
[22]).

Using the stopped martingale we can define the BMOg and the Az{a)

spaces as follows. A3(a) (& > 0) denotes the space of functions f ¢ Ly for
which

171l 4aa) == sup{P (¥ # 00) AT = f¥la} < o0

where the supremum is taken over all stopping times. The A(0) norm and
space will be dencted by BMC,.

3. Fourier backwards martingales. We denote by + the group oper-
ation of the group [0,1), namely, addition modulo 1. For a positive integer
7 > 1 denote by G, the o-algebra of all »~!-periodic Borel subsets of [0,1).
Set G s := o(G, % Gs). The conditional expectation of a function f € L,
with respect to G, , is given by

r—1g-1

IZZJ‘(M Jy+ ) ((z,) € £2).

im=() =0

(f ‘ g'r a@y) =17
If f is expanded in a Fourier series

Flz,y) ~ Z Z f (k,1) exp(i2mkz) exp(s2xly)

k=—onl=—00

icm

Two-parameter martingales 119

then (cf. [11])

E(f|Grs)zu) Z Z Flkr, 1s) exp(12nkrz) exp(12nlsy)

k=—ool=-0c
where the Fourier coefficients of f are defined by

fk, n ff (m,y) exp(—2wka) exp(—27ly) de dy .
o

Consider the decreasing sequence of o-algebras Fp, m = Gp, q,, (R,m €
N). Then, for (z,y) € £2,

w1 Q-m._l

PTooL Z S f(a:—l—w,y"i--@—)

=0 7=0

fﬂ,?’!’!.(x? y) =FE, mf(m y
is a backwards martingale with respect to {Fn ;). Let Fr oo = [Nreg Faks
Fooym = [\hep Fk,m and assume that F(k,0) = flOk) = 0 (k € Z).
It is known (see [12]) that, in this case, fom ~ foo,m = 0 (n — 00),
Jrm =+ fuoe =0 (m — o0) and fom — 0 (n,m — oo), all this in Ly
norm.

Now the martingale difference sequence is given by

dn,mf = fn,m - fn-}-l,m - f’n.,m-]—l + fn—!—l,m-{—l ('n,, m e N) '

The martingale maximal and square functions are defined as in Section 2.
Tt is easy to see that if f is a trigonometric poiynomial then

SNz, y)
(Z Z ‘ Z Z T (kP 1Qm) exp(2mk Pox) EXP(ZZ‘TFIme)‘ )1/2‘

n=0m=0 p,tkgmti

It can be seen ([11], [15]) that in this case, similarly to (1), du,mf can also
be rewritten as

Pr—1gm—1
domf = Z Z (1’”@;9%
=l =1
where every u%‘;"n) is Fpu1m+1-measurable and gn(z) = exp (127 Pox),
Q:'m,(y) = eXP(zzﬂ'me)'
The functions o, satisfy (2), more exactly, for 4,0 =1,...,pp—1 we have

E?‘L+1,0(9i) =10, En-&-l,O(Q’;‘aE) = 6(i — 1), |Q:7.| = 1.
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Consequently, for the conditioned square function we obtain

(4) S(f) = (Z }: En-fl,m—l—l'dn,mflg)l/z

n=0m=0

o0 Pn—lgm—

S(SR S ).

n=0m=0 i=1 j=1

The H), space as well as the stopping time are defined as in Section 2. It
can be shown similarly to [22) that v is a stopping time if and only if

{v % (n,m)} € Faptyms1  (n,meN).
Now the stopped martingale (f ) for a martingale f is given by
= Y 9 x({v B (L) Ndisf
i2n §>m
In this case Ay() [ > 0) denotes the space of functions f € Ly for which
1£llaaay = sup{P(v # (0,072 f = ).} < o0

where the supremium is taken over all stopping times. The Ag (0) norm and
space will again be denoted by BMOs,.

4. Results. The theorems of this section hold both for Vilenkin martin-
gales and for Fourler backwards martingales.

THEOREM 1.

p 2
) I < 10 < (525) Wil (< p <o),

(

(i) SlS(le < 1£ 1l < GRSl (1< p < o0),
(iii) 151l < Colis(FMlps  1IS(H)Ilp < Colls(All, (0<p<2),
(iv) (Al < Coll "Il (2 <p < o00),

(v) if the sequences (p,) and (g,) are bounded then

lsCOllp ~ ISANe ~ 051, (0 <p < o0).

THEOREM 2. The dual space of H, where 0 < p < 1 is Ap () with
a=1/p—1.

o

111

The theorems for martingales can be found in (3], [4], [6], [10], [13] and
[22]. The proofs for backwards martingales are similar. In general, ||s(f)|, is
not equivalent to [|S(f)|l,. The H space is equivalent neither to the Hardy
space considered by Gundy and Varopoulos in [11] nor to the classical Hardy
space, even in the one-parameter case. However, in the one-parameter case,
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if pn = r (examined in [11]) then our backwards H; space is equivalent to
the Hardy space studied in [11].

To characterize the dual of H, (1 < p < oo) we need the following
inequality due to Stein ([17], p. 103) in the one-parameter case.

THEOREM 3. Let X = (X, ) be o not necessarily adapted function
sequence and (kn), (1) be two sequences of natural numbers. Then

(32 3 1B o)

n=0 rn=0

p

<O (XX Kenl) | 0 <peoo)
n=0m=0

where Cy depends only on p.

Proof. The proof is similar to Stein’s original proof. Let us introduce
another well known definition. L,(I;) {1 < p,7 < cc) denotes the space of
function sequences € = (€5, € N?) for which

lelzy = [ (3 igal) ] <o

nEM?
The following lemma. can he proved similarly to the Riesz representation
theorem.

LEMMA. The dual of Ly(l,) is Ly(ls) whenever L < p,r < oo, 1/p+1/q
=landl/r+1/s=1.

We shall use the following generalization of the Riesz convexity theorem:
Let T' be a linear operator which maps function sequences to function se-
quences. Suppose that 7" is a bounded operator from L, (I5,) to itself and
from Ly, (I,,) to itself. Then 7" is also bounded from Ly, (I;,) to itself where

- - t
iml t _i, wl_zl t+* (0<t<1).
b Pa n 0 do a1
The proof is very similar to that of the original Riesz convexity theorem (see
e.g. [1]). Now consider the operator T’ defined by
T (Xn,r.n.;nam € N) — (Eic Xn,m;nsm' € N) .

T is bounded on Ly(l,) (1 < p < co) since

o0 oQ
(5 5 ot

n=0m=0

n :"‘rn

= Z Z E|Ekn,lan,m|p
n=0m=0
2.2

0
n=0m=0

E\X, m|?.
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On the other hand, by the maximal inequality (see Theorem 1(i)) we obtain
E(Sup iEkn:langfn-[)p —<- E(Sup sup Ek)l"X.n:mDp S E(|Z*Ip)
™n,m n,m k1l

< OpE(SuP |Xn,m Dp
ey

where Z == sup, ., | Xa ml, which shows the boundedness of T' on Lp{ls)
(I < p < oo). Applying now the generalized Riesz convexity theorem we
conclude that T" is bounded on Ly(l,) if 1 < p < ¢ < oc. In particular, if
1 < p<2then T is bounded on Ly(la).

For 2 < p < co we prove the theorem with a duality argument. By the
Lemma we have

(X 32 snten®) ],

n=0m=0
e oo
= sup E [ Z Z (Btes im Xn,m)Yn,m]
IYllegue 21 " plp men

where 1/p + 1/g = 1. Moreover,

[Z Z(Ekn,l Xnm)Yom| = E[ZZXnmEkmzm Vi)

n=0m=0 n=0m=0

<l (Xn,m)”L,,(!z) H(Ekmle;hm) HLq(lz)
< Coll(Xnm)llz, 2) »

which completes the proof of the theorem. =

If (pn) or (gn) is unbounded then H,, is not equivalent to L,. So the
following theorem containg a new result.

THEOREM 4. The dual space of Hy is H, where 1 < p < 00 and 1/p+
1/g=1.

Proof. We give the proof for Vilenkin martingales. The proof for Fourier
backwards martingales is similar. Set }“,2‘,#3 = Fam (0= 1,000 00 = 1
i=1,...,gm —1). Now we consider the function sequences of the form

X=(X8i=1,. pn—Lg=1,..

The inequality in Theorem 3 can be written as

Jqm — Lin,m e M) .

o0 00 pPr—lgm—1

(X X 3w xian)™,

n=0m=0 i=l j=1

o0 oo Pa-lgm—1

<ol (L X X X mear)”),

n=0m=0 i=L j=1

icm
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if 1 < p < o0. Denote by ®L, (lp) the subspace of L,(Iz) of adapted sequences
X relative to FL3).

We show that the dual of *L,(l3) is *Ly(I2) whenever 1 < p < co and
1/p+1/g = 1. Note that this result does not hold even in the one-parameter
case for p = 1. Indeed, if for every ¥ € 2L, {l,),

W(X) =B Y XEDYED) (X € Lyh)

Ty Mg, J

then Iy is in the dual of *L,{ls) and

iyl < ¥z, ) -

Conversely, if | is in the dual of *L,{l5) then, by the Banach-Hahn the-
orem, it can be extended with the same norm to the whole L,(l3) space.
Hence there exists a ¥ from the dual space of Lp(l3), i.e. ¥ € L,(i2), such
that [ = ly and

Yz, < 11EH]-

( S XUDE, Y(”))

[
v (5} with k, = n and [, = m we get
(B Y gy SNz gy < 11l -
Using (3) (or (4)) the theorem follows immediately from the isometry
between H, and *Ly(ls). =

The dual of H; is considered in [19] for Walsh martingales.
Now we generalize Theoremn 3 of Gundy and Varopoulos [11].

THEOREM b. If f € Ly then

o0 00 Pu—lgm—l

(6) (2T S ifernienr) " <ol

n=0m=0 i=1 j=1

As

where f(, 3 denotes the Vilenkin-Fourier or the Fourier coefficients of f.
Proof. We prove this theorem for Vilenkin martingales only. The proof
for Fourier backwards martingales is similar. First of alt we show that if

oo oo Pn—lgm-—1

(7) gi= Z > G(iPr, jQm)wip, jQ.. € L2

n=0m=0 {=1 7=l
then

oo oo Pa—lgm—1

®)  lglavo, < lalle= (D230 30 3 18P iQm) )

ne=0 m=0 =1 j=1



124 F. Weisz

Using the definition of the stopped martingale we have
—1/2
lgllzro, = sup P(v # 00)™*lg - g"2

= sup P(v # oo) /2

[s.0} oQ
/2
x (Z 3" Elx(v < (n+1Lm+1)|dny1mi1g] ])
=0 m=0
= sup Pv 5 c0)H?
) 2} H?

(Z V & (71 +1,m+ 1))En,m‘dn~|—l,m+1gl ])

Since
Pn—1 gm=1
dntimt1g = 9 Y G(iPn, iQm)wir, @,
i=1 =1
we get, by (2),
Pn“IQm_l
Bnmldnstmirgl = Y > (6P, jQum)[* .
i=1 j=1
Hence
lgllBro, < sup Py # oc) 2
17
oo o Pn—1lgm—1 1/2
(XY Exw o) 3N [§6Pw @) 7))
n=0 m=0 i=1 g=1

[oe] oa Pn—1lgm—1

(ZZ 3N (8P 5Qum)? ) ,

n=0m=0 i=1l j=1

which proves (8).
If f € Ly then by Riesz representation theorem

0 00 Prn—l g

(Z Z Z Z I ﬁpﬂ.:ij)Z)l/z=S]~;pE(fg)

n=0m=0 {=1

where the supremum is taken over all g of the form (7) with || gllz = 1.
Using (8) and Theorem 2 we obtain

iE(fg)l < C“f”Hl”QIIBMOE < C“fH-Hl :

which, on the one hand, proves (6) for f € Ly, On the other hand, we have
shown in [22] that L, is dense in H;. Theorem 5 follows easily from this. =

icm
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It is not known whether (6) holds if we write on the right hand side of
the inequality Cy || fllp instead of C|| f|| #, whenever f € L, and (p,) or (g»)
are unbounded,

The follewing Corollary for Fourier backwards martingales can be proved
in the same way as Gundy and Varopoulos have proved Corollary 1 in [11]
for one parameter. Let p, r, g, s be primes and

FH.1.,722,TZ3J],4 = gp“l,q“a N grﬂﬁ,s“‘ﬁ = gpﬂlr“Z,qns EUEa

Since Theorems 1 and 2 are also valid for four parameters, similarly to
Theorem 5 we can prove that for 1 < p < oo,

( Z [f(pnlrm vtssn4)12)l/2

TV1TE,TE8, Ty
Of course, there also exists a Hardy space for which the previous inequality
holds. However, this Hardy space is different from the ones studied above.
Applying this method for several parameters we get

CoroLLARY. Let f € Ly (1 < p < o) and a1,...,8m;, D1,y bimy
be arbitrary integers greater than 1. Then, for the Fourier coefficients, we
obtain

(EZ

Nhanalimy R1yekmg

< Coll -

Ko 1/2
BB < Gl £l

For one parameter and for bounded (p,) the characterization of Hy by
means of conjugate functions can be found in {11] and [18]. It is an open
question whether this characterization can be extended to the two-parameter
or to the unbounded case.
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Closed range multipliers and generalized inverses
by

K. B. LAURSEN (Kgbenhavn) and M. MBEKHTA (Villeneuve d’Ascq)

Abstract. Conditions involving closed range of multipliers on general Banach algebras
are studied. Numerous conditions equivalent to a splitting A = T A@®ker T are listed, for a
multiplier T' defined on the Banach algebra A. For instance, it is shown that TA@ker T' = A4
if and only if there is a commuting operator S for which T = T'ST and S = ST'S, that this
is the case if and only if such 5 may be taken to be a multiplier, and that these conditions
are also equivalent to the existence of a factorization T = PB, where P is an idempotent
and B an invertible multiplier. The latter condition establishes a conneciion to a famous
problem of harmonic analysis.

Introduction. In the study of muitipliers on, say, commutative semi-
simple Banach algebras, in particular in attempting to characterize circum-
stances under which a multiplier will have closed range, a factorization of
the given multiplier as the product of an idempotent and an invertible has
kept showing up as a plausible companion—certainly a sufficient, and possi-
bly equivalent, condition for closed range. In some spectacular special cases,
namely the group algebras L1(G) when G is a locally compact abelian group,
this equivalence does hold, as was shown by Host and Parreau in 1978. This
note takes steps to uncover the precise relationship between the two. We
do this by dealing with the issue in somewhat greater generality, and by
relating it to the concept of generalized inverse.

Commutativity keeps looming in the present approach, though, and as a
consequence the resulting conditions are slightly stronger than those men-
tioned before. It turng out that for an arbitrary centinuous linear operator
T on a Banach space X there is a factorization T = PB, where P’ and
B commute, and where B is invertible and P idempotent, precisely when
X = TX & ker T. Moreover, when X decomposes in this way, TX is nec-
essarily closed. The realization that these conditions also are connected to
the existence of a commuting generalized inverse then becomes our starting
point.
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