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Automorphisms and derivations of a Fréchet algebra
of locally integrable functions

by

o GHANRAMANIY and I P McOQLUREY (Winnipeg, Man.)

Abstract. We fiud u\pm‘snnlamom for the automorphisms, dexivations and multi-
pliers of the Fréchet algebra Ll of Jocally integrable functions on the half-line Rt. We
ghow, amung other Liings, that every automorphism 8 of Lluc is of the form 8 = pe™¥eP,
where 1) js a derivation, X is the operator of multiplication by coordinate, ) is a com-
plex 1'mmb(1, a > 0, mul g is the dilation operator (@aj)( e} = af(az) (f € Lloc’
¢ & R, s aleo shown that the eutomorphism group is a topological group with the
topology of uniform convergence on bounded setw and s the semidirect product of a con-
necked wubgronp and a diserete group which is isomorplic to the diserete group of real
nurmnbers,

1. Introduction. Weighted convolution algebras on the half-line Rt =
[0,00) were identified as examples of commutative Banach algebras early
in the development of the subject [7]. More recently, in connection with
the development of automatic continuity theory, radicel weighted convolu-
tion algebras on [0, 00) have received a lot of attention [2]. These algebras
are all subalgebras of the algebra of locally integrable functions on [0, 00),
which is the main object of study in this paper. We denote this algebra by
Ll (RY), or just L. As a vector space, Ll consists of all (equivalence
clagdges, with respect to.equality almost everywhere, of) Lebesgue measur-
able, corplex-valued functions f on [0, o), for which

o

(1.1) Pif)= [ 1)

0

dx

is fiuite, for all positive real numbers o; addition and scalar multiplication
are defined pointwise. le becomes a commutbative, associative algebra, if

[——
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we take the convolution product
(1.2) (fralm)y= [ fle-yew)dy (ze[0,00)).
0

In the next section, we shall see that the functionals P, of (1.1) give Lij'w
a topology in which it becomes a Fréchet algebra. We shall show that the

closed ideals of L{,_ are just the standard ideals [: for o > 0,

(1.3) IL={f:felLl, and f(z) = 0aec on[0,a)}

and we also put Ip = Li,, and I, = {0}. We deduce that LL _ is a radical
Fréchet algebra. We shall also give some preliminary remarks about the
continuity of linear maps on L, and about a topology on the algebra of
continuous linear maps on L., which will be relevant to the later sections
of the paper. In those sections, we explore, in turn, the multipliers, the
derivations, and the automorphisms of L{,.. It turns out that these maps
are all continuous, and have representations analogous to the correspond-
ing operators on Banach convolution algebras on [0, 00). In particular, we
obtain a representation of automorphisms as products of dilation automor-
phisms and exponentials of derivations. This leads to a description of the
automorphism group of L}, , as the semidirect product of a discrete subgroup
isomorphic with R, with a connected subgroup. We also consider the rela-
tionship between automorphisms of L . and automorphisms of its weighted
(Banach) subalgebras. Automorphisms of Fréchet (and Banach) algebras of
power series were studied in [13].

2. Preliminaries. It is easy to check, and well known, that each of the
functionals P,, defined in (1.1), is a seminorm on Ll ., and is submultiplica-
tive with respect to the product (1.2). The null space of P, is exactly the
ideal I, defined in (1.3). The quotient algebra Llloc /1 is isomorphic with the
algebra L'[0, a) of (equivalence classes of) Lebesgue integrable functions on
[0,a). L*[0,0) is a radical Banach algebra, normed by P, and with product
given by (1.2), restricted to = in [0,a). As Banach algebras, the algebras
L0, a) are all isomorphic with the Volterra, algebra V' == L]0, 1), which has
been studied by a number of authors [10], [11], and [15]. We shall identify
Li,./I, with L(0, a); the quotient map is then represented by the restriction

(2.1) Ryf = fl[U: a) (f € Lilbc) :

When 0 < a < b < oo, it will also be convenient to have a notation for the
 restriction (or quotient) map from L*[0,b) to L0, a); we put

(2.2) Rapf =fll0,0) (€ L*[0,0)).

Note that R, ,Ry = R,. In fact; the system of algebras L[0,a), with the
homomorphisms R, 5 (when 0 < a < b < oo) i8 a projective system of com-
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mutative (radical) Banach algebras and continuous hemomorphisms, and
L. is (isomorphic with) the projective limit of this system. The semi-
norms {Fy @ a € [0,00}} clearly form a separating family on L, and the
countable subset {£,, : n € N} is cofinal in {P,}. Thus, the following result
is an imunediate consequence of the work of Michael [16]

PROPOSITION (2.3). With the topology determined by the seminorms
{Pa:0<a< oo}, L, is a commutative Fréchet algebra,

Sometimes, it will be convenient to think of functions in LY0,a) as
defined on [0,00). For a > 0, and f € L'[0,a), we define Sof in L},
ag follows:

L o f(CC) ifm<a':

2.4 Su)e) = { §e) 2 <a.
It is easy to see that S, is a linear map on L*[0,a) into Li,.. The image
Sa(LH0,a)) is & closed subspace of Ll , but not a subalgebra. Note that
RS, is the identity map on L'[0, ), while S,R, is the projection of L
onto its subspace of functions vanishing on [4,00). It may be worth empha-
sizing that we are using the same symbol P, for a seminorm on L}, and for
the norm on L'[0,a). Thus, for f in L, we have P,(f) = P,(R,f), while
for f in L0, a), we have P,(f) = P,(S./)
Recall that, for f in Ll ., a(f) is the infimum of the support of f.
Conventionally, we take a(0) = co. With this notation, for a > 0, we have
L= {f : a(f) 2 a}, where I, was defined in (1.3). As null spaces of the
seminorms B, defining the topology of L, the ideals I, are closed in L} _.
These are called standard ideals, and we now show that every closed ideal

is standard.

PROPOSITION (2.5). (a) Buery closed ideal in L, is a standard ideal.
(b) L, s @ radical algebra.

Proof. (a) It is sufficient to show that every prineipal closed ideal is
standard. We shall show that, for each fin Li ., (f % LL )™ = I

A function g belongs to (f+L} )~ if and only if, for each a > 0, and every
&> 0, there i b in Lf,, such that P,(g — f*h) < &. Since Po(g — f*h) =
Pa(Ryg = (Raf) % (Ruh)), it follows that g belongs to (f » L} )~ if and only
if, for each & > 0, R,g belongs to (Ryf * L*[0,a))™. But, the closed ideals
in the Volterra~type algebras L'[0,0) are known to be standard [6]; thus,
g belongs to (f » Lj,.)~ if and only if, for each a > 0, we have a(R.g) =
o(Rqf), and the latter condition is clearly equivalent to a(g) = a(f), Thus
(f % Lioe)™ == Iogp). ,

(b) From (a), there is no character on Li,, (i.e. no nonzero, continuous,
multiplicative linear functional). So, Corollary 5.5 of [16] implies that L},
is & radical algebra. : ‘ :
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Next, we recall some basic information about continuous linear maps on
LL_ into itself. First, a linear map T on L., into itself is continuous if and
only if for each @ > 0, there are b > 0 and K > 0 such that

(2.6) P,(Tf) < KP(f)
for all f in Ll .. It follows from (2.6) that
(27) T(Ib) g Iu 3

and that there is a unique, bounded linear map Tup in Boy 32 B(L'[0,),
L'[0,a)) satisfying
(28) Ra‘T = T::I,.th'

We remark in passing that, for continuous T', (2.7), and (2.8) with bounded
T, » are equivalent. The operator norm (Tapll of Tow in By is exactly the
infimum of the values of K for which (2.6) holds. Note that we also have,
for any fin L.,

(2.9) (RIS = (TapRe)(f) = (TopRoSo ) (f) =

that is, T'f on [0,a) is determined by f on [0,b).

Write B(LL,) for the algebra of all continuous linear operators on L.
The topology 7, of uniform convergence on bounded sels is defined on
B(L 1m) by the seminorms P, g, where, for a > 0 and 13 a bounded subset
of L1, Pop(T) = sup{P(Tf) : f € B}, for each T" in B(L},.). This (or,
an equivalent) definition is given in [L7, p. 68] and in [19, p. 337]. More
information about topologies on spaces of continnous operators may also he
found in these sources; however, we shall need only the definition, and we
shall use the topology only on certain subspaces of B(LL ), related to the
automorphism group.

For each » > 0, we write B, for the set of all linear operators on Li
such that, for each a > 0, (2.6) holds with b = ar, for some K. Tt is casy to
see that B is a linear subspace of B(L]. ), and it is not the trivial subspace:
the dilation operator p, defined by
(2.10) (e f)(z) = rf(rm)
for fin Li , and  in [0,00), is easily seen to belong to [3,. Anothar easy
verification shows that each i, is, in fact, an automorphism of lea the
inverse operator t0 ¢, 18 1/, Now, each T in B, determines, and is deter-
mined by, a set of bounded }inear maps {7 oy : 6 € (0, 00)}, where Ty 4, in

Ba,ar, satisfies (2.8) with b = ar. Of course, T, 4, ¢ lcponds linearly on T, so
for each o in (0,00), we can define a seminorm ¢, . on B, by

(2.11) Ga;r(T) = [To,ar]

for T'in By, where the norm symbol means the operator norm on By,ar. The
following lemma will be used in our study of the automorphism group of L} .

(RT)(SsR) (]
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Lemma (2.12). If {a(n) :n € N} is any sequence of real numbers tend-

ing to infinity, then the topology my, on By is determined by the seminorms
Janyr- 1N particular, 7, is metrizable on B,.

Proof, Take any sequence a{n) such that a( ) — 00 a8 n — 0. Then,
for any @ in (0,00} and any hounded set B in L10 «» We can pick and fix n so
that a(n) = a, and we can take a constant K such that Fragm)(f) S K if fis
in B. Let B('n = {f &L,: I’m(n)(j) < K and f vamshes on [ra(n), cc)}.

Then B{n) is a bounded set in L} ., and (S, n) Bra(n))(B) C B{n). Using
(2.9), we have, for any 7' in B,,

Pa JJ(T) p pu (1) H(:Z) < Iu ) B(ra)(r) aln),ra( n)” = Kga(n T(T)

This calculation shows that, on B., each seminorm P, g is dominated by a
multiple of a seminorm Guln),r 80d also that each Ga(n),r 18 8 Pyn), 5 (take

K =1and B = B(n)). Thus on By, m, is determined by the countably
MAany Seinorig gun)

It is an easy consequence of the definition of B, that B, C B, whenever
r < 8 thus, when » < s, the seminorms g, 4 are defined on B,, and can be
used to determine 7, on 3.

The subspace By will be of particular interest, Note that an operator
T in B(L{,.) belongs to By if and only if T(I,) € I, for all a in (0,00);
it follows easily that B; is a subalgebra of B(Lloc) For T in B; (and
only for thig case), we write 7, for the operator T 4 in B, , determined by
(2.8), for each a in (0, 00). 51110@ each Bg, is a Banach algebra, we may
define exp(1,) in By, I o <06, we have R, T = T, Ry = ThRapRp, and
R,T = Rop T = Rop Ty Ry, It follows that Ty Rap = RapTh, and from that
we get exp(T,)Rap = Ryiexp(Th). Therefore, the following definition is a
good one. '

For T in By, we ceﬁne‘exp(T)
: exp(Ty ) Ry for all o in (0, co).

DuriNrrroN (2.13).

= ¢’ on L], by
requiring R, exp(T) =

For T' in By, the operator ¢7 is continuous (since each exp(Ty) is), and
belongs to By.

Fiuslly in this preliminary section, we mention the algebra M), of all
Radon measures on [0, 00), M, i8 a Fréchet algebra, the topology being
determined by the seminorms

Py} = |u([0, a))

for a > 0, and the product heing defined (indirectly) by

fj JEATEIRIC fffw+y du(z) dv(y)
(for f in C, and w,v in Mm)-
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From the point of view of projective limits, we note that, by the Riesz
representation theorem, the dual of 5[0, a) is the space M0, a) of bounded
Borel measures on [0, ). Tt is well known that, with the convolution product
(restricted to [0,a)), M[0,a) is (isomorphic with) the multiplier algebra of
L0, a) [15, Remark 10}, If, for b > a, we again write R for the restriction
map from M]0,b) to M[0,a), then the maps Ry, are epimorphising of con-
volution algebras, and with these epimorphisms, the algebras M0, a) form
a projective system, whose projective limit is Mioe. As with Ry, we will
use the same symbol R, already used for Li ., to denote the restriction (or
quotient) mapping from My, to M[0,a), for each a > 0.

The algebra L}, can be identified with a closed ideal in Miq., by identi-
fying a locally integrable function f with the absolutely continuous measure
#(z)dz. In fact, with this identification, L, becomes a closed ideal in M,
and thus we see that not every closed ideal in Mo is (the analogue of) a
standard ideal. We write 8, for the point mass at ® (a point of [0, c0)).
These point masses form a (multiplicative) semigroup in Mo, and & is the
multiplicative identity in M.

Next we give a description of the multipliers of L{,.. Recall that a linear
map T on L _is a multiplier if T(f # g) = T'f * g for any f and g in L.

We shall employ the Titchmarsh convolution theorem, a proof of which
can be found for example in [2].

THEOREM (2.14). (a) For each p in Mg, the mapping Ty f = px*f isa
continuous multiplier on L ..

(b) If T is any multiplier on Ll , then there is a measure p in Mo
such that Tf = p* f for oll f in L. In particular, every multiplier on

1 . .
Ly i confinuous.

Proof (a) That T, is & multiplier is implicit in the fact, mentioned in
the previous section, that L,  is an ideal in Mjye. The continuity of T, is
shiown by the calculation

(2'15) Pa(l-‘ * .f) =P, (Ra-.u * Raf) < Pa(Raﬂ)Pﬂn(Rm.f) == -Pa(Ruﬂ')Pa(f) ‘

(b} Let g be any element of L{, . with a(g) = 0. Then, for any f in L.,
Tf=xg= f*Tg, sothe Titchmarsh convolution theorem implies o (1 f * g) =
a(Tf)+o(g) = a(f)+a{Tg) 2 a(f). It follows that T'(1,) G I, for alla > 0,
and thus that there are unique maps T}, on L'[0, a) satisfying T, R = R,
for all a. It is routine to check that T}, is a multiplier on L*[0, ); thus, there
is a measure y, in M0, a) such that Ty f = pq * f for all f in L[0,a) [15,
Remark 10]. Now suppose b > a. Then, for f in L![0,a), we have

(Ropbin) * £ = (Rappin) * (RaSaf) = (Rappis) * (RapRoSuf)
‘ = Ra,b('ﬂb * RbSaf) = Ra,bTbRbSa,f = Ra,bRbTSa,f
=RTS,f = LoRoSaf = Tcaf = flg ¥ f .

1
loc
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Thus Rapps = iie Whenever b > @, and it follows that there is a unique
measure p in Mio. satisfying Rop = p, for all @ > 0. But then, for any
a > 0 and any f, we have

(RT)(S) = (TuRa)(F) = pia * Ru(f) = Ra(p) % Ro(f) = Ru(p = f).
Thus, T(f) = px* f for all f, as required.

We remark that, since each multiplier T is continuous and satisfies
Po(Tf) < KF(f) for all o in (0,00) and all f (see (2.15)), T is in By,
go the exponential ¢’ exists and is a continuous linear map on Li . It is
straightforward to check that ¢¥ is a multiplier. Of course, if 7" = T, then
el = Toup(u)y, where, for u in M., e exists, by functional calculus for
Fréchet algebras, since the exponential function is an entire function.

We also remark that, given a measure i in My, we can construct a
continuous, radical weight w(z) on [0,00) such that u belongs to M{w),
i.e. such that fwd{pu| < co. The weight w(z) can even be taken to be
star-shaped ([1], [18]) or to satisfy other desirable regularity properties. We
omit the details of this particular construction; a more difficult one will be
given in the next section. The point of the remark at this stage is to observe
that every multiplier on Ll is, in fact, the extension of a multiplier on a
(Banach) weighted convolution subalgebra L{w).

3. Derivations. In this section, we describe the derivations on' Lj,,.
Let D be such a derivation. Since M. is the multiplier algebra of Llloc, we
can extend D to a derivation on My, as follows. Given p in M., we define
amapping T on Li by T(f) = D(ux f)~ p*D(f). It is easy to check that
T ig a multiplier on L}, .. Thus, by Theorem (2.14), there is a measure in
Mo, which we denote by Au), which satisfies D(p+ f) = A(p)* f+p=D(f)
for all f in L},.. Further routine calculations show that the map A thus
defined on M. is a derivation, and that AL} = D. ‘

Now let X denote the mapping on Mie, (or Li) of multiplication by
the coordinate function: for v in Myye, d(Xw)(8) = tdw(t) (or, for f in Li,
(XA)(#) = tf(1)). Then it is a result of H, G. Diamond [4], [5] that A is
& derlvation on My, if and only if there is a measure p in My, such that
A(v) = (Xv)»u for all v in Mjg.. In particular, since A extends D, we have

Df = (X f) % pfor fin Li,. Thus, we have the following result.

TuroreM (3.1). D is a derivation on L, if and only if there is o mea-
sure p in Mioe such that Df = X fxu for oll f in L}, . In particular, every
derivation D is continuous. '

Proof If u is given, it is easy to check that Df = X f % p defines a
derivation. On the other hand, if D is a given derivation, the existence of
t satisfying Df = X f % u was established in the discussion preceding the
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statement of the theorem. The continuity follows from the inequality
(3.2) Fo(zf»p) < aPa(p)Pu(f)
80 the theorem is proved.

In a later section, it will be convenient to know, for a given derivation I
on L}, ., whether there is a weight w(z) such that D restricts to a derivation
on L*(w). It is shown in [8] that, for a given weight w(x) and measure y,

Df = X f * p defines a derivation on L'(w) if and only if

(3.3) sup{t—u-?m—) f w(m+y)d|,u|(y):m>0} < 0.

We first note that if u({0}) # 0, then (3.3) caunot hold for any weight w(z),
since, for all # in (0, c0),

% J wlz+v)dul@) > =lul({0}).

It turns out that this is the only barrier to the existence of a suitable weight,
as shown in the following theorem. Recall that a weight w(z) is called
star-shaped if the function 7(z) = — logw(z) has the property that () /@
is a non-decreasing function of z in [0, o).

THEOREM (3.4). Let u be a Radon measure such that u({0}) = 0. Then
there is a continuous, star-shaped weight w(z) such that Df = X Frp defines
a derivation on L*(w).

Proof. We are going to obtain weights w(z) by first constructing a
function n(z), and then putting w(z) = ¢~"(=). To construct n(x), we shall
first choose a sequence {A, : n = 0,1,...} such that {A.} is positive and
increasing, and then we shall take sequences {an} and {b,} so that, by
putting ‘

(3.5) {T) = an2 + by for z in [n,n + ), n=0,1,...,
we obtain n(z) continuous on [0, c0), and satisfying
(3.8) n(n) =nd, forn=0,1,...

In fact, these conditions determine {en} and {by}, once {4,,} has been

chosen. For, We must have T"A” = na’ﬂ+bm and (n+1)a'n'|"bn = (n+1)An+1:
whence

(3.7) an = (n+1)Api1 —nd, .
Since {An} is incr.c_aaigil‘llg,‘(3.7) gives
(3%8) o an 2 Ay
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Then, since by, = n(A, - an), we have b, < 0. From (3.5), we have
n(z)/z = an + bn/z, for z in ln,n+ 1), n = 0,1,... (put (0)/0 = ap).
Since b, < 0, this shows that n(2)/z is increasing on [n,n + 1) for each
n; since 7(z) /% is also continuous, we have 5(z)/z increasing on [0,0¢), s0
w(z) = e "#) will be a star-shaped weight. Also, () continuous implies
that w(z) is continuous.

Now, suppose u i a Radon measure on [0, oo) satisfying x({0}) = 0, and
firt suppose also that supp(u) € [0,1]. We are trying to find a weight so
that (3.3) holds, so we may suppose that u is a positive measure. Since i
has bounded support, 4 is a finite measure. Since u([0,€)) — 0 as £ — 0+,
and since e~ — 0 as A — oo, uniformly on [, 00), for any £ > 0, we may,
by taking each A, sufficiently large, guarantee

(39) [ exp(=Any) duly) < ——

] forn=20,1,...

Also, because of (3.7), by successively choosing the numbers A4,, sufficiently
large, we can ensure that the sequence {a,} is increasing. Now suppose
¢ €n,n-+1),andy € [n+ 1~ 1], s0 that 2+ y € [n+1,n+2). Then we
have

(3.10) n(z +y) ~nlz) = n(@+y) —nln+1)+n(n+1) - n(z)
= 1@+ y— (n+ 1)) +an(n+1-z)
= (g1 = a2 +y — (n+ D]+ any = any,

where we have used the continnity of n, (3.5), and the fact that {a,} is
increasing. Also, for y in [0,n+1—z), so that z -+ y is in [n,n+ 1), we have
7z + y) — n(x) = any, by (3.5). Therefore, we have, for z in [n,n 4 1),

;3%3 f w(z -+ y) duly) € (n+1) f BXP(—any) dp(y)
‘ (03]

< (n+1) [ exp(~Any)duly) <1,

using w{t) = exp(--n(t)), (3.5), (3.10), (3.8) and (3.9). Since n was arbitrary,
(3.3) holds, as vequired.

Next, suppose supp(p) € [1,00). As before, we can suppose that p is
positive. Again, by successively choosing {An} sufficiently large, we ensure
that {a,}, defined by (3.7), is increasing; thus, again, (3.10) holds'whenevgr
z€nn+1)and y & [n+ - g1);in this case, we shall only use (3.%0) in
the case y = 1. As well, we shall, by choosing the numbers A4, sufﬁc;._ently
large, guarantee S

(3.11) an > log(n+1) forn=0,1,...,
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and (recall w(n) = exp(—ndy)}

=]

(8.12) > w(i = Dulld 5+ 1)) < 0.

J=1
Now suppose n > 0 and z € [n,n+ 1). Then

-+1 +
[ wle+)duty) = 522 )[1 ngz 4 gt

(613)

< (n+ Dexpl-(n(z+1) = ()] [ wy - 1) du(y)

(1,z0)
<(nt1exp(-an)y [ wly-1)duy)
_ 7= [j,5+1)
<Y w(i-Vulii+1),

j=1
where we have used (3.10) (with y = 1), (3.11), submultiplicativity of w(%),
and the fact that w(z) is decreasing (since n(z) is increasing). Since n was
arbitrary, (3.12) and (3.13) now imply that (3.3) holds.

Finally, consider an arbitrary Radon measure g with u({0}) = 0. Again,
we can suppose that u is positive. Put 4y = X100yt 80d po = g~ 1. Then
#o({0}) =0, supp({uo}) C [0, 1], and supp(ps) € [1, o). By the arguments
above, there are continuous, star-shaped weights wy and w; such that

x
(314) WP ) f wg(w +y) dpg(y) < 00,
for ¢ = 0,1. We can suppose wy(x) < we(0) = 1. Now put w(z) =
wo(z)wi(z). Then it is straightforward to verify that w(z) is continuous,
star-shaped and satisfles (3.3).

4. Automorphisms. In this section, we study the automorphisms of
Li,e- Our first result is simple, and answers the natural question whether
automorphisms of L) = are continuous,

PROPOSITION (4.1). Each automorphism of Ll is continuous.

Proof. Lét 6 be an automorphism of L} . Since L}, is the projective
limit' of the algebras L'[0,a), it is enough to show that R,0 is continuous
for each a > 0. But Lj,, is a Fréchet algebra, L1[0,a) is (lsomorphic with)
the Voltérra algebra, and R,0 is an epimorphism; so the continuity of R0
follows from an extension of [14, Remark 3a) to Fréchet algebras (3]

Next, we review some particular antomorphisms of L.
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Let D be a derivation on Li, . It follows from Theorem (3.1) (see (3.2))
that D is in By. Thus, there are bounded linear maps D, on L0, a) defined
by RoD = Dy Ry, and there is a linear map ¢” in B; determined by R e? =
exp(D,) R, for all a in (0, 00) (see Definition (2.13)). We show that each D,
is a derivation on L'[0,a). By Theorem (3.1), there is a measure g in Moo
such that Df = X f# pu for all f in L} . Thus, for f in L*[0,q),

Da(f) = (DmRa.Sra)(f) = (RQD)(* :mf)
= R (XS, f % .U/) = Ra.(xsnf) * Ropp= X f % Rap.

Thus, Dy i8 the derivation determined on L0, a) by the measure Rop. Tt
follows that exp(D,) is au sutomorphism of L*[0, ), for each a in (0, c0).
Then, using Rae” = exp(D,) Ry, it is easy to see that e is a homomorphism
on Li,. Sinee e”? is, similarly, a homomorphism, and is easily seen to
invert ¢, the latter is an automorphism of L{,.. Note the special cage
where u = Adp, a multiple of the Dirac measure; i.e., Df = AXf. In this
case, €” is exactly multiplication by the function ¢ — e*. and we shall write
e* for this automorphismm.

Recall that, in Section 2, we noted that for each a > 0, there is a dilation
autororphism p, on L ., where (2a f)(t) = af(at). In fact, these dilations,

together with the automorphisms ¢, determine all antomorphisms of L.

THROREM (4.2). Let 0 be an automorphism of Li .. Then there are a
positive real number a, a comples number A, ond a derivation D, defined by

Df = X f* u with the Radon messure y satisfying u({0}) = 0, such that
(4.3) 8= e*%e?

Conversely, any map 8 of the form (4.3), with a, A, and D as deseribed, is
an automorphism. Finolly, for o given automorphism 8, the numbers a and
A, and the derivation D which satisfy (4.3) are unique. ' '

Proof. That & map & of the form (4.3) is an automorphism was shown
ln the discussion preceding the statement of the theorem. To prove the
non-trivial part, let @ be any automorphism, By Propositions (4.1) and
(2.5), the image by ¢ of each standard ideal is & standard ideal.

First congider the special case when we have 8(I;) = I;. Let n be a
positive integer, and suppose 8(I,) = . Take f in I1 such that a(df) = 1.
We have £** in I, 5o by assumption, 8(f**) is in Iy, Also, by the Titchmarsh
convolution theorem, a(f(f*")) == na(6(f)) = n; therefore n > & Next,
since 0! is also an automorphism and §7*(Z;) = I, an argument like the
one above shows that if g is in Iy, then 87'(g) is in Iy; that_is, 0= Tym) ©
I 8o, Lyjn = 0087 (L)) G 0(11) == Iy 80 b/n 2 1. Therefore Ei = n, and
we have shown f(1,,) == I,, for every positive integer n. Hence, o (In") =1
also, and it follows (cf. (2.8)) that for each n, there is an automorphism &,
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of L1[0,n) determined by 8, Ry = Rn0. If n > m and f is in L'[0,m),

(4"4) Bm(f) = (ngmSm)(f) = (ngsm)(f)
= (Rm,,anesm)(f) = (Rm,ngﬂRnSm)(f) B

Now we use again the isomorphism of each L![0,n) with the Volterra al-
gebra: by the results of [11], for each n, there are a complex number A, and a
quasinilpotent derivation Dy, on L*[0,n) such that 6y, = exp{AnX) exp(D,).
The derivation D, is determined by & measure s, on [0,n), satisfying
Dnf = Xf %y, for f in L*[0,n), and the quasinilpotence of D, is equiva-
lent to s ({0}) = 0 [15, Remark 1]. Moreover, A, and [J,,, hence also pu,,
are uniquely determined by 8, [15, Lemma 13]. For n > m, let Dy, ., he
the derivation defined on L'[0,m) by Dy (f) = X[ % Ry rfin. Observe
that for f in L'[0,n), we have DmpRimnf = RpnDnf; it follows that
(Dinn)® = RpnDERGSy, for any non-negative integer k. This, together
with (4.4), and the representation 8, = exp(\,X) exp(Dy,), shows that 8,, =
exp(AnX) exp(Dp, ). By the uniqueness of the constants A, the deriva-
tions Dy, and their corresponding measures gy, [15, Lemma 13), we now
conclude that An = Ay, for all n and m, and Rp, e, = iy, whenever n > m.
Now let A be the common value of the numbers A, and let u be the Radon
measure on [0, 00) defined by Rnu = s, for all n. If D is the derivation on
L} defined by Df = X f # y1, and if 1 is the automorphism ¢*X &2 of L.,
then we have R,% = R, for all n, and therefore 1 = #. Thus, in the case
(11} = I;, we have shown that 8 is representable as e**e?| the derivation
D being of the form Df = X f » i, with p({0}) = 0.

Now suppose 8(l1) = I, where a is any positive number, It is easy to
check that the dilation , satisfies po(I,) = Iy; thus (p,8)(Iy) = [;. By
the first part of the proof, .0 = e*e® for some complex number A, and
some derivation D) determined by a measure u with u({0}) = 0. Therefore
6 = p1e? el

Finally, suppose that some automorphism # has two representations in
the form (4.3); i.e., for some numbers o, b, ), ¢, and some derivations
D and 4, each determined by a measure with no moass at the origin, we
have e’ el = pe0Xed Then e’ XeP = 1 ap0e8% e, Therefore
L= _eAxeD(II) = Prappet et (1) = pirapp(l) = .76 Therefore
a/b =1, ora=b S0eeP = Xl 1t follows that, for each a in
(0,00), & exp(Dq) = e#X exp(A,). By the uniqueness of the represcnta-
tion of an automorphism of the Volterra algebra in the form e*¥e9, with q
& quasinilpotent derivation [15, Lemma 13], we have A = g, and D, = A,
for all @ in (0, c0). But then D = A, as required.

COROLLARY /\(\%{.5). An outomorphism 0 of L}, satisfies 8(1)) = Iy if
and only if 6 = e eP, where A is a complex number and D is o derivation
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determined by a measure p with p({0}) = 0. In this case, we have 6(I,) = I,
for all o in [0, c0).

Suppose ¢ is an automorphism of L{, . of the special form e*X e?, where

is a complex number and I7 is a derivation determined by a measure u with
#{{0}) = 0. The operator X is itself a derivation (determined by the Dirac
measure, fo), and so is AX 4 D (determined by Ay -+ ). Thus, it is natural
to ask whother the automorphism e**e? iy representable in the form e2,
where 4 is some derivation on L. In general, no such derivation A exists.
This follows from an example in [15, Theorem 16], where it is shown that
there are a derivation g on L*'[0, 1}, determined by a measure 4 on [0, 1) with
p({0}) = 0, and a complex number A such that the automorphism e*¥ e? of
L0, 1) is not representable in the form e%, for any derivation Q on Lo, 1).
If we let 1) be the derivation on Ly, defined by D(f) = X f * S, (p), then
Dy = ¢, and it follows that e*¥e® is not representable as €4, for any
derivation 4 on L},

Now we consider the group structure, both algebraic and topological, of
the group Aut(L],,) of the automorphisms of L}, First, we note that every
automorphism & of Ll extends to an automorphism & of M. To see this,
one flrst observes that, for given i in Mig., the map f — 8(u* 671(f)) of
Ll into itself is a multiplier, so by Theorem (2.14)(b), there is a measure
B(u) in Mio, such that G(u) x f = 0(ux6-'(f)) for all f in L},. That defines
B(p); it is straightforward to check that the map € is an endomorphism of
Mo, and that (07"}~ inverts §. Further routine calculations show that
(Byp)~ = G for any € and ¢ in Awt(L},.), so that the map § — 8 is a
monomorphistm from Aut(Li.) into Aut(Mp.). Also, one may show that
for any derivation D on Li, ., extended as at the beginning of Section 3 to a

derivation D on Mige, we have (e7)~ = €P,
1

Since My I8 identified with the multiplier algebra of L., there is a
natural notion of strong operator convergence in My, and a corresponding
notion of strong econtinuity for operators on Mj,.. We make the following
definitions,

DErINITION (4.6). A net {u} of measures in My, converges strongly to

sasure ju il pg v f fin L, for in Li,; write p; — p (8) to
a measure p il gpyn f o g fin Lj o, for every fin L, write gy — u
signify strong convergence, T'hen, we say an operator T on Mo is strongly
continvous if T'(peg) — T(j) (8) whenever iy — p (8).

We have the following lemmas, whose proofs are routine.

LeMMA (4.7). Let T be either a der’a’vaiz‘_on or an automorphism. of L,
and let T be s extengion to Miae. Then T is strongly continuous. .

For the next lemuma, write e, = nx[o,1/n) form = 1,2, .-‘.-:-, and nolte that,
for each @ in (0,00), Raey, is a bounded approximate identity for [0, a).
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LemMa (4.8). Let T be ¢ strongly continuous operator on Miae. Then

sup{ P,(T(8z)) : © € [0,00)}

< sup{Pu(T(6x *en)):n=12,..., ¢ € [0,00)}

for any a € (0,00).

COROLLARY (4.9). Let 8; be o net of automorphisms of Ll ., converg-
ing in the topology m o an automorphism . Then for each a in (0,00),
lin; sup{ Po{(8; ~ 8)(65)) : = € [0,00)} = 0.

Proof: The topology 7, was introduced in Section 2. Since {6, * e, :
n=12...,z¢€ [000)} is a bounded set in L{,,, and since &; — ¢ in 7,
we have lim; sup{Pe((6; — 8)(6z *€n)) : n=1,2,..., @ € [0,00)} = 0. The
corollary now follows from Lemmas (4.7) and (4.8).

For the next result, we use the representation of automorphisms given in
Theorem (4.2). We note that, in view of remarks about extensions § made
before Definition (4.6), if 8 = w.e*¥e? as in (4.3), then § = B, e’ eD. We
shall also use the facts that, for any a > 0 and any z 2 0, B, (6x) = 84/,
and for any measure u, o, (1)) = a{y)/a.

LEMMA (4.10). Suppose 6; = @, eMO%ePE) ig o net of sutomorphisms,
converging in the topology T, to an automorphism § = wae** e . Then there
is an indezx § such that (i) = a for oll i beyond j in the directed system of
the net 9.,;. )

Proof. Using the representation (4.3) for § and §;, and the remarks
preceding the lemma, we can compute (8; — 8)(8z) = (eXM6, 0y + (1)) ~
(6*®6,/0+v), where v(i) (respectively ») is a measure in Mo, with a(v(i)) =
z/a(i) and v(i)({x/a(i)}) = 0 (respectively, a(v) = x/a and v({z/a}) = 0).
If @ > a(i), then the above expression implies Py((f; — 0)(6,)) > |e®| for
any b > z/a, and therefore sup{P,((6; — 6)(5,)) : = € [0,00)} > 1, for
any b > 0. Similarly, if a < a(i), we get Py((; ~ 0)(6,)) 2 |er®=| if
b > z/a > z/a(i), so again sup{P,((f; — 0)(6,)) : = &€ [0,00)} 2> 1, if
b > 0. However, by Corollary (4.9), 6; — 6 in the topology =, implies
lim; sup{ P ((8; — 6)(8z)) : @ € [0,00)} = 0 for all b > 0. Therefore, a(i) = a
eventually.

THEOREM (4.11). Let H = {p,
Aut(Li ) and (1) = I,}.

(a) H is o subgroup of Aut(LL.), isomorphic with the multiplicative
group of positive reals, and discrete with the topology .

(b) N is a normal subgroup of Aut(LL ), and is a connected topological
group with . .

ta € (0,00)} andlet N = {0 : 0 ¢
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(c) Aut(Li,,) 18 a topological group with m,, and is the semidirect product
of H and N.

Proof. (a) It is casy to show that H is algebraically isomorphic with
the multiplicative group of positive reals. Suppose a(i) 18 a net of dilations,
converging in 7, to an automorphism ¢,e**e?. By Lemma (4.10), a(i) = a
eventually, which shows that I is discrete in n,.

(b) It is immediate from the definition that N is a subgroup of Aut(Lf ).
Let 4 be any element of N. By Corollary (4.5), ¢(I,) = I, for all ¢ > 0.
Let 0 = wae**e” be any automorphism of L, represented as in (4.3).
Using Corollary {4.5) again, and the fact that ¢, (1) = I /o for any positive
a and b, we have (0~ 40)(1}) = (9"‘1'1[;)(I1/w) = 0"‘1(I1/a) = [; that is,
gl e N.

Now we consider the topological structure of N. By Corollary (4.5),
N C By, so each § € N determines autoworphisms 8, of LX([0,a)) by
R0 = 0, R,, and by Lemma (2.12), the topology m, on By is determined by
seminorms g.,1, where gq,1(9) is the operator norm in B, , of 8,. Now, the
maps § — 0, are homomorphisms of automorphism groups. Since, for each
a > 0, Aut(L1{[0,4))) 45 a topological group with respect to the operator
norm in B, . it follows that multiplication and inversion are continuous in
N for the topology m,.

Finally, to see that N is connected, simply note that for any 9 = e*XeP
in N, the map ©(t) = e***¢t? maps [0,1] continuously into N, with 9(0)
the identity and (1) = . The continuity of «' follows from the fact that,
for each a > 0, ¥, (t) = eMX exp(tD,) is a continuous map into Bg,q with
respect to the operator norm.

(c) First we show that Aut(L}.) is (algebraically) the semidirect prod-
uct of A and N. By Theorem (4.2) and Corollary (4.5), every automor-
phism 8 of L{ . is (uniquely) a product .1 for some ¢ > 0 and some
Y= eMel in N, If 0 € HM N, then § = @, for some a > 0, so that
(D) = Iy But also, 0 € N, so 0(Iy) = Iy, s0 a = 1, and § = ¢, is the

©identity.

Next, we show that inversion Is continuous in Aut(LL,). Let 6; = pq )%
(a{i) > 0, ¥y € N) be a net of automorphisms, converging in m to ¢ =
@oth. By Lemma (4.10), a(é) = a eventually, 50 we can assume o(i) = a
for all . Now, for any b > 0, any ¢ > 0, and any F in Ll , we have
Pyipn F') = Poy{F), and thus, for any bounded set B in L, Ps5(shi~ 1) =
Py plera(0y — 8)) = Pyjap(0 ~ §) — 0. Therefore, ¢4 — ¢ in N for
7, and then part (b) implies 4" — ¢~ for n,. From that, we conclude
that for any b > 0 and any bounded set B in Li., Poa(6y* —071) =
Py p((h;t -~ Y1) ga] = Pb,c(mp;“i 1) — 0, where we have written
O = ©1/a(B), a bounded set, since 3/, 18 & continuous map.: - e
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Finally, we show the continuity of multiplication in Aut(Ly,.). First we
note that arguments used in proving the continuity of inversion show that
if §; is any net of automorphisms converging in 7, to an automorphism 4,
and if z > 0, then p,8; — .0 and Oipe — G, Now let v, ;0 and
@yci)%i be nets converging, respectively, to waf and @4 we are assuming
8;, 8, 9; and ¢ all belong to N. Using Lemma (4.10), we can assume
(i) = « and y(4) =y for all i, We have 8; = @y /zp,0; — ¢ and, similarly,
; — ¥ in N, by the remarks above. Therefore, wnfip1/z = wulpy /e and
Cay Vi1 jay — Pay¥P1/ay, again using the remarks above. Now, all the
automorphisms ¢z0p1 /5, etc., belong to N, and N is a topological group
with m,, by part (b). Therefore,

(028:) (0y¥:) = (©ub51/0) (Pay i1 jzy ) Pay
—* (@m9W1jm)(‘Pmy¢W1/my}me = (Q"wg)(‘f’yd)) '

where we have used the continuity of multiplication in N, and the fact that
multiplication by the fixed dilation 4, is a continuous operation.

We remark here that the automorphism group of each L'(0,a) is con-
nected [11]. “The theorem above shows that this property does not transfer
to the inductive limit of the algebra L(0, ).

Finally, we consider the relationship between automorphisms of L. ., and
those of the weighted convolution subalgebras L (w). In order to state the
following lemma, we recall that, for a radical weight w on [0,00), D is a
derivation on L*(w) if and only if there is a méasure p in My, satisfying
(8.3) such that Df = X f # y for all f in L'(w). The derivation D is then
bounded on L*(w), and E(D) = 3%, D"/n! converges in B(L'(w)) and
defines an automorphism of L*(w).

_ Lemma (4.12). Suppose that a derivation Df = X f* p of L} . restricts
to a derivation of L'(w), for some radical weight w. Then the exponenidal
E(D) of D, defined by the ezponential series in B{L (w)), ugrees with the
restriction to L'(w) of the automorphism e® of L. defined by (2.18). Thus,
we may use the notation e without embiguity.

Proof. We have (RoD)(f) = Ra(X f % u) = XRof % R, for any f
in Li,,, and in particular, for any f in L!(w). Since R, defines an epimor-
phism from L'(w) onto L'[0,a), the derivation D, on L[0,a) determined
by Dy R, = R,D is the same whether we regard D as a derivation on L' (w)
or on L .. It is easy to see that T — R,T' defines a continuous linear map
from B(L(w)) to B(L*(w), L*[0,a)). Thus, RaB(D) = Ry 3 -, DVl =
Yoo Ba D™ [l = 3700 (D, V™R, /n) = exp(D,)R, = Rae”, where we have
used (2.13) to obtain the last equality. Since a in (0, 00) is arbitrary, this
shows that E(D) agrees with e? on L' (w).
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THEOREM (4.13). (a) For every automorphism 0 of L1, there are radical
weights wy ond wy such that 0 restricts to an isomorphism of L'(w) onto
L (ws).

(b) If 4 is an automorphism of L' (w) for some radical weight w, then
1 extends to an automorphism § of Li .

(c) An automorphism @ of Li, extends an automorphism of some L1 {w)
if and only if 6 = % eP for some real number ¢ and some derivation D
determined by a measure u with u({0}) = 0.

Proof. (a) By Theorem (4.2), 8 = p,e*¥eP, for some ¢ in (0, 00), some
complex number A, and some derivation D determined by a measure p with
w({0}) = 0. By Theorem (3.4}, there is a radical weight w; such that D re-
stricts to a derivation on L'(w1). By Lemma (4.12), e restricts to an auto-
morphism of L(w). Since, for any weight w, e** gives an isometric isomor-
phism from L'{w) onto L*(e™ BMXy) and o, gives an isometric isomor-
phism from L' (w) onto L'{dew), where (dyw)(z) = w(az), the given auto-
morphism f restricts to an isomorphism of L (wy ) onto L* (dg (e ReOX ),

(b} Suppose 4 iy an automorphism of L*(w), for some radical weight w.
Write I, {w) for the standard ideals in L' (w). By [9, Corollary 3], % (I, (w)) C
I (w), for every a in (0,00). Since Ry (L' (w)) = L'[0,q) for all @ in (0, o),
there are homomorphisms ¢, on L'[0,a) determined by Ryt = ¢, R,. As
in the case of antomorphisms of L, it is easily checked that (), inverts
¥, 50 the maps 1, are automorphisms of L'[0, a). It is also easily checked
that Rapthn = e Fa,p whenever o < b, and since Li,, is the projective limit
of the algebras L'[0,a), it follows that there is an automorphism 6 of L,
determined by R.8 = 9, R, for all a in (0,00). If f belongs to L'{w), then,
for any o in (0,00), (Ra0)(f) = (YaBa)(f) = (Rath)(f); s0 6(F) = $(f); so
f extends 1, as required. '

(¢) Let # be an automorphism of L}, and suppose § extends an auto-
morphism. ¢ of L'(w), for some w. By Theorem (4.2), 8 = poe*¥el, for
some o in (0, 00}, some complex A, and some derivation I determined by a
meesure & with u({0}) = 0. We have 8(lp(w)) = ¢(Iy(w)) € I(w) for all b
in {0, 00), by [9, Corollary 3]. Since Iy(w) iz dense in Iy, and 8 is continuous
(Proposition (4.1)), (1) & Iy for all b in (0,00). By Corollary (4.5), a =1,
80 § = o* K ph .

The sutomorphism 1 of L!(w) extends to an automorphism ¢ of M (w),
where 7 can be defined using the equation () f = Y(uxy~1(f)) for pin
M(w) and f in L*(w); see {9, Proposition 1]. Similarly, since the multiplier
algebra of L), is My, (Theorem (2,14)), 4 extends to an automorphism 4
of Miye, where B(p) % f == B(uu% 07 f) for f in L}; and p in M. Since
8 extends 4 from L'(w) to L., it is easy to check that § extends ¢ from
M(w) to Mige; Le., B(p) = ¥(p) if p is in M(w). Certainly, every point
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mass &, belongs to M{w), and by [10, Proof of Theorem 2.1} there is a real
number ¢, and for each z in [0, co), a measure p, in M(w) with a(u,) > z
and pz({z}) = 0, such that (&) = €**8; + iy, and therefore
(4.14) 8(6,) = ¥(6z) = €6z + pha
We also have § = e*XeP, where ) is a complex number, and D is a
derivation on L} ., determined by a measure p with u({0}) = 0. By Theo-
rem (3.4) and Lemma (4.12), there is a weight w' such that I restricts to a
derivation, and therefore e? restricts to an avtomorpbism, of ' (w'). Argu-
ing as in the preceding paragraph, we find that for each @ in [0, 0c), thereis a
measure v, with a(v,) > & and v, ({z}) = 0, such that (eP)~ (§,) == 6, -+,
and therefore

(4.15) 0(6,) = (™ PV (8,) = ™6, + M0y
for each z in [0, 00). Comparing (4.14) and (4.15), we conclude that A = ic,

and therefore § = X ¢

Conversely, suppose we are given  of the form e'¥e?, with ¢ real and
the derivation D determined by a measure p with x({0}) = 0. As above, by
Theorem (3.4) and Lemma (4.12), there is a weight w’ such that I} restricts
to a derivation, and e” restricts to an automorphism, of L*(w’), Since e*oX
restricts to an automorphism of L!(w) for any weight w, we conclude that

B = e°X el restricts to an automorphism of L!(w'). Thus, (¢} is proved.

for every z in [0, 00) .
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