An example of a subalgebra of H^∞ on the unit disk whose stable rank is not finite

by

RAYMOND MORTINI (Karlsruhe)

Abstract. We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.

1. Introduction. Let A be a commutative complex Banach algebra with identity. It is known that the notion of stable rank (introduced by H. Bass [1]) is closely related to the topology of the spectrum of A (see, e.g., Corach–Suárez [4–6] and Vaserstein [15]). In order to get more insight into the structure of spectra of uniform algebras $A \subseteq C(X)$, it is therefore of interest to explicitly determine the stable rank of A. This was done for various algebras of analytic functions with smooth boundary values by Jones–Marshall–Wolff [9], Corach–Suárez [4–6] and Rupp [11, 12]. In particular, it was shown in [6] that the stable rank of the polydisk algebra $A(D^n)$ and the ball algebra $A(B^n)$ is $[n/2]+1$. Moreover, Rupp [11, 12] was able to show that the stable rank of many classes of subalgebras of $A(B^n)$ is less than n, in particular is finite. These algebras include, e.g., all subalgebras A of $A^1(D^n) = \{ f \in A(D^n) : f' \in A(D^n) \}$ in which the weak Nullstellensatz holds, i.e., for which $(f_1, \ldots, f_n) = A$ if and only if the functions f_j have no common zero in D^n. In particular, $\text{ber } A = 1$ whenever $A \subseteq A^1(D)$ and A satisfies the weak Nullstellensatz (see [11]).

Only recently has the stable rank of the algebra H^∞ of all bounded analytic functions in the unit disk D been determined by Treil [14]: it is also one. This raises the following questions. What does the situation for subalgebras of H^∞ look like? Are there any subalgebras A of H^∞ which do not have stable rank one? Can $\text{ber } A$ be infinite? It is the aim of this note to answer these questions. First we give some definitions.

Let A be a commutative ring with identity element 1. An element $(a_1, \ldots, a_n) \in A^n$ is called unimodular if $\sum_{j=1}^n a_j A = A$. The set of

1991 Mathematics Subject Classification: 46J15, 19B10.
all unimodular elements of A^n is denoted by $U_n(A)$. We say that $a = (a_1, \ldots, a_{n+1}) \in U_{n+1}(A)$ is reducible if there exist $(x_1, \ldots, x_n) \in A^n$ such that $(a_1 + x_1 a_{n+1}, \ldots, a_n + x_n a_{n+1}) \in U_n(A)$. The (Base) stable rank of A, denoted by $\text{bsr } A$, is the least integer $n \in \mathbb{N}$ for which every $a \in U_{n+1}(A)$ is reducible. If there is no such integer n, we say that A has infinite stable rank.

2. The infinite polydisk algebra. As mentioned in the introduction, the stable rank of the polydisk algebra

$$A(D^n) = \{ f \text{ continuous on the closed polydisk } D^n \text{ and analytic in its interior} \}$$

is $[n/2] + 1$.

We show next that the stable rank of the infinite polydisk algebra $[2]$ is not finite. This observation may be known, because, if we consider $A(D^n)$ as a quotient algebra of $A(D^\infty)$, we obtain

$$\text{bsr } A(D^\infty) = [n/2] + 1$$

for all n. We want, however, to give a self-contained proof along the lines of [12].

Proposition 1. Let $A = A(D^\infty)$ be the infinite polydisk algebra, i.e., the uniform closure of the algebra generated by the coordinate functions z_1, z_2, \ldots on the countably infinite polydisk $D^\infty = \mathbb{D} \times \mathbb{D} \times \ldots$. Then the stable rank of A is infinite.

Proof. Fix $n \in \mathbb{N}$. We claim that the element $(z_1, \ldots, z_n, g) \in A^{n+1}$, where $g(z) = \prod_{j=1}^{n} (1 - z_j z_{n+j})$, is not reducible.

First we note that (z_1, \ldots, z_n, g) is unimodular. Assume that there exist $h_1, \ldots, h_n \in A$ such that

$$z_1 + g h_1, \ldots, z_n + g h_n$$

is unimodular in A^n.

Let $h = (h_1, \ldots, h_n)$. For $z = (z_1, \ldots, z_n) \in C^n$ we define

$$H(z) = \begin{cases} -h(z_1, \ldots, z_n, \bar{z}_1, \ldots, \bar{z}_n, 0, \ldots) \prod_{j=1}^{n} (1 - |z_j|^2) & \text{for } |z_j| \leq 1 \ (j = 1, \ldots, n), \\ 0 & \text{otherwise}. \end{cases}$$

Then H is a continuous map from C^n into C^n. Because $\max_{z \in \overline{D^n}} |H(z)| = \sup_{z \in \overline{D^n}} |H(z)|$, it is easy to see that there exists a polydisk $\overline{D}^n \supset D^n$ such that H maps D^n into \overline{D}^n. Since \overline{D}^n is compact and convex, by Brouwer's fixed point theorem there exists $\zeta \in \overline{D}^n$ such that $H(\zeta) = \zeta$. Since $H = 0$ outside D^n, we see that $\zeta \in \overline{D}^n$. Let $\zeta = (z_1, \ldots, z_n)$. Hence, for every $j \in \{1, \ldots, n\}$, we obtain

$$0 = z_j + h_j(z_1, \ldots, z_n, \bar{z}_1, \ldots, \bar{z}_n, 0, \ldots) \prod_{j=1}^{n} (1 - |z_j|^2)$$

$$= z_j + (h_j(g))(z_1, \ldots, z_n, \bar{z}_1, \ldots, \bar{z}_n, 0, \ldots),$$

which contradicts (1). Note that the spectrum of A is the infinite polydisk D^∞ itself [2].

3. The subalgebra B_n of H^∞. All proper subalgebras of H^∞ for which the stable rank is presently known are subalgebras of the disk algebra $A(D)$. The results in this section will provide us with various classes of subalgebras B_n of H^∞ for which either $A(D) \subset B_n \subset H^\infty$ or $B_n \subset H^\infty$, $A(D) \not\subset B_n$, and for which the stable rank is $n + 1$ ($n \in \mathbb{N} \cup \{\infty\}$).

For our construction we need to work with interpolating Blaschke products. These are the Blaschke products

$$b(z) = \prod_{n=1}^{\infty} \frac{a_n}{|a_n|} \cdot \frac{a_n - z}{1 - a_n \bar{z}}$$

whose zero sequence (a_n) is an interpolating sequence for H^∞. Recall that (a_n) is an interpolating sequence if for every bounded sequence (w_n) of complex numbers there exists a function $f \in H^\infty$ such that $f(z_n) = w_n$ for every n. Reducibility of unimodular vectors whose last component is an interpolating Blaschke product is in fact rather easy to prove as the following lemma shows.

Lemma 2. Let $f_1, \ldots, f_n \in H^\infty$ and let b be an interpolating Blaschke product. Suppose that $f = (f_1, \ldots, f_n, b)$ is a unimodular element in $(H^\infty)^{n+1}$. Then f is reducible. Moreover, there exist $g_j, h_j \in H^\infty$ such that $\sum_{j=1}^{n} e^{h_j} f_j + g_j b = 1$.

Proof. By assumption we have $\sum_{j=1}^{n} |f_j(z_k)|^2 \geq \delta > 0$, where $\{z_k : k \in \mathbb{N}\}$ denotes the zero set of b in D. Let $\alpha_j^{(k)} = -\arg f_j(z_k)$ whenever $f_j(z_k) \neq 0$ and $\alpha_j^{(k)} = 0$ otherwise (arg $f_j(z_k) \in (-\pi, \pi]$).

Because $\{z_k\}$ is an interpolating sequence, there exists $k_j \in H^\infty$ such that $k_j(z_k) = \alpha_j^{(k)}$ ($k = 1, 2, \ldots; j = 1, \ldots, n$). Hence $w_k = (\sum_{j=1}^{n} e^{h_j} f_j)(z_k) = \sum_{j=1}^{n} |f_j(z_k)|^2 \geq \delta > 0$ ($k = 1, 2, \ldots$). Let $F = \sum_{j=1}^{n} e^{h_j} f_j$. Since w_k is a bounded sequence, again there exists a function $K \in H^\infty$ such that $K(z_k) = \log w_k$ ($k = 1, 2, \ldots$). Therefore $(F - e^{h_j} f_j)(z_k) = 0$, and hence $F = e^{h_j} - gb$ for some $g \in H^\infty$. This yields $\sum_{j=1}^{n} e^{h_j} f_j + g_j b = 1$, where $g_j = (b/g(n)) e^{-h_j}$. ■
Remark. The case \(n = 1 \) appears in [10], where it is also shown that, in general, the left factors of the summands above cannot be taken to be exponentials.

We are now able to construct for every \(n \in \mathbb{N} \cup \{ \infty \} \) subalgebras \(B_n \) of \(H^\infty \) whose stable rank is \(n \).

To this end let \(M(H^\infty) \) denote the spectrum of \(H^\infty \), that is, the space of nonzero multiplicative linear functionals on \(H^\infty \) endowed with the weak-* topology. Because \(H^\infty \) is a uniform algebra, we can identify functions \(f \) in \(H^\infty \) with their Gelfand transforms \(f : M(H^\infty) \to \mathbb{C} \) defined by \(f(m) = m(f) \) (see [8, §186]). Let \(b \) be an interpolating Blaschke product and let \(Z(b) = \{ m \in M(H^\infty) : m(b) = 0 \} \). By [8, p. 379] we know that \(Z(b) \) equals the (weak-*) closure \(\overline{\{b_k\}} \) of the zero set of \(b \) in \(\mathbb{D} \). Hence \(Y = Z(b) \) is homeomorphic to the Stone–Čech compactification \(\beta \mathbb{N} \) of \(\mathbb{N} \). Moreover, we see that the restriction of \(H^\infty \) to \(Y \), denoted by \(H^\infty|Y \), equals \(C(Y) \), the space of all complex-valued continuous functions on \(Y \).

We now have the following result.

Theorem 3. Let \(Y \subseteq M(H^\infty) \) be as above and let \(A \subseteq C(Y) \) be a uniform algebra whose stable rank is \(n \) \((n \in \mathbb{N} \cup \{ \infty \})\). Then \(B = \{ f \in H^\infty : f|Y \in A \} \) is a uniform algebra with the same stable rank.

Proof. Step 1. The first assertion clearly follows from the fact that \(B \) inherits the norm of \(H^\infty \) and \(H^\infty|Y = C(Y) \). Let \(\varphi \) denote the restriction mapping from \(H^\infty \) onto \(C(Y) \). Suppose that \(n \in \mathbb{N} \) and let \((f_1, \ldots, f_n, f) \in U_{n+1}(B) \). Obviously, we have that \((\varphi(f_1), \ldots, \varphi(f_n), \varphi(f)) \in U_{n+1}(A) \). Because \(A = n \), there exist \(a_j \in A \) \((j = 1, \ldots, n)\) such that \(\varphi(f_j) = a_j \varphi(f) \). Hence there exists \(\lambda \in H^\infty \) such that \(G_j(f) = \lambda^j g_j(f) \).

\[
\sum_{j=1}^{n} G_j(f_j + g_j f) = 1 + nh.
\]

In general, \(h \) is not identically zero, and we cannot conclude that \((f_1 + g_1 f, \ldots, f_n + g_n f) \in U_n(B) \). However, as we shall show, there do exist functions \(y_j \in H^\infty \) such that

\[
(f_1 + g_1 y, \ldots, f_n + g_n y) \in U_n(B).
\]

Note that \(\varphi(g_j + y) = \varphi(g_j) = a_j \) and that \((f_1 + g_1 y, \ldots, f_n + g_n y) \in U_{n+1}(H^\infty) \).

To this end we first use Treil's result [14] that \(\text{bsr } H^\infty = 1 \leq n \) in order to conclude that there exist \(y_j \in H^\infty \) such that

\[
(f_1 + g_1 y, \ldots, f_n + g_n y) \in U_n(H^\infty).
\]

Let \(K = h + \sum_{j=1}^{n} y_j G_j f \). By (3) there exist \(x_j \in H^\infty \) such that

\[
\sum_{j=1}^{n} x_j [(f_j + g_j f) + y_j f] = -K.
\]

A simple calculation finally yields

\[
\sum_{j=1}^{n} (G_j + x_j y)(f_j + (g_j + y_j f)b) = 1.
\]

This gives assertion (2). Hence \(\text{bsr } B \leq n \).

Step 2. Let \(a = (a_1, \ldots, a_n) \) be a unimodular element in \(A^n \) which is not reducible. Choose \(f_1, \ldots, f_n \in B \) such that \(\varphi(f_j) = a_j \varphi(f) \). Hence there exist \(h_j \in B, h \in H^\infty \) such that

\[
\sum_{j=1}^{n} h_j f_j = 1 + nh.
\]

In general, \((f_1, \ldots, f_n) \in U_n(B) \). However, by the same reasoning as before, there exist \(y_j \in H^\infty \) such that

\[
(f_1 + y_1 b, \ldots, f_n + y_n b) \in U_n(B)
\]

(1).

Let \(B = \{ f \in H^\infty : f|Y \in A \} \).

This contradicts the choice of the vector \(a \). Thus we have proven that there exist \(h_j \in B, h \in H^\infty \) such that

(3) \(
(f_1 + g_1 y, \ldots, f_n + g_n y) \in U_n(H^\infty)
\).

The algebra \(A \subseteq C(Y) \) in the previous theorem will now be realized as an isometric, isomorphic image of some polydisk algebra \(A(D^n) \) \((n = 1, 2, \ldots, \infty)\). The idea of this construction appears in [13]. For the reader's convenience we shall reproduce it here.

In fact, let \(X = \mathbb{T}^n \), where \(\mathbb{T} \) is the torus \(\{ x \in \mathbb{C} : |x| = 1 \} \). Enumerate a dense subset \(\tau_1, \tau_2, \ldots \) of \(X \) and fix a bijection \(\alpha \) between \(N \) and \(N \times N \). Let \(\tau_i \) denote the projection of \(N \times N \) onto the first coordinate. Put \(\tau(n) = x_{(\tau_1(n), \alpha(n))} \). Then \(\tau \) extends to a continuous map, called again \(\tau \), of \(\beta \mathbb{N} \) onto \(X \) [8, p. 186]. Note that \(\tau \) actually maps \(\beta \mathbb{N} \setminus \mathbb{N} \)

(1) The careful reader may have noticed that in this case it is sufficient to use Lemma 2 instead of Treil's result in order to prove relation (5).
onto X. Identifying Y with βN, it is now easy to see that $\tau^* f = f \circ \tau$ defines an isometric algebra isomorphism of $C(X)$ onto $C(Y)$.

Finally, we note that $A(\mathbb{D}^n)$ is isometrically isomorphic to $A(\mathbb{D}^n)|_X$, because T^n is the Shilov boundary of these algebras (see [7] and [2]).

Now let $A_n = \tau^* A(\mathbb{D}^n)$. Then A_n is a uniform subalgebra of $C(Y)$. Let

$$B_n = \{ f \in H^\infty : f|_Y \in A_n \} \quad (n = 1, 2, \ldots, \infty).$$

Theorem 4. The stable rank of the algebra B_n is $[n/2] + 1$ for $n \in \mathbb{N}$ and infinite for B_∞.

Proof. Recall that $B_n = \{ f \in H^\infty : f|_Y \in \tau^* A(\mathbb{D}^n) \}$. Because the stable rank is invariant under algebra isomorphisms, Corach–Suárez’s result yields that $\text{sr} \tau^* A(\mathbb{D}^n) = [n/2] + 1$ ($n \in \mathbb{N}$). Hence, by Theorem 3, $\text{sr} B_n = [n/2] + 1$.

Now we consider the algebra

$$B_\infty = \{ f \in H^\infty : f|_Y \in \tau^* A(\mathbb{D}^\mathbb{N}) \}.$$

Fix $n \in \mathbb{N}$. Choose, according to Proposition 1, a vector $(g_1, \ldots, g_n) \in U_n(A(\mathbb{D}^n))$ which is not reducible. Let $a = (\tau^* g_1, \ldots, \tau^* g_n)$. Then $a \in U_n(\tau^* A(\mathbb{D}^\mathbb{N}))$, and a is not reducible.

By the proof of Step 2 in Theorem 3 we obtain a vector $f = (F_1, \ldots, F_n) \in U_n(B_\infty)$ which is not reducible in B_∞. This shows that $\text{sr} B_\infty \geq n$. Since n can be chosen arbitrarily, $\text{sr} B_\infty = \infty$. $lacksquare$

Remarks. 1. Using the footnote, we see that our proof for $n = \infty$ is independent of Treil’s result.

2. In general, the algebras B_n do not contain the disk algebra. In fact, let Y be the weak-* closure of the interpolating sequence $z_n = 1 - 2^{-n}$, $n \in \mathbb{N}$, in $M(H^\infty)$. Then the Gelfand transform \hat{x} of x is constantly one on $\{z_n\} \setminus \{z_n\}$, which is homeomorphic to $\beta N \setminus N$. Now assume that $x \in B_n$. Because τ maps $\beta N \setminus N$ onto $X = T^n$ and X is the Shilov boundary of $A(\mathbb{D}^n)$, we see that $\mathcal{S}(z_n) \equiv 1$, which is of course absurd.

However, if we modify a bit the definition of the algebras B_n by setting

$$\tilde{B}_n = \{ f \in H^\infty : f|_Y \in \tau^* A(\mathbb{D}^n) \},$$

where $Y = \{z_n\} \setminus \{z_n\}$ ($z_n = 1 - 2^{-n}$), then $A(\mathbb{D}) \subseteq \tilde{B}_n$ ($n = 1, 2, \ldots, \infty$). Also in this case, $\text{sr} \tilde{B}_n = [n/2] + 1$ (just replace the interpolating Blaschke product by a suitable function $b \in H^\infty$ vanishing on Y^*).

S. Scheinberg [13] showed that for none of these algebras \tilde{B}_n ($n \geq 2$) does the corona theorem hold; i.e., the unit disk is not dense in the spectrum of \tilde{B}_n. It is an open problem whether there exist natural subalgebras A of H^∞ whose stable rank is not one, but for which \mathbb{D} is dense in $M(A)$.

Acknowledgement. The author wants to thank V. Tolokonnikov for many informative discussions and the referee for providing the short argument (\ast) in the proof of Proposition 1.

References

MATHEMATISCHES INSTITUT
UNIVERSITÄT KARLSRUHE
POSTFACH 6539
D-7500 KARLSRUHE 1, GERMANY

Received February 26, 1992
Revised version June 15, 1992