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On some conjecture concerning Gaussian measures of
dilatations of convex symmetric sets

by

STANISLAW KWAPIEN and JERZY SAWA (Warszawa)

Abstract. The paper deals with the following conjecture: if u is a centered Gaussian
measure on & Banach space I, A > 1, K C Fis a convex, symmetric, closed set, P C F is
a symmelric strip, i.e. P = {2 & F': [2()| < 1} for some z* € F’, such that u(K) = u(P)
then p(AK) 2 n(AP).

We prove that the conjecture is true under the additional assumption that K is “suffi-
ciently symmetric” with respect to i, in particular it is true when K is a ball in a Hilbert
space. As an application we give estimates of Gaussian measures of large and small balls
in a Hilbert space.

I Introduction. Let us recall that a measure p defined on Borel subsets
of a separable Banach space F' is called Gaussian if for each ' € F' the
measure «'(u) coincides with the Gaussian measure N(a, o) on R! for some
a and ¢ which depend on z’ (¢ may be 0 as well). If a = 0 for each 2’ € F’
then the measure is called centered.

A sequence of independent random variables &;, ¢ = 1,2,..., such that
each & is distributed by the law N(0,1) is called canonical Gaussian. In
this case the distribution of the random vector (£,...,£,) will be denoted

by 4, and it will be called the cenonical Gaussian measure on R™.

If 3¢ is a centered Gaussian measure on a separable Banach space F
then there exists a sequence z,;, ¢ = 1,2,..., in F such that the series
S omer @i€i 18 a.s. convergent in F and p is the distribution of its sum; here
€, 5= 1,2,..., is a canonical Gaussian sequence. Each such sequence ()
will be called a representing sequence for . For all unexplained facts about
Clausyian measures which will be used in this paper we refer to one of the
books [6] or [8). :

A sequence mi, 1 == 1,2,..., in F is said to be a l-unconditional basis
for a symmetric convex set K C F if for each € K there exists a unique
sequence ¢, 1 = 1,2,..., of numbers such that 3 72, em; is convergent to
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174 S. Kwapiet and J. Sawa

2 and such that for each sequence of signs &; = +1, 1 = 1,2,..., the series
S | ey is convergent to an element in K.

A set P C F'is said to be a symmetric strip if it is of the form {zecF:
' (z)| < 1} for some ¢’ € F”.

Moreover, let

&

1 fe"“"zmds for t € R,
(=0}

Var

£
gﬁ(t):—"\/g [e'ds  forteR),
0

ie. W is the distribution function of & and @ the distribution function of
[] where ¢ is a canonical Gaussian random variable, ie. distributed by
N(0,1). For convenience we extend ¥ and & by ¥(+400) = P(+oe) = 1 and
W(—o0) =0

To the best of our knowledge the following conjecture is open: if u is a
centered Gaussian measure on a separable Banach space F and K C F is
convex, symmetric and closed then

U(t) =

(1)  p(AK) > u(AP) for each A > 1 and each symmetric strip £ in F
such that pu(P) = u(K).

Since for a symmetric strip P C F we have p(AP) = $(AF~(u(P))) the
above conjecture is equivalent to the following: if u is a Gaussian measure
on a separable Banach space F and K is a symmetric, convex, closed subset
of F' then

(2) p(AK) > $(AP~(u(K))) foreach A > 1.

The conjecture has been known since the appearance, in 1969, of a
preprint (unpublished) by L. Shepp on the existence of strong exponen-
tial moments of a Gaussian measure on a Banach space. However, it seems
that in a published paper it was stated for the first time by . Szarek [7].
We will call it Conjesture 5.

Let us observe that in the formulation of Conjecture S we may equivas
lently require that for each A < 1 the reverse ineguality holds in (1) (resp.
in (2)), ie. w(AK) < p(AP) (resp. u(AK) < P28 (Au(K)))).

More generally, if p is a measure on F, not necessarily Gaussian, and ¢
is o Borel subset of F, not necessarily convex, then we will say that C,u
support Congecture S if for each £ > 0 the set K = ¢C satisfies (1). If O, p
support Conjecture S for each closed, convex, symmetric ¢ C F then we
will say that g supports Congecture 5.

The main result of this paper is the following:
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THEOREM L. If 1 is o centered Gaussian measure on a separable Banach
space I, K is a symmelric, conves, closed subset of F and there ezists a
sequence of veclors in F which is both o representing sequence for 1 and
1-uncondilional basis for K then K, p support Conjecture S.

In particular, if F = H is a Hilbert space and p is a centered Gaussian
measure on H, then there exists a representing sequence @y,4 = 1,2,...,
for p which is an orthogonal sequence in H. Therefore the sequence z;,
i=1,2,,..,1s a l-unconditional basis in each B, NHy where B, = {re H:
| < r} and Hy is the closure of the linear space spanned by the sequence
@y, @ = 1,2,,.. This and Theorem 1 yield the following.

COROLLARY 1. If y is o centered Gaussian measure on o Hilbert space
H then

r
w(By) = @(;@‘1(85)) for eachr > s5>0.
As an application of Corollary 1 we get

THREOREM 2. If u is a centered Gaussian measure on o Hilbert space H
and [y ||z]* p(dz) = s* then ;

T T 22
p(Br) 2 45(-8-) for 52 5
M(BP)SQ(Z) for L < f@
] 5 7

Remark 1. A much stronger result than the first part of Theorem .1
was proved by N. K. Bakirov [1], by a different method.

Remark 2. If 4 is a centered Gaussian measure on a Banach space
F and K is a convex, symmetric, closed subset of F then K,p support
Conjecture § if and only if 26! (p(rK)) is nondecreasing for r > 0. This
condition is stronger than 2@~ (u(rK)) being nondecreasing for r > 0. The
lagt fact is known to be true and it is connected with Ehrhard’s result (cf.
Section 111) from which it follows that the function ¥ ~!(u(rX)) is concave
on RY. It was proved by T. Bycrkowski [2] that $~*(u(rK)) need not be
convex or concave in general.

Remark 3. Estimates from below of Gaussian measures of balls with
centers not necegsarily at 0 can be obtained by the following

THEOREM 3. If u is o centered Goaussian measure on F, C.C F is a
symmetric Borel subset, z € F and P = {y € F : |3'(y)| < 1} is a-sirip or-
thogonal to x, d.e. |2'(a) = sup{|y'(2)| : [o¥'(¥)" p(dy) £ [p 2'(4)* uldy)},
such that p(C) = u(P) then u(C +z) = p(P + z). L
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If we put 7 = |’ {2)] ([ 2’ ()? p(dy)) ™/ then the last inequality can be
written in the form
w(C + ) 2 P(r + 87 (u(0))) = ¥ (r — &7 (u(C))) -

The proof of Theorem 3 follows easily from the Cameron-Martin Theo-
rem which gives

wC+a) = [ e uldy) = e [ cosh(se! (y)) pu(dy)
c &)

> e "2 [ cosh(se' () w(dy) = p(P + z);
P

here we have set s = |2’ (z)|([; #'(y)? u(dy)) ! and the inequality is true
since cosh(sz’(y)) 2 cosh(sz'(z)) for each y € C\ P and z € P.

Using isoperimetric methods it is possible to prove that Conjecture S is
true whenever dim F' < 3 (cf. [6]).

IL. Preliminary results. Let us observe that if =y, ¢ = 1,2,..., I8
a representing sequence for a Gaussian measure u on a separable Banach
space F, and &;, ¢ = 1,2,..., is the canonical Gaussian sequence then for
each closed, convex, symmetric set K C F we have
T
(3) L P( z; z:ii € K) = u(K}.
=

Indeed, since S, = > z:&; is a.s. convergent to § = 3.0, #;¢;, it is
convergent in law and therefore limsup,,_,, P(S, € K) < P(S € K) =
p{K), since K is closed. On the other hand, for each n, P(S, € K) >
P(S§ € K) by the Anderson Inequality. This proves (3).

Given a convex, closed, symmetric set K C F and a representing se-
quence z;, ¢ = 1,2,..., for u let K, C R™ be defined by

e
Ky={a=(a,...,0n) € R": Y vz € K.
gu=]

Then K, is a convex, closed-and symmetric subset of R”® and we have
P(Z;;]_ w:&i € K) = ”J’n(K-n)-

By (3) we have limy, o0 v, (Ky) = p(K) and clearly lim,,.o Y (AKY) =
H(AK). _

This proves that Conjecture S is true if each v, supports it.

Moreover, if (z;) is a 1-unconditional basis for K, then each K, is sym-
metric with-respect to each coordinate in R™, ie. if a = (ay,..., ) € K,
then (s10v1,.. ., Ence) € K, for each sequence of signs g, = +1, i = 1,...,n.

Therefore to prove Theorem 1 it is enough to prove
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TraroreM V. If K ds a convex closed subset of R™ which is symmetric
with respect to each coordinate then K, v, support Conjecture S.

Let oy, denote the normalized surface Lebesgue measure on S, = {z e

R™ ¢ || = 1}. The following was proved by H. J. Landau and L. A. Shepp
[4]:

ProrosiTionN 1. If K C R™ 4s o Borel set such that K, oy, support Con-
Jecture S then K, vy, support Conjecture S.

Proof Let ¢ > 0, K' = {K and let P be a symmetric strip such that
i (P) = v (K"). We have to prove that v, (AP) < v,(AK’) for each A > 1.
Since K, oy support Conjecture S we deduce that there exists ¢ RY U
{+oc} such that

on(8K') < on(sP) for0<s<e,
on(sK') 2 0n(sP) fors>ec.

Hence if p : R}, — RL is such that

(4)  for each A > 1 the function g(s) = p(s/A\)/p(s) is nondecreasing on

',
then |
Of‘ o) (on(sI) = (o)) ds 2 BELE) Df p(5){on(K") — oa(sP)) ds
and
J o outor) - oapanz 2L [ a0 ton(o) - outop)) s

Therefore if

p(s}on(sK') ~ on(sP))ds =0

then
-
j p(8/M){on(8K') — o {sP))ds 2 0.
0
This proves Proposition 1, since for ecach Borel set A C R™ we have

) = & [ pale/Non(sd)ds
0

an/:!

where p,(s) = ?Tms“”““le:"”ﬂ/ 2 and py, has the property (4).
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Remark 4. Tt is clear from the above proof that Proposition 1 remains
valid if we replace v, by any measure on R™ which has a density with
respect to the Lebesgue measure of the form p(jz|) where p : RY — RY has
the property (4).

If 11 is a probability measure on R™ and C € R" is a Borel set we will
denote by mc the function on RY given by me(t) = p(tC) (it will always
be clear which measure 1 is taken into consideration).

If f: R, — RY is a function then by definition

-t Y f(t) - f(,g)
Frlo=ma =

A set C'C R™ is said to be a star set if \C C Cforeach A€ RL, A < 1,

LeEMMA 1. Assume that o probebility measure b on R™ has the following
property: for each symmetric strip P ¢ R™ the function mp(t) is differen-
tiable and m/s(t) > 0 at each point t such that mp(t) < 1. Let C C R
be & Borel star set. Then C,u support Conjecture 8 if for each syrmetric
strip P and each t > 0 the condition ma(t) = mp(t) < 1 implies that
i, (8) 2 mp (1),

Proof If @ is a symmetric strip such that u(sC) = u(Q) then for the
strip P = 10 we have m¢(s) = mp(s} and therefore in order to prove that
C, i support Conjecture S it is enough to prove that for each ¢ > s > 0
and each strip P the equality mc(s) = mp(s) implies mo(t) = mp(t).
Assume that the implication at the end of Lemma 1 holds true. Then for
each ¢,7 € R} and each symmetric strip P such that mg(t) = mp(f) we
have mg(t) = mp(t) where P = LP and hence we obtain

M (8) 2 mip(t) = fmin(F)

or equivalently tm, (¢) > &m)(f). Therefore if we put A(t) = mp! (me (1))
defined on the interval {t € RL : m¢(t) < 1} then & is a nondecreasing
function and tmp. (t) 2 A(t)mp(h(t)). Also, since ma (£} = mp(h(t)) we get
Mg (1) = mp(h(t))h (t). Consequently, combining this with the previous
inequality we obtain

(5) ~ th\(#) = h(t) whenever mg(t) < 1.

The condition (5) implies that (Inh)’ () = 1/t. 1 me(s) = mp(8) or, which
is the same, if h{s) = 5 then since h is nondecreasing we get h(t) > ¢ for
t > s whenever mg(t) < 1. But h(t) > ¢ means that mq(t) > mp(t). Thus
we have proved that mc(s) = mp(s) implies mg(t) = mp(t) for t > s > 0,
and the proof is complete.
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We will apply the above lemma in three cases. The first is when s
eqml t0 vr. Since for a symmetric strip P = {z € R™ : a/(z)] < 1} we have

mp(t) = ${t/[\z']|), the measure v, satisfies the assumptions of Lemma 1.
Moreover, we have
f 7 v, dm))

to

me(t) = t(nmo

Hence by Lemma 1 we obtain

COROLLARY 2. The measure vy, supports Conjecture S if for each convez,
closed, symmetric C CR™ and each symmetric strip P C R" with ,(C) =
o (?) we have

fmg Toldz) < f z? v, (dz) .
C P

Remark 5. It was observed by T. Zak that if the diameter of C' is less
than 24/n — 1 then C satisfies the inequality of Corollary 2. This is clear
since [, 2% Y (dz) < (n = 1)7(C) and [, 2?2 wm(de) > (n — L)vya(P).

Another case in which we will apply Lemma 1 is when g = o9 and
F = IR?. In this case

Qacs it < |||

TCEIN — 1 €T

mp(t) = { 7 T
1 otherwise,

and
' 2 T ‘
mp(t) = — tan Emp(t) whenever mp(t) < 1.
S0 we get
COROLLARY 3. Let ¢ < R* be o Borel star set. Then C, o9 support
Clongecture 8 of
i, (8) 2 %tan (-g"'mp(t)) whenever mg(t) < 1.

Similarly for oy we bave

motty= {11 < 21)

otherwise,
and Lemma 1 yields

C'OROLLARY 4. Let C - R3 be a Borel star set. Then C o3 support
Congecture 8 if

tmi,. (1) 2 ma(t)  whenever mo(t) < 1.
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IIL. Proof of Theorem 1. In fact, we will prove Theorem 1’, which is
enough to prove Theorem 1, as shown in Section II. The proof of Theovem. 1’
is by induction on n and it is based on the result of A. Ehrhard [3] which
states that if Ky, Kz are convex subsets of R™ and Ay, Ag 20, Ay +Ag =1
then

T (ALK + Ao K2)) = M (7 (K1) + A2 (Ka)) -

It follows easily by this result that if K is a convex set in R and if we
define

Ky = {(mla---:mn) eR™: (mln"'awn:m) EK} for @ @Rl

then the function A defined by h(z) = ¥~ (v, (K,)) is concave on R*, Recall
that a function h : R* — R U {+oc} is councave if for each Ay, Ag > 0,
A+ Ay =1, 21,23 € R! we have h(A1z1 + Agan) 2 MA(zy) + Ash(xy) and
where —o0 + 00 = 00,

Now the induction step is proved as follows: if X < R™! is cloged,
convex, and symmetric with respect to each coordinate then the same is
true for K, for each # € R! and by the inductive assumption, for each
A2 1, 7a(Mupn) 2 (@1 (K, /2))). This gives

Y1 (M) = [ om(OWK)a) (de) = [ 7a(AKeya) 1 (de)
4 I3

> [ 8087 (1 (Kapy))) nldz) = 12(ABy)
R

where g : R" — R¥ U {400} is defined by g{z) = $ (ya(Ky)), and B, =
{(z,y) € B? : |y| < g(lz)}. Therefore the proof of the inductive step, and
the proof of Theorem 1’ for n = 2 as well, will be completed if we show
that By, vz support Conjecture 8. If v,(K,) = 1 for some z € R! then K
is a symmetric strip and there is nothing to prove. S0 we can assume that
g has finite values. The function ¥~*@g is even on R' and concave by the
Ehrhard result. Thus in view of Proposition 1 and Corcllary 3 it is enough
to prove the following two lemmas:

LEMMA 2. Let G'= W™D, Then the function H(x) = 26 (x) is increas-
ing on RL \ {0}.

LEMMA 3. Let G : RL — R'U{—c0} be an increasing function such that

G is differentiable on RL \ {0} and H (x) = xG'(x) is increasing on this scl.
If g : R* = RL is an even function such that Gg s concave on R* then

2
tme, (¢) 2 ;tan (-’gmg(t)) whenever ma(t) < 1

where m s defined for p = oy and ¢ = By = {(z,y) € R? : |y| < g(|])}.
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Proof of Lem ma 3. ¥ G satisfies the assumptions of Lemma 3 then
s0 does the function G(2) = G(a/t) for each t > 0. Moreover, tmy, (t) =
mye. (1) and ¢ = By where g(a) = tg{x/t} for & € RY, and clearly G is
concave if 8o is Gg. Therefore it is enough to prove Lemma 3 for ¢ — 1.

The set Sy \ C' is at most a countable union of disjoint arcs. First con-
sider the case when one of these arcs, including its endpoints, is contained
in RE, = {(z,y) € R?: 2 >0,y > 0}. Let I be such an arc and let
(z1,%1), (2, y2) be the endpoints of I, Then y; = g(z;) for i = 1,2 and we
can assume that z; < 2q. Let ¢y = arctan{z; /y1) and ¢p = arctan(ys/2a).
Since cotx is decreasing for z € (0,7/2) and since C is symmetric with
respect to each coordinate we obtain

(6) tan (:g-crz((?')) = cot (g«ag(Sg \ C’)) < cot(2wop(1)) = tan(d + ¢2).

Let Py (resp. P2) be a symmetric strip in R? whose boundary is tangent at
the point (z1,31) (resp. (z2,42)) to the graph of g restricted to the interval
[@y, 23], Since (g is a concave function and since @ is differentiable such
strips do exist. We compute eagily that

(7) -ga'g(.[)],) = ¢+ where cotyy = —g} (1) and
(8) gag(Pz) =¢p+ 1y where tanyp = —g’ (z2);
here

)= lming 2@ =90

L—tGy BTy T — o

For 1 = 1,2 and each neighborhood V; of the point (x;, y;} we obtain, by the
tangency of the boundary of P; and the graph of g,

, ea(tCNINY) a(tPNINY;)
lim il e 2 Y
teml,E ] to ] B 1,831 t—1
1 1
s 5; tan ("g“o‘z(P,;)) = 5;; tan(gbi + 'lb,) .
Hence for Vi, Vi digjoint we obtain
p o g’wg(f;C)-—O'Q(O) > lim 51 4Ug(tcﬂf)
mow(l) = fmep T 2 e
, oo(tCNINWY)  e(tCNINVy)
= 4 limsup - + o
Pt t—-1 -

- %(tan(qbl + 1) +tan (g2 + 1))
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Hence using (6) we see that to prove mp (1) = —f; tan(Fme(1)) it is enough
to show that

tan(gy + 1) + tan(ps + 12) > tan(dr + ¢2).
This will be proved if we show that either ¥ 2 ¢y or o > ¢1, which is
equivalent to: tan) > tan ¢y or tanty > tan¢, which by (7) and (8) is
equivalent to:

1122 ! m.l.
—d < Z2 - 2o > =
(9) g lm) € O g (2a) 2 m

Since (g is concave on the interval {2y, zs] we have
Cly) — G
g (o) () > S =W g ey,
Zg — ¥y
Therefore to prove (9) it suffices to show that either
L Gn)~Glw) . %2

G'(y) z2— o T
or
b Gln) -G | 2
Gy} za—2z1 w1

which is the same as proving that one of the following inequalities holds:
ny2(Glyn) - Gloe)) el

Ty — &y

y2G' (ya)z1 < v1)Ta.

This is indeed true because ) < zz and y1G'(y1) > y2G (ya), since yG'(y)
is increasing and vy > ya.

Now consider the case when Sy \ ¢ has no component contained in R% .
Then if 73(C) < 1 we can find (zg,yo) € R7., such that either So\C contains
the arc joining (—p, ¥g) and (2o, yo), except possibly its midpeint (0, 1), or
Sy \ C contains the arc joining (zg,y0) and (zp, —yo), except possibly its
midpoint (1, 0).

Let P be the symmetric strip {(z,y) € R? : |y| < y} in the first case
and {(z,y) € R?: |z| < p} in the second case. Since g is nonincreasing we
have in both cases

2 *
me (1) 2 mp(1) = — tan (;—Ecrg(P)) > -f:‘l;ml (g-ag(ﬂ)) .
This completes the proof of Lemma 3.

Proof of Lemma 2. By the fzg)rmu}a for the derivative of the in-
verse function we have G'(z) = 2¢%(®°/2=2°/2 'which implies that G (x) =
(('(2)G(2) - 2)C'(z) and

H'(z) = 2G"(z) -+ G'(z) = G'(z)(G'(2)G (&) — 2z + 1)
= G'(2)(2C 212G (2)g ~ 47 4 1)
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Since G'(2) > 0 Lemma 2 will be proved if we show that
(10) G (x)eC’ /2 ;i—e""g/g (:c ~ l) for z > 0.
z ‘

PR R L I ]

]Jcl1 flw) = we® {’3 for z€ ]]Ql,. g(m). = §§m2/2($ —1/xz) for > 0 and h(z) =
S g(m)) for 2 > 0. Since f is strictly increasing on R! the inequality (10)
is equivalent to #(x) > W{k(z)) for & > 0, Le. F(2) = &(z) ~ #(h(z)) > 0
for @ > 0. Since limg.0,050 (2} = Ly, .00 Fz) = 0 it is enough to show
that F(x) > 0 for 0 < z < c and F'{z) < 0 for £ > ¢ for some ¢ € RL.
Since

) @ 1
P/ () o e (207012 () Bl 2 ) 5% ” (mg J’"F)
@ a2 e ) and h(z)= (1 h(z)2)eh(=)/2

the inequality F'(x) > 0 holds if and only if

(h(a)eP P 12 4 e 5 2 (gr 1)
4 z?

Since h(z)eh®*/? = F(h(z)) = g(z) this gives that F'(x) > 0 if and only if
hiz)? 1 a? . 1 %
e (=) > ;j;e-l’ (m,a_'__:;a)_ g(m)2=e 1;12_

The lagt inequality is obviously satisfied if z € (0,vIn2). For & > vIn2 it
is satisfied i and only if [g(z)| > f{v2? —In2) or equivalently

1 1
" >vz?-In2,

-—.—mm_.
V2

which, in turn, i equivalent to

9 2\*
< | In~ <ln—) +1=:c.
e e

So, finally, we conclude that F/(z) > 0 if and oﬁly if # < ¢, which ends the
proof,

IV. Proof of Thoorem 2. Let 1 be a centered Gaussian measure on
& Hilbart space K. Then as explained in the introduction there exists a
sequence of nonnegative numbers v, ¢ = 1,2,..., an orthonormal sequence
e, t = 1,2,..., and a canonical Gaussian sequence &;, ¢ = 1,2,..., such
that 3070, /Gi&ie; 18 a8, convergent and g is the distribution of the sum.
Hence, if we set Z = 500 ;€7 then p(B,) = P(Z < r?) for each r € RY.
Without loss of generality we may assume that f,, [l]|® p(dz) = 772, o =
1. Tt foltows by Theorem 1 that if p(B,) = ®(c) for some ¢ € R} then
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w(B,) < ®(r) for r < ¢ and pu(B,) > &(r) for r > ¢. This implies that
Ef(Z) > Ef(£2) whenever f : RY — R' is a differentiable function such
that the two expectations exist and such that

(11) Flz)>0 forz<c® and f'(2)<0 forz> .
Indeed,

Il

BAZ) ~BIE) = [ FOPEZ > 8~ PEd> ) dt

N
2 [ o ()@~ w(B) it > 0
a

because the last integrand is nonnegative on lR}l_ and if the integral is 0 then
u(B,) = &(r) for allr € RL and the theorem is true. Hence, Theorem 2 will
be proved if we show that for each ¢? € (0, (4+/2 — 5)/7] U [22/3, 00) we can
find & differentiable function f : R} — R' such that {11) is satisfied and
such that

(12) Bf(Z) < Ef(£7)
for each sequence of nonnegative numbers ¢;, i = 1,2,. .., with Eff’; L= L
First consider the case of ¢® € [22/3,00). Let f be defined by f(t) =

272 - £3/3. Then f satisfies (11) and for each sequence of nonnegative
numbers oy, 1 =1,2,..., with Efﬁl o; = 1 easy computations yield

Ef(§) - BHZ) = (1 Z )HZQHZ:%____
F et gL+
(Za ~1) >0,

The first inequality above is a consequence of ¢ > 22/3 and of the inequality
Yol > (0 1 a?)?. This ends the proof of the first case.

The case of ¢? < (44/2 —5)/7 is more complicated. Let f be of the form
f(t) = Ae™® — Be™" where 4, B, a, b are positive numbers such that b >
and

8

oo Ly

b—o " Aa
We check easily that f satisfies (11). We will prove that there are A, B, a,b
as above such that the condition (12) is satisfied, which will complete the
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proof. Simple computations give

.o}
Ef(Z) = AJ](1+ 2a0,)72 - BH(1+2ba) -1z,
i 1

For lixed m let G @ R} — R™ be the function given by

CHCTRTE N AH (1 + 2az;)~ 1/2—BH (1 + 2b2,)~4/2.

doml q==],

Let (y1y...,9a) € RY be a point at which G, attains its maximum on
the compact set {(@y,...,2,) € RY : oy +.. .42, = 1}. Hence, iffori,j < n
we define ¢ by

g(t)::“ Gﬂ‘(yl.:-":yi—t:'”ryj +ta"-7yn)
then ¢’(0) =0 if y; > y; >0, 9'(0) 2 0if y; > y; =0 and

2Aa? (

IO - —1/2

2B6*(y; ~ ) i 1
. /2
(1 203 )(1 + 2y, ]]::Il 1+ 2.

It follows that if y; > y; > O (resp. y; > y; = 0) then

1+ 2ay; 1+ 2ay;
1+ 2by.i 1+ Zbyj ’

Bb-’* H ((L + 2bye) /(1 + 20, )) /2 = (resp. 2)

Since the left side of the above does not depend on 1,7 and since we have
(14 2ap) /() - 2by;) < 1 for y; > 0 we deduce easily that there are at
most two differsut values in the sequence y1,...,¥s. Hence, letting n tend
to infinity and in view of the fact that Hmj,eo (14 2ay/k)~5/? = e~ where
the convergence is uniform for y € [0, 1] we derive that f satisfies (12) if and
only if

. nk/jz L 2 ""k:/2
(13) A("u w1 (1 o _é%;r_) " BPD(J‘-' (1 + bv[-') S Ef(ff)

for each 2 € [0, 1] and each & 2 1. Denote the left side of the above inequality
by H(z, k). Then the right side is equal to H(1,1) and (13) reads H(z, k) <
H(1,1) forx & [0,1] and k = L. Assume that H : [0,1] x [1,00) — R' attains
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its maximum at a point (y,} € (1,0} x (1,00). Then

12
OH 246y -1 Qay)
—_ = 2 el 1 —_—
9 N Ty B
- Q_BIb_geb(wl) (]_ + ?_;i"i) >0,

_ 9 ~1/2-1
= e (14 22)

Bk
y (?-i;ﬁ - (1 + gf;}i) In (1 + gf;”ﬂ))

=/l
m;éeb(y—l) (1 + ?,%’14)

x (?u?-y-w(l—kg?g)ln(lﬁwg%y))xﬂ.

Combining the above equality and inequality we obtain g(u) < g(v) where
u = 2ay/l, v = 2by/l and g(z) = ™ ?((1 + 2)In(l + 2) — 2). But this is
a contradiction since u < v and it is easy to check that g i decreasing on
RY. Also, since limy_ oo H(z, k) = H(0,1) and the convergence is uniform
for x € [0,1], we see that H(z, k) < H(1,1) for all (z,k) € [0,1] x [0, )
it H{z,1) < H(1,1) for all z & [0,1]. Write A{x) for H(x,1). So, (18) is
equivalent to h(z) < A(1) for = € [0,1). Simple computations show that
h'{z) > 0 if and only if

A o oae (1200
Bb? - 1+ 2bz

and that the right side, say ¢(z), is decreasing on [0, d] and increasing on
fd, 0o} for some d € RL . Hence, if

Aa® .
f}_gﬁ_eb o 2 C](J)

then h/(z) is negative on [0,d] and positive on [d, 1] for some d & R', which
implies that h(z) < (1) for x € [0,1] if A{0) < A(1), Thus (18) is satisfied
if

2

a ~rih
Bbge*’ *>q(1) and h{0) < A(1).

The last two conditions can be written in the form
1 Bb o

b—a  Aa - b—a

dnd
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LB () - m(a)
b-—a  Aa” hb—a
where g5 (z) = §In(1-+ 2z} - Inz and ga(z) = Inz — ln((1 + 22)~1/2 — ™).
Since
» 1 . Bb

©= b-a  Aa
it is clear that if we put r = max,cp, min{g}(s), gh(s)} then for each ¢® < r
we can find A, B, a, b with the required properties. If we put s = (2 + v/2)/2
then gi(s), gh(s) 2 (42 - B)/7 s0 that v > (4/2 — 5)/7, which concludes
the prool.

Remark 6. We conjecture that the second inequality of Theorem 2
holds trme for all r/s < 1

Acknowledgments. The authors wish to thank T. Byczkowski and
T, Zak for remarks which resulted in improving the paper and T. Byczkowski
for pointing out to them the paper of N. K. Bakirov.

References

1] N. K. Bakirov, Ertremel distributions of quadratic forms of gaussion variables,
Teor. Veroyatnost, | Primenen, 34 (1989}, 241-250 (in Russian).

[2] F. Byczkowski, Remaorks on Gaussion isoperimetry, preprint, Wroctaw University
of Technology, 1991,

3] A, Ehrlard, Symélrisation dans Uespace de Gauss, Math. Scand. 53 (1983), 281~
381.

[4] M. J. Landauand L. A. Shepp, On the supremum of o Gaussian process, Sankhya
Ser. A 32 (1970), 369--378.

[B] M. Ledoux and M, Talagrand, Probability in Banach Spaces, Springer, 1991.

6] 8. Kwapied and J. Sawa, On minimal volume of the convex hull of a set with fized
aren on the aphere, preprint, Warsaw University, to appear.

[7] 8.1 Szarek, Condition numbers of random matrices, J. Complexity 7 {1991), 131-
149,

4] N.N.Valhanis, V.1 Tarieladze and 8. A. Chobanyan, Probability Distribu-
tions on Banach Spaces, Reidel, Dordrecht 1987.

INSTTIUE O MATHEMATICE
WARHAW UUNIVERSITY
BANACIA 2

02097 WARBZAWA, POLAND

Recedved October 20, 1992 (3010}
Revised version February 9, 1893



