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‘Weal uniform normal structure
in direct sum spaces

by

TOMAS DOMINGUREZ BENAVIDES (Sevilla)

Abstract. The weak normal structure coefficient W(CS(X) is computed or bounded
when X 13 a finite or infinite direct sum of reflexive Banach spaces with a monotone norm.

A Banach space X is said to have normal structure (resp. weak normal
structure) if every closed convex (resp. weakly compact convex) subset of X
contains a nondiametral point. It is well known that if X has (weak) normal
structure, € is a weakly compact convex subset of X and T : € — C 15 a
nonexpangive mapping, then 7' has a fixed point.

In [B] the following coeflicients related to the normal structure are de-
fined;

N(X) = inf{diam A/r(A) : A a bounded subset of X}

where diam A is the diameter of A and r(A4) is the Chebyshev radius of A,
and

WCS(X)=inf{diamgs(2,)/ra(Zn) ¢ (z,) is & weakly convergent sequence
which is not norm convergent}

where r,(,,) is the asymptotic radius of (x,), L.e. ra(@,) = inf{limsup ||zn —
yl| + y € cory,}, and diamg(,) is the asymptotic diameter of (z,)}, i.e.
diam, (#y) == limg sup, sy [[@n = ©ml|. The definition of WCS(X) makes
sense when X does not have the Schur property and we can say, by con-
vention, that WOS(X) = 2 if X has this property. It is well known that
1< N(X) < WCS(X) £ 2, X bas normal structure if N(X) > 1, and weak
normal structure if WC'S(X) > 1. Since the converse results are not true
and X is said to have uniform normal structure if N(X) > 1, we can say
that X has week uniform normal structure if WOS(X) > L.
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Another normal structure coefficient, denoted by D(X), was defined in
[M]. In [P] it is proved that this coefficient is actually 1/WCS(X) for re-
flexive spaces.

A recently studied problem is the permanence property of normal struc-
ture and weak normal structure under the (finite or infinite) direct sum op-
eration (see [L1, L2, C]). In this paper we evaluate the coefficient W S(X)
when X is a direct sum of reflexive spaces, with a monotone norm in the
finite case. In the infinite case we only obtain a lower bound for the weak
normal strueture coefficient either using the Clarkson modulus of convexity
or directly, if the substitution space has an Orlicz norm. This bound is the
actual value of W(S(X) when the Orlicz sequence space is £7. In particular,
we prove that the direct sum X; @ ... ® X, with a p-norm (1 £ p € co) has
weak uniform normal structure whenever all X; are reflexive spaces with
this property. It is noteworthy that, for p = 1, weak normal structure is not
preserved under finite direct sum operation (see [L2]) and it is unknown (see
(C]) if uniform normal structure is preserved under the same operation.

We recall that a norm in R* is called monotone if ||(a1,...,a)| <
|(b1,...,b%)|| when 0 < a; < b; for every i = 1,...,% This condition
is satisfied if, for instance, the norm is symmetric, ie. ||(a1,...,ax)|| =
{(e101,...,€xax)| for any & = +1. This is the case of the p-norms or
Orlicz norms. Assurne that X is R* with a monotone norm. We denote
by (X1 ® ... ® Xi)x the product space Xy x ... x X3 with the norm
Czn, ool = {[{l@ll, .-, lzell)]l- When a p-norm in R* is considered
we use the notation (X1 & ... @ Xi),.

THEOREM 1. Let X5,..., Xy be reflezive spaces and let X be R* with o
monotone norm. Then

WOS(X1 @ ... ¢ Xp)x) =min{WCS(X) :i=1,...,k}.

Proof Using some results of [P] and [DI] it is proved in [D2] that for
any reflexive space X we have

WOS(X) = inf{ﬂ ng1£ln#m |20 = m|| : (zn) is a weakly null sequence,

lm [Jzn) =1 and  lim o, =z, exists)} .
mymingen

Let () be a weakly null sequence in (Xy @ ... @ Xj)x such that

UMy et [T ~ Zmll = | and lim||z,|| = 1. We write z, = (2 (1),. .,
+o oy @n(k)). We can assume that (X3 @ ... @ X3)x is infinite-dimensional
because otherwise all X; are finite-dimensional and Theorem 1 is obvious.
From Lemma 3.4 of [D1] and a diagonal argument we know that for every
bounded sequence (a,) in a metric space S there exists a subsequence (b, )
of {an) such that limp, ppotm (b, b exists. Applying this & times we can
assume that limn, [|z.(i)]| = a(é), and limp, munpm ||€a(3) — T (D) = 1(7)
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for i = 1,...,k Since the topology in (X7 & ... & X})x is the product

topology of Xy x ... x X} it is clear that 1 = lim |z, | = ||(a(i))|| and
= L, minstm |Zn — Zml| = |-

Define w = min{WCS(X;) : i = 1,...,k}. Since (2,(1)), is a weakly

null sequence in X; we have [(i) > wa(i) for every i =1,..., % (even if X; is

finite-dimensional). Thus I = ||(1{8))| = [{{(wa(i))]| = wi|(a(i))| = w. Hence
WCOS{(X1@®.. . @Xk)x) > w. On the other hand, it is clear that the converse
inequality holds because each X; equipped with the norm |z| = ||z|{|e:]| (es
is the ith canonical vector of R¥) is a subspace of (X1 ®...® X)x. =

CoroLLary L. Let Xy,..., X}, be reflevive spaces. Then
WCS(X1® ... ® Xyp)p) = min{WCS(X;):i=1,...,k}
Jor every p € [1, 0c).

Remark 1. The statement of Theorem 1 is not true if the norm in
R* is arbitrary. Indeed, let || - | be any norm in R? such that [|(1,1)] =
(242,243 = 1. Then £2 % £% does not have weak normal structure (or
normal structure) because the weakly null sequence ((en,en))n (&5 the ba-
gic vectors in £y and £y) satisfies ||(en,en) — (em,em)i| = 1, n #£ m, and
H(en, en)l] = 1.

We now study a similar problem for infinite direct sums of reflexive
spaces. Let X be a Banach space with Schauder basis {e;} and monotone
norm (i.e. || Yoy aieil] < || Fioy bies]| if 0 < ag < b for every ¢ € N). If
(X;) is a sequence of Banach spaces we denote by €Dy X; the substitution
space formed by all sequences (z;) such that z; € X; and 3 oo, [|2:i]e; € X,
with the norm |[(z)|| = || Sty ll®ille: |l. If M is an Orlicz function and X
is the Orlicz space hps (for standard facts about Orlicz sequence spaces we
refer to [L1]) we denote the substitution space by &P, Xi, and by P, Xi
if M(s) = g? (le. X == {F). We shall assume throughout this paper that A
is an Orlicz nondegenerate function satisfying the As-condition at zero and
without loss of generality that M (1) = L

We start with the weak normal structure coefficient for an infinite direct
sum with Orlicz norm. The following lemma for Orlicz sequence spaces is

proved in [D3]:

LeMMA 1. Let M be an Orlice nondegenerate function safisfying the La-
condition at zero, ¢ the inverse function of M and o = inf{p(t)/0(t/2) : t €
(0,1]}. Then o > 1 and M(t/a) 2 LM (t) for every t € [0,1]. Furthermore,
WCS(hae) > a and o = 24P if M(t) =17

The proof of the following theorem is inspired by the arguments in [Pa,
Theorern 1], [K, Lemma 8] and [D3, Lemma 3].
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THEOREM 2. Let M be an Orlicz nondegenerate function sotisfying the
As-condition at zero and (X;) a sequence of reflewive Banach spaces. Then

inf{o, WCS(X,) i€ N} < WOS(@XQ < inf{WOS(X;) 1 i € N}.

If, in addition, hyr is reflexive then WCS(@,, Xi) € WCOS(har).

Proof. Since every space X; with the norm |z| = |4 (ey is the ith

basic vector of hyr) is a subspace of @ ,, X it is clear that WCUS{D,, Xi) =
inf{WCS(X;) : i € N}. If hyy is reflexive, so is €Dy, Xi. Let £ > 0. There
exists a weakly null sequence (£,) such that {|(£,)]] — 1 and
n};}m Ilfn ’Em” < WOS(’ILM) +e.
Since each coordinate sequence (£,(1))n converges to zero we can assume
without loss of generality that supp £,N8upp &m = B ifn 5% m where supp € =
{i € N &(:) # 0}. Choose for every n € N and i € N a vector x,{4) € X;
such that [z, (3} = [£.(4)]. Then the sequence (z,) is weakly null and
satisfies ||@n] = [|€n ]| and ||z, — me |€n — Em]| for every n,m € N. Since
¢ is arbitrary we obtain WCS(@,, X} € WOS(hn).

To prove the inequality inf{a, WOS(X;) : i € N} < WC’S(GBM i)
note that if (x,) is a bounded sequence in a Banach space we can find a
subsequence (y,) such that lmsup|/@,| = lim ||y || and limmngm [4n —
Ym || exists. Hence

dlama(mn) diama(mn) limn,m;n#m ”yﬂ, - ymH
ra(zp) T limsup flz,|| T lim ||y ||

Thus we only need to prove that | > inf{o, WCS(X;) : ¢ € N} for every
normalized weakly null sequence (2,) in €@, X; with i, minzm [|€n —@m |
= l. Write w = inf{o, WCS(X;) : i € N} and let (z,) be a normal-
ized weakly null sequence in @, X; such that limy, mipnsm |80 — @mll = 1.
Taking subsequences and using a diagonal argument we can assume that
Im [|2,(8}) = a(i) and i, minsim |Z(t) — 2m(3)]| = I(i) for any 4 € N,
Since 3.2, M(Jlzn(3)[) = 1 and using the continuity of M it is easy to
check that (a{i)) is in har and || (a(i))]] € 1.

Assume, by contradiction, that | < w and choose & > 0 with w(l - 2¢) >
I + 4¢. Since (e;) is a Schauder basis of hys there exists 41 ¢ N such that
| 325, a(t)es|| < e. Choose n; € N large enough such that

|| 32 lem@lles]| = || 3 atige
. i1 iy
”‘Tn:. - m'm” < l'|'€ anc_l

I ; [EMOREMOIER

<,

<

~| S atiyes
i<y
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for any m > ny. There exists i3 € N such that || 35, l#n, (@)]lei]] < &

Choose nz € N large enough such that || ZWMH [, {D)e: | < & (Recall
that (.. (i))n converges to (a(d)) and || 3,5, a(i)ei|| <e.) Then

w(l - 2) > 1+ 4 > [, — ol + 3¢

Z 2, (2] ;ez'*“ZHICm Meilf -

i<y f==iy 41 i1y
Thus
1> Z M( -+_ Z M “m’ﬂl _I__ ZM ”mna
wl-?s 1m25) 1~2€)
iy z—u-l—l i>ig
1 a(i) e, (]
= E{ZM(L«Q@) + Z ( 1-2¢
151y t=%1+1
|2, ()l
[ZM(lmza) EM(I*Q > 1
<l 1>4y

because both norms || 37,<,, a(i)e; |-Ez_h+1 |2n, ()les || and [ 32,4, ali)es
+ 2 iviy %0y (8] || are greater than 1 — 2. This contradiction proves that

2w ®

If M(s) = s” the substitution space @, X; will be denoted by P, Xi,
which is obviously the set of all sequences (x(¢)) where x(i) belongs to X;
and 300 [|=(1)||P < oo with the norm flz(@)|| = (3552, |l=(¢ 4)|[P)*/?. Since in
this case a = WCS(£,) = 24/? the following corollary is clear:

CoROLLARY 2. Let (X;) be a sequence of reflerive Banach spaces. Then
for any p € [1,00) we have :

wos( @D X:) = mHWOS(X.), 27 i € N}
P

Remark 2. Having in mind Theorem 1 and Corollary 2 one can expect
WCS(E y Xi) = inf{WCS(X,), WOS(X) : ¢ € N} for any substitution
space with monotone norm (it is clear from Remark 1 that this result is not
true for arbitrary norms). If this result were true, the following conjecture of
Kottmann (see (K]) would also be true: K (@ X;) = sup{K(X:), K(X)
i € N} where K(X) is the maximal separation for a sequence in the unit ball
of X, i.e. K(X) = sup{e > 0 : there exists a sequence (zyn) in X satisfying
llzofl < 1 and ||2n — Tl 2 & for every n,m € N, n # m}. Unfortunately,
we do not know how to prove the above equality. However, we have the
following weaker result:
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TueoreM 3. Let (X;) be a sequence of reflexive Banach spaces and X
a reflezive Banach space with Schauder basis {e;} and monotone norm.
Define w = inf{WCS(X;) : i € N} and let §(-) be the Clarkson modulus of
convexity of X, i.e.

T+
ster=1-swp{ LE U ol <1, Pyl <1 ool 2.

Then

Wcs(@xi) > (1— 5(3-5-1))—3.

Proof. Let (z,) be a sequence in €, X; such that ||z,|| = 1 and
limp minstm |Tn — T == . We shall prove

=f-o( 22

Indeed, otherwise choose £ > 0 such that

l+s<(1—s){1—6((w—m21_)+_(i—mﬂ)]_l.

(Recall that the Clarkson modulus of convexity is a continuous function.)
Following an argument as in the proof of Theorem 2 we can assume that
lim ||z, () || = a(4) and limp, mpsm [|[20(5) — 2, ()] = 1(3) for any 4 € N,

Note that supy, || E;;l a(i)e;]| < 1. Indeed, if for some k € N we have
1308 ali)e:|>>1 we can choose n large enough such that \ Efﬂ [ln(Diles ||
> 1, which is a contradiction because || Y50, [|@n()]le: || = 1.

Since X is reflexive, the basis {e,} is boundedly complete (see, for in-
stance, [Be, Th. 2.1.5]). Thus there exists 2 € X such that z = oo, a(i)e;.
In particular, there exists iy € N such that [| 3., a(i)es]| > e. In a similar

way to the proof of Theorem 2 wecan find by € N, 4s e N, ny e N, ny e N
such that

la+yll =1 <e, [llatzl-1<e, [fp+y+z|-i<e

where
i2
o= alile;, y= > lza@e:, 2= g @)les, b= > lie;
i<y iziy 41 i>ig i<y

S?nce I(é) 2 wa(4), the monotonicity of the norm implies I+ > Jwat+y+z|.
Since || (wa+y+z)~(a+z2)| = [(w-1)a+z| = (w—-1)|a+z| > (w—1)(1~¢&)
and

1 1 _
T lwety+a <, ol <1
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we have from the definition of the Clarkson modulus of convexity
1 [w—+1 1—e¢
—— < 1= —
ire| 2 = 5(“” 1)2+e>'
Using again the monotonicity of the norm we obtain

a+g~+z

1 1-¢
|| gt - <1 = -
el <1-5(w -0,
which implies
Lo l—¢
ST ] — —
E—s“l 5((w 1)2-{«5)’
that is,
1-e\1""
l—e> (1~ - -
> E){l 6((11) 1)2+5)] ,

contradicting the choice of €. w

Since a Banach space is uniformly convex if and only if () > 0 for every
g > 0, the following corollary is clear:

COROLLARY 3. Let X be a uniformly convez Benach space ond (X;) a
sequence of reflexive Banach spaces such that inf{WCS(X,) :4 € N} > 1.
Then @ 5 X has uniform weak normal structure.
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Banach spaces and bilipschitz maps
by

J. VAISALA (Helsinki)

Absgtract. We show that a normed space E is a Banach space if and only if there is
no bilipschitz map of £ onto B\ {0}.

1. Inmtroduction. A map f: X — Y between metric spaces X and Y is
bilipschitz if there is a number M > 1 such that

e — yl/M < () - F()] < Mz —y|

for all &,y € X. We also say that f is M-bilipschitz. The inverse f~* :
fX - X of an M-Dbilipschitz map is alsc Af-bilipschitz. A bilipschitz map
preserves Cauchy sequences and maps complete sets onto complete sets. In
particular, if ¥ and 5’ are Banach spaces and if f : F — FE is bilipschitz,
then fE is closed in £'. Hence f cannot map a Banach space E onto an open
proper subset of £. The purpose of this note is to show that this property
characterizey the Banach spaces in the class of all normed vector spaces. We
formulate the result below; for some variations see Remark 6.

2. TuroreM. A normed space E (real or complex) is a Banach space if
and only if there is no bilipschitz map of E onto E \ {0}.

3. Notation. The nonm of a vector « € E is written as || We let B(z,r)
and B(z,r) denote the open and the closed ball in E, respectively, With
center ¢ and radius r. The boundary sphere 8B (i, r) is written as S{z,r)

The proof of Theorem 2 will be based on the following elemen‘rary con-
ghruction:

4. LuMMA. Let a,b € E, ond let v > 2| ~ b! Then there is ¢ homeo-
morphism b B — B such that

(1} h(a) = b,

(2) hiz) =z if |z ~a| 27,

(3) h is M-bilipschitz with M =1+ 2|a — b|/r
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