icm

STUDIA MATHEMATICA 103 (1) (1992)

A characterization of maximal regular ideals in Imc algebras
by

MARIA FRAGOULOPOULOU (Athens)

Abstract. A questlon of Warner and Whitley concerning a nonunital version of the
Gleason-Kahane-Zelazko theorem is considered in the context of nonnormed topological
algebras. Among other things it is shown that a closed hyperplane M of a commutative
symmetric F*-algebra B with Lindelsf Gel'fand space i& a maximal regular ideal iff each
element; of M belongs to some closed maximal regular ideal of E.

1. Introduction. In 1969 Warner and Whitley presented an example
[16; p. 277] showing that for a hyperplane M in a nonunital commutative
Banach algebra F, the property:

(1) each element of M belongs o some maximal regular ideal of E,

does not characterize M as a maximal regular ideal, as in the unital case
(Gleason-Kahane-Zelazko theorem). Their example pointed out that, in
this regard, one should consider algebras F satisfying the condition:

(2) some element of E belongs to no maximal regular ideal of E.

The convolution algebra L'(GF), G an abelian metrizable locally compact
group, satisfies (2) [16]. In 1988 Maltese and Wille-Fier, omitting the com-
mutativity assumption and considering maximal regular 2-sided ideals of
codimension 1, gave necessary and sufficient conditions for (2) to hold {13;
Theorem 2.1]. Moreover, they showed that (2) holds for L*(G), even if G
as above is not abelian (ibid., Theorem 4.1).

In this paper we investigate (2) in the setting of nonnormed topological
algebras. The results obtained apply in the commutative case to symmetric
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LFQ ~-algebras with second countable Gel'fand space (cf. Corollary 3.5 and
Remark 3.6) as well as to Cy(X), X locally compact o-compact, endowed
with the compact-open topology (Corollary 4.3). In the noncomrnutative
case the applications concern various tensor product function algebras (see
Section 4.4).

‘We should note that according to [9; p. 343] the Gleason-Kahane-
Zelazko theorem is valid for every unital commutative complete tme (lo-
cally m-convex) algebro B with f (M = ker(f)) a continuous linear form
on E. On the other hand, using [15; p. 113, Corollary| a variant of the
preceding result is here stated for unitel strong spectrally bounded Ime (resp.
unital topological Q-) algebrus (for the respective concepts cf. [2] and Sec-
tion 2) without assuming commutativity and completeness of E or continu-
ity of f. Note that, in general, the Gleason-Kahane—Zelazko theorem is
not true without m-convexity [9; p. 343] or without continuity of the linear
form involved [18; Proposition]. Furthermore (cf. [18] and [17; Theorem 2,
Corollary 2]}, in a unital complete lmc algebra E, a closed hyperplane M
is a maximal 2-sided ideal iff each z € M belongs to some maximal 2-sided
ideal of E of codimension 1.

I am indebted to Professors E. Albrecht and J. Eschmeier whose com-
ments led to Remark 3.6(1). My special thanks are also due to the referee
for his constructive comments including the indication of the redundancy of
r|5(m) < o0 in Theorem 3.1(ii) when F is metrizable. As a consequence, we
get (iii) of Theorem 3.1 and thus Theorem 4.1.

2. Preliminaries. The algebras we deal with are complex and the
topological spaces HausdorfF.

An Ime (locally m-convex) algebra is a topological algebra F whose topol-
ogy is defined by a family I'y = (p,), o € A (A a directed index set}, of
submultiplicative seminorms [12, 14]. A (complete) lme algebra whose un-
derlying locally convex space is a Fréchet space will be called an F-algebra.
A Q-algebra is a topological algebra such that the set of its quasi-invertible
elements is open (ibid.). Furthermore, an algebra F is called an LF-algebra
(see [12; p. 301, Definition 9.1] and [14; Definition 15.2]) whenever there

exists an increasing sequence (E,), n & N, of F-algebras (subalgebras of E)
such that:

(1) E=1J, En and each B, is a 2-sided ideal in E.
(2) Tn = Tyi1lE,,, where 7, is the given topology of E,, n & N.
(8) 7&s = Tn, » € N, where 7 is the final Imc topology on E induced by
the natural injections B, — E, n € N.
. An LF-algebra which is also a Q-algebra will be called an LFQ-algebra.
Let now E be an lmc algebra and p, € I'g. Set Ng = ker(p,) and endow
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E/Nq with the norm |- ||« induced by pa, i.e., |Tafo = pal(z), Ta = 2+ Na,
z € E. The Banach algebra completion of (E/N,, || - ||«) will be denoted by
Eq, a € A. If B (resp. E}) stands for the topological (resp. weak topological)
dual of E, the space

M(E) = {f € E": f #0 and f(zy) = f(2)f(y), Yz,y € E},
endowed with the relative topology from E! is called the Gel’fand space of
E [12; p. 139]. When E is commutative, M(E) is identified with the set of
all closed maximal regular ideals of E. If E is noncommutative, M(E) is
identified with all closed maximal regular 2-sided ideals of codimension 1.
In either case one might have AM(E) = . Throughout this paper, given an
lme algebra E, we shall always assume that AM(E) # @. In this regard, see
comments after 4.4(3). It is easily seen that each f € E {resp. f € M(E))
defines, for some « € A, an element f, € E!, (resp. f, € M(E)) with

(2.1) folza) = flz), z€FE,
fo is called the element of E, (resp. M(E,,)) associated with f. Tn particular,
(2.2) M(E) = | JM(Ea)

[12; p. 172, Lemma 6.3]. Furthermore, denote by = the spectral radius of
E. Then, if F is moreover commutative and complete, r is given by (ibid.,
p. 104, (6.16)})

(2.3) r(x) = sup{|f(z)|: f € M(E)}, z€E.

Suppose now that E is an involutive algebra. Then H(E) := {z € F :
¢* =z}, and F will be called symmetric if '

(24)  f@e") =flz) & @)(H=E@) (), Y/eM(E), ek,
where T is the Gel'fand transform of z. An lmc algebra E with a continuous
involution (i.e., pp(z*) = pa(z), for any z € E, @ € A), will be called an lmc

*-algebra. By a o-compact space we will simply mean a topological space
which is a countable union of compact subsets [10; p. 172].

3. Characterization of maximal regular ideals in certain com-
mutative Imc algebras. Given an Imc algebra E, condition (2) of Section 1
can also be stated as follows:

(e) there exists z € F with h(z) # 0, Yh € M(E). _
In this connection, the following extends [13; Theorem 2.1].

THEOREM 3.1. (i) Bvery metrizable lme algebra E with property () has

a Lindelsf Gel’fand space. _ :
(il) Buery commutative symmetric complete ime *-algebra B with M(E)
Lindeldf and r|gem < oo possesses property (e). :
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(iii} If E 4n (i) is metrizable, commutativity of B, continuity of the
involution and g gy < 00 are redundant.

Proof (i) I's = (pa), n € N, and each E,, n € N, satisfies (e); hence
the assertion follows by (2.2) and the respective Banach algebra result [13;
Theorem 2.1].

(ii) By the symmetry of £ and the fact that M{E) is Lindeldf, one gets

o0
(3.1) M(E) = U{U’“« 22 {Un,) >0, zp i=yruk},
Fe=l
where Uy, is a neighborhood of hy in M(E) and yx € E with fp(ye) 5 0.
Now, since 2 € H(E) we may consider the element
2k
17 e & F
W r(zg) + 1
so that (12; p. 99, (6.1)] rg, {(wk,a) < 1, for all @’s. Thus, applying a result of
G. Lumer [11; p. 136] for F, := E, & C (unitization of Fy) (with I" (ibid.)
being the finite group of norm-preserving transformations of F,, given by
the involution), we conclude that there is a Banach *-algebra norm || - ||, on
E,, equivalent to | - ||, and such that [Jwg i}, <1, @ € A. Hence, if
o0

1

Wa :=Z§7§w’“*°‘€E”’ e d,
k=1

the element w := (w,) € F = lim F, satisfies (e) (cf. also (3.1)).

(iii) In this case w is given by the series Z,‘:‘;l a2y, where the zy are as in
(ii) and the oy, are any positive scalars such that the series is convergent. m

A pertinent question at this point would be to find a counterexample
showing that the assumption r|xyz) < oo in Theorem 3.1(ii) is essential
(I am indebted to Professor W. Zelazko for raising this question.).

Remark 3.2. Regarding (ii) of Theorem 3.1, we note:

(1) When E is not symmetrie, () may fail according to an example given
by Maltese and Wille-Fier [13; p. 136].

(2) Commutativity and continuity of the involution can be omitted from
the hypotheses by replacing |y g) < oo with sup,, (Pa| H(E)) < oo (examples
of lmc algebras with the latter property can be found in [2; pp. 51, 52]). In

facoto, [lz]|s := supg, palz), # € B, is & norm on E, thus w,’s can be given by
2k 2k (2% 2}

. ProPosITION 3.3. Every:metrizable Imc algebra with a countable left (or
right) a.u. (approzimate unit), as well as every commautative LEQ-glgebra
B with. M(Ey ) second countable for eachn (¢f. Section 2), has o Lindelsf
Gel’fand space. o . -
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Proof. The first assertion follows by (2.2) and [13; Theorem 2.2]. For
the second, one has (cf. [14; Proposition 15.9])

(3.2) M(E) = | M(E,).

We show that each M(E,} is locally compact. In virtue of [12; p. 75,
Proposition 7.1 and p. 143, Theorem 1.1] it suffices to show that each FE,,
n € N, is a Q-algebra. This follows from [12; p. 105, Lemma 6.1] since &
is a Q-algebra and rg, () = rg(z), z € E,, n € N (cf. (3.2), (2.3)). Thus,
M(E,), n & N, being second countable, becomes o-compact. The assertion
now results from (3.2) (see also [14; Proposition C.3.]). m

If in the second case of Proposition 3.3 we suppose that M(E) is sec-
ond countable, then commutativity of E is redundant, since E, being a
Q-algebra, has M(E) locally compact.

THEOREM 3.4. Let F be a commutative symmetric complete Imc *-algebra
with M(E) Lindeléf and v{gm) < co. Let also M be a closed hyperplane of
E each element of which is contained in some closed mazimal regular ideal
of B. Then M itself is o mezimal regular ideal.

Proof. Clearly M = ker(f) with f € F'. Hence by Theorem 3.1(ii)
and the symmetry of F we may assume that f(z) = 1, f(z*) # 0, for some
x € H(E) with h(z) # 0 for all A € M(E). Then following the proof of
[13; Theorem 2.3}, which is purely algebraic, we conclude that the function
gly) = f{z2)f(y), y € E, is an element of M(E) with M = ker(g). =

COROLLARY 3.5. Let B be a commutative symmetric LFQ ~-algebra with
M(E,), n € N, second countable. Then a (closed) hyperplane M of E, each
element of which belongs to « mazimal regular ideal of E, is itself a mazimal
regular ideal. -

Proof Apply Theorem 3.4 using the property Q of F and Proposi-
tion 3.3. =

It is easily seen that Theorem 3.4 also applies to the generalized group
algebra. L'(G, B) [12; p. 402] with G an abelian metrizable locally compact
group and F a comrmutative symmetric Banach *-algebra with either a unit
or a countable a.u. Symmetry of L'(G, E) and the property of M(L'(E, G))
being Lindeldf are shown as in 4.4(3).

Now let X be a o-compact finite-dimensional ¢*~manifold and D(X)
the algebra of tegt functions on X, i.e., ' '

D(X) = {f € C™(X) : supp(f) compact} = lim D, (X), .

LS

where K,, n € N, are compact subsets exhausting X and DKn (X) =
{f € D(X) : supp(f} C K,}, an FQ-algebra endowed with the relative
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C*-topology from C°(K,), n € N (cf. [12; p. 132] and proof of Propo-
sition 3.3). D(X) equipped with the inductive limit topology, say T, is
an LFQ-algebra (cf. [12; p. 133, (4.25)] and {4; proof of Proposition 3.3)),
symmetri¢ under the continuous involution induced by the complex conju-
gate. In fact, r(f) = sup{|f(z)| : ¢ € X}, f € D(X) [4 proof of Propo-
sition 3.3], so that »(f*f) = r(f)%, f € D(X), which yields symmetry for
D(X) [3; Theorem 2.4]. In this connection, if M. = M(D(X),7} and
My, == M(Dg, (X)), n € N, we have the following.

Remark 3.6. (1) M, is not Lindeldf (and a fortiori not second count-
able or o-compact). Indeed, if 700 is the relative C™-topology on D(X) and
Mo = M(D(X), 7 ), one has

Mgo = X g M-r

(cf. [4; proof of Proposition 3.3]); therefore if M. is Lindel6f, Theorem 3.1(ii)
leads to the contradiction that X is compact.

(2) An immediate consequence of Theorem 3.1 is that an involutive sym-
metric F-algebra has property {e) iff it has a Lindeldf Gel’fand space. Thus,
by (1) (cf. also (3.2)), we conclude that, at least, one of the My’s, say My,
is not o-compact, therefore

. {5m:x€an}gan
(6, being the point evaluation on Dg, (X)), hence
Moo ={b,:2€ X} G M,.

(3) Consider U = M, \ Mq,. Then from (1) and Theorem 3.1(ii) one is
naturally led to the following question: Is U a Lindeldf space? If the answer
is positive one gets the existence of an element f € D(X) with h(f) # 0 for
evéry h € U. Thus applying the argument of Theorem 3.4 we can prove the
following: If M := ker(F), F € (D(X);r), is a hyperplane in D(X) with
the property “every f € M is contained in some ker(hys) with hy &€ M, such
that hy # 6, for every z € supp(f)”, then M is a maximal regular ideal of
D(X). So it would be of interest to know the topological properties of U.

One has exactly the same situation as before for the algebra K (X) of
all C-valued continuous functions on X with compact support, X belng a
locally compact o-compact space (cf. [12; p. 127, 4(1)]).

4. Characterization of maximal regular 2-sided ideals of codi-
mension 1 in some lmc algebras. In this section we deal with nonunital
noncommutative lme algebras. Examples of such algebras with nonempty
Gel'fand space are discussed after 4.4(3).

THEOREM 4.1. Let E be an involutive symmetric F-algebra with M(E)
- Lindeldf. - Let. also M be a closed hyperplane of E each element of which
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is contained in some closed magimal regular 2-sided ideal of E of codimen-
sion 1. Then M idtself is a mazimal regular 2-sided ideal.

Proof. Using Theorem 3.1(iii} we argue as in the proof of Theo-
rem 3.4. =

A variant of Theorem 4.1 is now obtained by passing to the Banach
algebra factors of the Imc algebra involved and using the respective Banach
algebra result [13; Theorem 2.3] formulated in terms of multiplicative linear
forms. Here one does not need completeness for the given algebra, at the

cost, however, of requiring a continuous involution. More precisely, we get
the following.

THEOREM 4.2. Let (E,(p,)), n € N, be a metrizable symmetric Imc
*-algebra with either a countable left (or right) a.u. or M(E) second count-
able. Let also f € E' and let f,, be the element of E!, associated with f {ef.
(2.1)). Then the following are equivalent:

(1) There exists 0 # A € C with \f € M(E).
(2) fu(z) =0, 2 € Ey, implies h(z) = 0 for some h € M(E,).

Proof Weshow (2)=>(1). Each E,, is symmetric with M(E,,) Lindelsf
(cf. (2.4), (2.2} and Proposition 3.3). Hence [13; Theorem 2.3], there exists
0# A e Cwith Af, € M(E,), which in turn yields Af € M(E). w

Suppose now that X is a locally compact o-compact space and let C.(X)
be the F-*-algebra of all C-valued continuous functions on X with the
compact-open topology ¢. Denote by E, the algebra Cy(X) of all f € C.(X)
which vanish at infinity, endowed with the relative topolegy from C.(X).
Then we have

CoRrOLLARY 4.3. If F' € E. and F, 1is the element of (E,)), associated

with F, then F = Aoy, for some 0 A € C, zg € X, iff each fr € ker(F,)
vanishes at some x € X.

Proof. Clearly E, is a metrizable lmc *-algebra and ¢ < || - {|, where
||| is the usual supnorm on Cy(X). Thus,

X S M(B2) S M(Go{X),]- ) = X .

Hence (cf. also (2.2), (24)), M((E.)n) € X for each n € N and E, is
symmetric. Moreover, B, has a countable au. since this is the case for
(Co(X), 1+ ) (cf. {1; Proposition (12.2)] and/or {13; Theorem 3.2]). The
aggsertion now follows from Theorem 4.2. u

4.4. Applications of Theorems 4.1, 4.2 to some topological tensor prod-
uct function algebras. (1) Let E be a symmetric F-*-algebra with a count-
able a.u. and with M(E) locally compact. Let also X be locally compact,
o-compact and let By := C.(X, E) be the algebra of all F-valued continuous
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funetions on X with the topology of compact convergence [12; p. 387]. Then
(cf. [8; p. 352, Corollary 3] and [12; p. 391, Theorem 1.1]),

By =limC,(Ky, En), where K, C X, compact, with X = U K, ,
T

and u is the topology of uniform convergence. In particular,
M(By) = M(C(X)) x M(E) = {6, @ h: h € M(E)}

[12; p. 143, Proposition 1.1, Theorem 1.1; p. 411, Theorem 1.2; and p. 228,
Theorem. 1.2], where C'.(X) is symmetric by [3; Corollary 2.2] and M(E)
is o-compact by Proposition 3.3. Thus, B; is a symmetric F-*-algebra with
o-compact Gel’fand space.

(2) Let E be as in (1) and X a compact (thus metrizable) n-dimensional
C*-manifold. Let also By := O°(X, E) = l4i_r__nC'°°(Un,Em) (Un), n € N,

a basis for the topology of X) be the algebra of all F-valued C'*°-maps on
X [12; p. 392, 2. Arguing as in (1) and using [12; p. 394, (2.7); p. 227,
Theorem 2.1], as well as the fact that C°°(X)) is symmetric [3; 2.5(i)], we
conclude that B, satisfies the assumptions of either of Theorems 4.1, 4.2.

(3) Let E be as in (1), G a metrizable locally compact group and B :=
LYG,E) = H:_nLi(G, E;n) the generalized group algebra of G [12; p. 402, 5].
Then

M(Bs) = M(L}(@)) x M(E) = G x M(B),
where G is the character group of L'(G), the latter being symmetric with a
countable a.u.-[13; proof of Theorem 4.1]. Thus, as before we find that B;
satisfies the assumptions of Theorems 4.1, 4.2.

B;, i = 1,2,3, provide examples of lmc algebras with a countable a.u.
Moreover, if G in (3) is abelian and E := L'(G), the respective F-algebras
By, By as above give examples of nonunital commutative lmc algebras with
nonempty Gel'fand space. The same is also true for By with G as before and
E either of the algebras C,(X), C*(X). On the other hand, taking X, ¢
as in (1), (2), (3) respectively, one sees that the nonunital noncommutative
F-algebras C.(X, E), (X, E) with F := LY(G), as well as ['(@, E) with
E = C*(X), have a nonempty Gel’fand space; for the latter case see also
(65 (23.3), Corollary 23.7],
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