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Suminable families in nuclear groups
by

WOQJCTECH BANASZCZYK (Ldds)

Abstract. Nuclear groups form a class of abelian topological groups which contains
LCA groups aud nuclear locally convex spaces, and is closed with respect to certain
natural eperations. In nuclear Jocally convex spaces, weakly summable families are strongly
smnmable, and strongly smmmable are absolutely summable. Tt is shown that these theo-
rems call be generalized in o natural way to miclear groups.

Nuclear groups were introduced in [1]. They form a class of abelian topo-
logical groups which contains LCA groups and nuclear locally convex spaces,
and is closed with respect to certain natural operations. The aim of this
paper is to give proofs of some assertions formulated in [1], Section 10, con-
cerning the convergence of sequences and series in nuclear groups.

By the weak topology on an abelian topological group we shall mean
the topology induced by continuous characters. If the group is a locally
convex space, this topolegy is essentially weaker than the topology induced
by continuous linear functionals, but defines the same class of convergent
sequences. Our firat goal is to show that weakly convel.gent sequences in
nuclear groups are convergent in the original topology; this was conjec-
tured in [1}, (10.17). Then we prove that weakly summable families in
nuclear groups are summable, and that summable families are absolutely
summable (the definitions are given below). The latter result was announced
in [1], (10.16), :

If every (weakly) summable family in a locally convex space is abso-
lutely summable, then the space is nuclear {[4], 4.2.4). It seems conceivable
that “lomliy convex space” may be replaced here by “locally guasi-convex
group”,

We have to introduce some notation and terminology. Let G be an
abelian topological group. The family of all neighbourhoods of zero in G
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will be denoted by Ny(G). By a character of G we mean a homomorphism
of G into the group T = R/Z. We identify T with the interval (—1/2, 1/2].
Given a real number z, we denote by {z) the number y € (~1/2, 1/2] such
that £ — y € Z. By the weak topology on G we mean the topology induced
by the family G of continuous characters. The original topology on G will
be called the strong topology.

Let X, Y be two symmetric convex subsets of a vector space F' (all vector
spaces are assumed to be real). Suppose that X < V. The Kolmogoroy
diamneters of X with respect to Y are defined by

di(X,Y) =iuf inf{t > 0: X CHY +L} (k=12,..),

where the infimum is taken over all linear subspaces L of F' with dim L < k,

A Hausdorff abelian group ¢ is called nuclear if it satisfies the follow-
ing condition: given arbitrary U € Np(G), ¢ > G and m = 1,2,..., there
exist a vector space ¥, two symmetric and convex subsets X, ¥ of F with
de(X,Y) < ck~™ for every k, a subgroup K of F and a homomorphism
¢ : K — G such that o(K NX) e Ap(G) and o(KNY) C U.

Now, we are ready to formulate our first assertion:

THEOREM 1. Bvery weakly convergent series in a nuclear group s strong-
ly convergent.

The proof will be preceded by several lemmas.

Let F' be a vector space and 7 a topology on F such that F, is an
additive topological group. We say that F, is a locally convex vector group
if it is separated and has a base at zero comsisting of symmetric convex
sets. A locally convex vector group F is called a nuclear vector group if to
each symmetric convex U & Np(F) there corresponds a symmetric convex
V e No(F) with di(V,U) < k™! for every k. Evidently, every nuclear vector
group is a nuclear group.

LEMMA 1. Let G be a nuclear group. Then there exist o nuclear vector
group F, a subgroup H of F and a closed subgroup K of H such that G is
topologically isornorphic to H/K.

This is the main assertion of Theorem (9.6) in [1].

Let p be a seminorm on a vector space B. We write B, = {u € E :
p(u) < 1}. The quotient space E/p~*(0) endowed with its canonical norm
will be denoted by E,, and the canonical projection of E onto E, by ¢,. We
say that p is a pre-Hilbert seminorm if F, is a pre-Hilbert space. If ¢ < p is
another seminorm on FE, then the canonical operator from E, to B, will be
denoted by Tj,. We have the following canonical commutative diagram:
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E L g
lw [ %
Tq

.E.:"p — Eq

LemMa 2, Let F' be a nuclear vector group. Given arbitrary U € No(F),
e> 0andm = 1,2,..., we con find a linear subspace E of F' and two
pre-Hilbert seminorms p,q on E such thet B, C U, B, € No(F) and
di(Bp. By) & ck™™ for cvery k.

This is a direct consequence of Propositions (9.3) and (2.14) of [1].

Let A be a subset of a normed space E. The linear subspace spanned
by A is denotod by span A and the distance of a point u to 4 by d{u, A).
The closed unit ball of ¥ is denoted by Bg. Given an additive subgroup K
of E, we denote by K7}, the family of all continuous linear functionals f on E
such that f(K) C Z.

Let 7' : ¥ — F be a hounded linear operator acting between normed
spaces. We wrile dp(T) = dp(T(Bg),Br) for k = 1,2,..., and 2(T) =
Yore y kdp (7).

LeMmMa 3. Lok B, B be unitary spaces and 1 E — F' o bounded operator
with 2(T) < 1. Let K be o subgroup of E.

(a) Suppose we are given some a € E and r > 0 such that d(Ta, T(K))
>r. Then we can find some f € K with |{f(a)}] > 1/4 and ||f]] < 40~

(b) Suppose we are given o sequence (ay) i B such that d(Tan, T(K)) —
00, Then we can find some f € K} such that {f{a,)) = 0.

Proof Part (a) follows divectly from Proposition (8.4) of [1]. We now
prove (b).

We may assume E to be complete. Let M = span K, let N be the
orthogonal complement of ¥ in B, and let ¢ and ¢ be the orthogonal
projections of /i onto Af and N, respectively.

Suppose first that L sup |4 (e, )| = co. Then there is a bounded linear
functional g on N such that lim sup | g (an )| = oo. Since weakly convergent
sequences in 1 are strongly convergent, we can find some x € R" such that
K9 (an) - 0. Tn other words, there iy some ¢ € R such that {tg{an)) = 0
then we may take [ = Ly,

Next, suppose that limsup |[4(an)]| < oo. Choose a sequence (by,) in M
with b, ~ () ~ 0. For every n, we have

ATy, T(KY) < [Tan ~ Tplan)] + [T p(an) ~ Tby| + d(Tbn, T)),
L0, = Tep(an )|l < [T - Jan ~ wlan)l| = 1T - Nl (an)]l
[T (an) = Tl < |71 | @(an) — ball-
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As d(Ta,, T(K)) — oo, it follows that d(Tb,,, T(K)) — co.

Choose an index n; such that d(Th,,,, T(K)}) > 2. Due to (a), there is
some g1 € K% with [(g1{bs,)}| > 1/4and g1 ] < 4.271 Asb,, €spankK, we
can find a finitely generated subgroup K of K with by, € My ;= gpan K.
Then we can find an index ng such that d(Tby,, T(K + My)) > 22 and,
by (a)}, some g € (K + M)t with |(g2(bu,)}| = 1/4 and ||ga|| < 4- 272, By
repeating this procedure, we construct by induction a sequence My C My C
... of finite-dimensional subspaces of E, a sequence by, € M, and a sequence
9s € K7z such that [{gs(bn. )} 2 1/4, 9a(Me—1) = {0} and |lg,|| <4277 for
gvery s.

Ifz,y € T and |{y)| = 1/4, then we can find a coeflicient ¢ = 0, -1 such
that |{z + ty}| > 1/4. Therefore we can construct by induction a sequence
ts = 0,£1 such that

J(tlgl(bna) +...+ tsgs(bna)ﬂ >

i

for every s. Hence

Hmm+m+m%mmm2%

ifr<s Setg=3"7,tgs Then g € KL, and [{g(bn,))| 2 1/4 for every r.
Since b, — @(a,) — 0, it follows that {(gp(a,)) - 0; then we may take
f=gp =

Remark. In Lemma 3, the condition X(T) < 1 may be replaced by

Y ope1dk{T) £ c where ¢ is some numerical constant. The proof will be
given elsewhere.

LeMMA 4. Suppise we are given o sequence
Ei&FrSciy
of bounded operators acting between Hilbert spaces, with L(R), Z(T) < 1
and d(S) — 0. Let K be a subgroup of E and (ay,) a sequence in E such

that d(T'SRay, TSR(K)) = 1 for every n. Then there exists o functional
[ € K} such that (f(an)) - 0.

Proof. In view of Lemma 3(b), we may assume that the sequence
d(Rag, R{K)) is bounded. We may naturally assume G to be complete.
Then S is compact, and we can choose a subsequence by, of b, such that
SRb,, converges to some u € . We have

d(TS Ry, , TSR(K)) = d(TSRay,, TSR(K)) > 1

for every k, which implies that d{Tw, TSR(K)) > 1. Hence, by Lemma 3(a),
there is some g € SR(K)g with {(g(u)) > 1/4. Then (gSRay,) = (gSRbn,)
=+ (g{u)} > 1/4, and we may take f = gSK. = '
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Proof of Theorem L. Let (,)2%, be a weakly convergent series in a
nuclear group . We are to show that (gn) is strongly convergent. Without
loss of generality, we tnay assume that (g.,,‘) i weakly convergent to zero.

Suppose that (g,) is not strongly convergent, o obtain a contradiction,
we have to find some x € G such that x(g,) - 0.

In view of Lemma 1, we may assume that G = F/K where K is a
closed subgroup of some nuclear vector group F. Let 8 : F — F{K be
the natural projection. For each n = 1,2,..., choose a vector u, € F with
Blun) = gn. As (ga) is not strongly convergent to zero in /K, there exists
some U € Ny(F) such that

(1) t @ KT

It follows easily from Lemma 2 that we can find a linear subspace E of F' and
pre-Hilbert seminorms p 2 ¢ 2 r > s on E such that B, C U, B, € Mp(F),

for infinitely many n.

x oo
dek(BmBq) <1, dek(Bv':Bs) <1

LE Fe==1,
and dp(B,, By) - (. Let us draw the canonical diagram
B Mop X p X g
\l- Y l"pq lwr l”/’a
g, B, % B, D% B,

We have (1), 2(Trs) < 1 and di(Tye) — 0.
Set H = KN K and consider the following canonical commutative dia-
gran;

AL p 34 F

R T

E/H e FIK -2 F/(K -+ E)

Since B, € Nu(F), the subspace E spanned by B, is an open subgroup
of F', and the group F/(K + B) is discrete. Obgerve that u is a topological
embedding,

Suppose Lhat y(uy,) 5 0 for infinitely many n. In discrete groups (and,
in fact, In all LCA groups), weakly convergent series are strongly convergent.
Therefore we can fud & continuous character x of F/{K .+ FE) such that
&y(tn) - 0. Then y == kv & (F/K)", and

x(gn) = w(gn) = kv (un) = fy(un) -» 0.

Thus we may assume that v(uy) = 0, Le. that u, € K + E for almost all n,
say, for n = ng. - o :
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To each n > ng there corresponds some v, € E with v, —un € K. Then
B(vy) = gn and, as B, C U, condition (1) implies that v, € K + B, for
infinitely many n. This means that

A(Trs Ty Tpg¥p(vn), Trs T Tpatpp(H)) > 1
for infinitely many n. So, by Lemma 4, there is some f & ¢p(H )} such
that {fto,(vs)) - 0. Then fo, € Hj, and the formula £y, = {fip) defines
a continuous character k of E/H with ka(v,) = 0. The character xu™! of

u(E/H) can be extended to a continuous character x of F/K ({1], (8.3)).
Then
X(ga) = XB(va) = xpar(vn) = kax(vp) = 0. =

Theorem 1 implies that every nuclear group (@ satisfies the Orlicz-Pettis
theorem: if a series of slements of ¢ is subseries convergent in the weak
topology, then it is subseries convergent in the criginal topology as well. This
fact, however, follows directly from the result of Kalton [3]; cf. [1], (10.17).

Let G be an abelian topological group. Let I be a set of indices and
(9:)ier a family of elements of G. We say that (g;):es is summable (or strongly
summable) if the following condition is satisfied: to each U € No(G) there
corresponds a finite subset J of I such that 3°,.. g € U for any finite
subset K of I\ J (cf. [2], Ch. III, Sect. 5, n® 1). We say that the family
(9:)ier is weakly summable if 3, 1x(9:)| < oo for any x € G clearly, this
holds if and only if {g;)ies is summable in the weak topology.

THEOREM 2. Every weakly summable family of elements of a nuclear
group 18 strongly summable. :

Proof. Let (g;)icr be afamily of elements of a nuclear group &' Suppose
that (g;):es is not strongly summable. Then there is some U € No(G) such
that, to each finite subset J of I, there corresponds a finite subset & of T\ J
with }°,cx 9 € U. So, we can construct by induction a sequence K1, Ky, ...
of digjoint subsets of I such that h, = ZieK“ g € U for m = 1,2,...
According to Theorem 1, we can find some x € G” such that x(h,) - 0.
Then

Sl 23 3 ki 2 3 | x( X a)] = D elha)l = o0,
icl n=] 18K, =1 g K., FEE

which means that (g;):e7 is not weakly summable. =

Let A be a subset of an abelian topological group G. For cach g € A, we
define

n% =sup{n:kge Afork=1,...,n} and g/A=(nf)"".

Thus, in particular, g/A = 0 if and only if kg € A for every k. Given a
character x of G, we write |x(4)| = sup{|x(g)| : g € A}. We say that A
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is a quasi-convez subset of G if, to each g € G/4, there corresponds some
x € G with [x(A)] £ 1/4 and |x(g)| > 1/4. Next, we say that G is a locally
quasi-convexr group if there is a basis of neighbourhoods of zero consisting
of quasi-convex sets. Nuclear groups are locally quasi-convex ([1], (8.5)). A
topological vector space is locally convex if and only if it is a Hausdorff
locally quasi-convex group ([1], (2.4)).

Let (gi)ier be a family of elements of G. We say that (g4)icr is absolutely
summable if, to each 7 ¢ Ny(Q), there corresponds a finite subset J of T
guch that g; € U for i ¢ J, and Eief\J(g;,:/U) < oo. If G is a vector
space and py the Minkowski functional of a radial subset U of G, then,
clearly, i) = 9/U < 2py(y) for all g € G. Therefore, if G is a locally
convex space, the family (g:)ics v absolutely summable if and only if it is
absolutely sumnmable in the usual sense.

PROPOSITION. Buery absolutely surmmable family in a locally quasi-
convez group is strongly summable.

Proof. Let (¢:)ier be an absolutely summable family in a locally quasi-
convex group (. Chooge an arbitrary quasi-convex U & ANy{G). There is
a finite subset J of I such that g; € U i i ¢ J, and 3 ,0p 5 (:/U) < L.
Now, take an atbitrary x € G with |x(U)| € 1/4, and an arbitrary finite
subset K of I\ J; we are to show that [x(3;cx )| € 1/4. It is not hard
to see that |x(g)} < 4(g/U) for each g € U. Hence

OIS WMDEED WNIEED LT IE-
ek ig i

ieK ienJg

PN

THEOREM 3. Every strongly summable family in a nuclear group is ab-
solutely summable.

In the proof we shall need several lemmas.

LuMma 5. Let vy,..., Uy be ¢ Hnearly independent system in R™. Let

Wy, ..., Wy, be the orthogonalization of vy, ..., vm, and L the subgroup of R™
generated by vy, ..., vm. Then
@ e du, ) € 3w+ ol

Proof. For each k& = 1,...,m, let L, be the subgroup generated by

VLyvoe, Uk, abd lot My, == span Ly. Define
pi = Max dlu, L) (k=1,...,m)
and pg = 0. It is enough to observe that

Wi < o+ el =1,
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LemMMa 6. Let D be an n-dimensional o-symmetric ellipsoid in R™ witp,
principal semiazes Ay,...,An. Let M be an m-dimensional lincar subspace
of B® and 7 R" s M the orthogonal projection. If pui,. .,,qu crm th,e
principal semiazes of the m-dimensional ellipsoid 7(D), then p24+. . 2 <
AL+ AL

Proof Let U be the euclidean unit ball in B™ We may assume that
M>...2Mand iy = ... = pn. Then we have

Mg = di(D,U) (k=1,...,m),
e = di(r(D),U) = di(w(D),#(U))  (k=1,...,m).
As di(m(D), m(U)) € de{D,U) for every & (see e.g. [1], (2.8)(a)}), it follows
that puy < Xg for k=1,...,m, which yields the result. m
LemMMA 7. Let D be an o-symmetric n-dimensional ellipsoid in R™ with

principal semiazes A1, . .., An. Given an arbitrary closed subgroup K of R*,
we can find a closed subgroup H of R™, with K < H, such that

(i) all non-zero components of H are disjoint from D;
(i) supyep A, K) < 23 4+ + AZ)A/2,

Proof. Suppose first that K is discrete. If K N D = {0}, we may
take H = K. In the other case, we can construct mcluctwc:ly a sequence
Uy, ..., Uy € D such that

(111) Uk belongs to some non-zero component of K + span {u;};<x for
each k =1,...,m (the symbol span{u,};<1 denotes the zero subspace);
(iv) all non-zero components of K + span{u }., are disjoint from D.
s U € K such that
(3) vy — ug € span{uy ficn  (B=1,...,m).
It follows from (iii) that both systems wq,...

independent, and M := span {up}}%,
and set

Then we can choose vectors vy,...

Uy a0d U1, ..., Uy, are linearly
= fpaln {'Uk:}}z;i- Take H = K + M

L= {tl'vl +o Rttt b,y € Z} )
Q = {tl'vl bty s B, fi;m < l} .
It ig obvious that M = L+ Q. Hence H = K+ L+ Q=K + Q. As K is
closed and @ compact, it follows that H is closed, Condition (iv) yields (i).
We shall prove (ii).
Let wy, ..., wy be the orthogonalization of uy,...
€ D, we have

@ = (el ) (2 )

(see [1], (3.12)). Let U be the unit ball in R"™. It follows from (3) that
Wi, ..., Wm 18, in fact, the orthogonalization of wy,...,vm. S0, due to

, Uyn- SINCE UL, - -« ) Um
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Lemma 5, we have M C L + %TU . Hence
H=K+MCK+L+§U=K+1LrU.

In view of (4), this proves (ii).

Now, suppose that A is not discrete, and let N be the zero component
of K. Let then M be the orthogonal complement of N and 7 : R* — M
the orthogenal projection. We may identify M with R™ (if m = 0, then
K = R" and there is nothing to prove). Then 7(D) is an m-dimensional
ellipsoid in B3 let p1,..., by be its principal semiaxes. By Lemma 6, we
have
(5) ;1.?~+~.---|"an£)\?+ ..—E)\ﬁ.
Since our lemna is true for discrete groups, there exists a closed subgroup H”
of B™ guch that

{v) all non-zero components of H' are disjoint from 7(D);

(vi) sup e d(v w(K)) < e+ .+ up )2

Take H = «~"(H'). Then (i) follows from (v), while (ii) is a direct

* comsequence of (vi) and (5). =m

LeMMA 8. Let 1D be an o-symmetric n-dimensional ellipsoid in R™ with
principal semiazes M, ..., An such that

(6) o= (M4 A2,

Let K be an arbitrary additive subgroup of R™, and uy,
of vectors such thal

.., Uy G finite system

(7) ZMZ-GKA-D for each I C {1,...,s}.
Gl
IfU s the euclidean unit ball in R™, then
(8) > /(K +3U) < 1lg.
il

Proof. Suppose first that K is a closed subgroup of R™. It follows from
Lenuna 7 that there exists a closed subgroup H of R*, with K C H, such
that

(i) all non-zero components of H are disjoint from 3.0;
(i) H ¢ K+ §oU. _
Let N be the zero component of H and M the orthogonal complement
of N in R™. If 1y 1= lim M = 0, then H = R™ and from (ii) and (6) we get
R" ¢ K + U, whence

Lu&/

4 8U) < Zuﬁ/R“ =0.

fm]
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So, assume that m > 0 and let = : R™ — M be the canonical projection.
Let then py,..., it be the principal semiaxes of C' = «(D). By (6) and
Lemma 6, we have

(9) W+ +u2 ) <p.
It follows from (7) that there exist vectors vy,...,vy € L) such that
(10) v —uy € K (i=1,...,4).
From (7) and (10) we obtain
(11) Zui e K+D foreach IC{l,...,5}.
el

Condition (i) implies that n{H) N 3C = {0}, whence
(12) 7(K)YN3C = {0}.

Define w; = w(v;) for ¢ = 1,...,s. Then, by (11),
(13) > wien(K)+C  foreach I {1,...,5}.

el
BAs vy,...,vy € D, we have
(14) wy € 0 foreachi=1,...,s
It is not hard to conclude from (12)-(14) that
(15) ZwiGC‘ for each I < {1,...,s}.
il

Given an arbitrary system 1,...,2,; = %1, we may write

Zeiwi = Zwi et QZ'LU,‘,
g=1 G igl
where I' = {i: g; = —1}. Thus, by (15), we have

g

(16) Z£¢w¢e30 for any €4,...,8, = £1.
i=1
Let || || be the euclidean norm on M, and || [i¢ the Minkowski functional

of C. Let T be the identity operator acting from the normed space (M D
to (M, || llo). Let then |T||as and |T'||gs denote the absolutely summing
and the Hilbert-Schmidt norms of 7', respectively. It is clear that |7 s =
(Fhey 132 and (16) implies that Y oie llws] € 37| as. Since ||T|as <
V8| T||lus (see e.g. [4], 2.5.5), it follows that

(17) el e < 3VB(E .+ )

‘ Now, fix an arbitrary ¢ = 1,...,s. From (6) we have D C [7. As v; € D,
it follows that w; = w(v;) € w(D) C =w(U), whence |lw;||~? > 1. Let » be
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the integer part of Jlw;|| ™. Then [[twi| € 1, ie. tw; € U for ¢ < . Hence
x(tv;) € w(U), i.e. tv; € U+ N for ¢ < r. This means that v /(U + N) €
r~t < 2]jwi]. Since this is true for every ¢, from (17) and (9) we obtain

(18) 3 /(U +N) < 6/3p < 11g.
(2

In view of (ii) and (6), we have
M4+UCH+UCK+3pU+UCK+3U.

Condition (10} implies that w; /(K + 30 = v;/(K + 3U) for every i. Thus,

by (18],

S/ (K+3U) =Y w/(K+30) <Y w/(M+U) <1lp.
fe

gzl i=1
It remaing to consider the case when K is not closed. Take an arbitrary
9 < 1. Replacing in our lemuna K by K and U by 9U, we obtain

(19) > u /(K -+ 88U) < 1197 4.
PN
Now, K& ¢ K+ 3(1 — o), whence K + 39U € K + 3U and
& 8
(203 S/ (W 4 80) €3 /(K + 39U
fr il
As ¥ < 1 was arbitrary, from (20) and (19) we obtain (8). &

LeMMma 9. Let p,g be pre-Hilbert seminorms on a vector space E such
that 3 oo di(By, By) < L. Let K be a subgroup of B, and uy, ..., u, a finite
systern of vectors such that
(21) Z'u,,- e K+B, forechlcC{l,. .., s}

igl
Then Y07 wi /(K +38,) = 11

Proof. Conditiou (21) says that to each I < {1,..., 8} there corresponds
some vy € N such that 30 ,¢p g € vr+By. Let K’ be the subgroup generated
by the voclors vy, [ ¢ {1,..., &} Let then B’ = span(K U {ui}iy ), and let
P and ¢’ be the restrictions to B of p and ¢, respectively. We have

e8] [« ]
S BBy, By) S S BBy, By) <1,
szl k=l

zﬂuu,; ¢ K'+ By foreach IC {1,...,8},
e
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s ‘ 3
Zuz/(K + 3Bq) S Z’U‘,.@/(K’ + BBQ.') .
This means that, without loss of generality, we may assume dim E < co. In
this case, however, our lemma follows easily from the preceding one. =

Proof of Theorem 3. Let (g;);er be a strongly summable family in
a nuciear group (. We are to show that (g;)ies is absolutely summable. As
in the proof of Theorem 1, we may assume that G = F/K where K is a
closed subgroup of some nuclear vector group F. Let ¢ : F' — F/K be the
natural projection.

Take an arbitrary U € Np(F). Due to Lemma 2, we can find a linear
subspace F of F' and pre-Hilbert seminorms p, g on E such that 38, C U,
B, € No(F) and 3,7, d2(By, By) < 1. As (g)ier is strongly summable,
there is a finite subset J of I such that } .., g; € @(By) for each finite
subset L of I\ J. It is enough fo prove that

(22) Y 9/ e(3Bg) < co.

iENT

For each i € I, choose some u; € ¢~ (g;). Then Y., u; € K + By, for
each finite I, C I'\ J. Lemma 9 yields

> wi/(K +3B,) <11,
ieINJ

whence (22) follows because g;/@(3Bg) = u;/(K + 3B,) for every ¢. =
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An inverse Sidon type ineguality
by

5. FRIDLI (Budapest}

Abstract. Sidon proved the inequality named after him in 1939. Tt is an upper esti-
mate for the integral norm of a linear combination of trigonometric Dirichlet kernels ex-
pressed in terms of the coefficients. Since the estimate has many applications for instance
in I convergence problems and summation methods with respect to trigonometric series,
newer and newer improvements of the original inequality has been proved by several au-
thors. Most of them are invariant with respect to the rearrangement of the coefficients.
Although the newest results are close to best possible, no nontrivial lower estimate has
been given o far. The aim of this paper is to give the best rearrangement invariant function
of coefficients that can be used in a Sidon type inequality. We also show that it is equivalent
to an Orlicz type and a Hardy type norm. Examples of applications are also given.

1. Introduction. Let L'[—m, 7] denote the set of 2r-periodic Lebesgue-
integrable functions with norm denoted by || ||pi[ws, n- Furthermore, let
the real Hardy space H[—m, 7| be defined as the Banach space of functions

f € LY[—m, ) the trigonometric conjugate f of which is integrable, and
||f”H[—1r,7r] b “f![Ll[wvr,:vr] + ”f“l)l[—'rr,vr]-
We will also need the Banach spaces L¥[0,1] (1 < p < o0) with the

usual norm denoted by | |[p, and the dyadic Hardy space H[D,1]. For any
f € L'[0,1] let the dyadic maximal function f* be defined as follows:

f*(m):sup{ﬁ)—‘ ff(t)dt\:IEI,IBm} (z €10,1)),
T

where 7 is the set of dyadic intervals, i.e.
T=A{[k27" (k+1)27"):kneN, 0<k< 2™},

and u(l) denotes the length of I. (N stands for the set of natural numbers. )
Then, H[0,1] is the set of integrable functions f for which f* is integrable,
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