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Closed operators aﬂiliated. with a
Banach algebra of operators

by

BRUCE A. BARNES (Eugene, Oreg.)

Abstract. Let B be a Banach algebra of bounded linear operators on a Banach
gpace X. If § is a closed cperator in X such that (A — $)~! € B for some number A,
then S is affiliated with B. The object of this paper is to study the spectral theory and
Fredholm theery relative to B of an operator which is affiliated with B. Also, applications
are given to semigroups of operators which are contained in B.

1. Intreduction. Let X be a Banach space, and denote by B(X) the
Banach algebra of all bounded linear operators on X. If § is a closed opera-
tor in X such that (A—9)~1 € B(X) for some A € C, then useful information
concerning the spectral and Fredholm properties of § can be derived from
the corresponding properties of (A — §)7'. For example, from the holo-
morphic operational calculus of (A —~ §)~! one can define the holomorphic
operational calculus of .S} see [8, pp. 599-604].

Now let B C B(X) be some Banach algebra of operators. Define a closed
operator S in X to be affiliated with B if 3 € C such that (A - §)"? € B.
Again, in this more general situation, interesting and useful information
concerning S can be derived from properties of (A — §)7! relative to' B. In
this paper we are mainly interested in closed operators affiliated with one
of the following algebras:

1. Jorgen’s algebras. Let X and ¥ be Banach spaces which along with a
bounded nondegenerate bilinear form, (-, -}, comprise a dual system; see [11,
p. 48] Let A = A(X,Y) be the set of all T' € B(X) such that 37t € B(Y)
with

(Tz,y) = {z,Tly) (z€X,yeY).
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46H99. i .
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Then A is a Banach algebra of operators with norm T} = max(||T]], ||
where the norms on the right are the usual operator norms [11, pp. 45-46].
The Banach algebra A is used in various ways in the study of linear integral
operators ([11] and [12]). The speciral and Fredholm theory of an operator
T € A is well understood ([2] and [11]) and leads to useful information
concerning the relationship between 7 and 7.

II. The algebra By,. Let (12,4) be a o-finite measure space. Fix 1 <
p<s oo LetT e B,,iflTisabounded linear operator on LP N L*
and has continuous extensions Tpon L? and T, on L*. Here L” is the usual
Lebesgue space [?(£2, ) when 1 < p < oo, For the case s = oo, L* will
be understood to be the closure of L N L? in the norm [|*1lee, and Ty, the
bounded extension of 7' to L*. The space B, is a Banach algebra with
norm |[T[| = max(||Ty||, ||Ts||). The spectral and Fredholm properties of
T € By, relative to 8, , have been studied in [4], and to some extent, in [5].
If T € By,s, then by the Riesz Convexity Theorem, for all r & Ip,s], T has a
unique extension T, € B(L™). Omne motivation here is that from properties

of T relative to By, s, one can draw interesting conclusions concerning T, for
all r € [p, 5); see [4].

Since the spectral and Fredholm theory relative to the Banach algebras
A(X, Y} and By, is well understood, we use this information to study closed
operators which are affiliated with one of these algebras. Omne could also
apply the general theory developed in Section 2 and results in [1] to study
closed operators affiliated with the Banach algebra of all regular operators
on a Banach lattice, but we do not pursue this direction here.

In the last section of this paper, we study semigroups of operators which
have infinitesimal generators affiliated with a Banach algebra of operators,
B. This general theory has interesting applications when 8 = A(X,Y) and
when B =B, ,.

When R is an operator in X, then we use the notation:

N(R) = the null space of R;

R(R) = the rarge of R;

o(R) = the spectrum of R; :

ind(R) = the index of R (when this makes sense);
||&|| = the operator norm of R (when R is bounded);
nul(R) = dim(AN(R)); -

def(R) =-dim(X/R(R)).

2. Spectral and Fredholm theory of an affiliated operator.
Throughout this section (B, || - {|s) is a Banach algebra of operators with
- BCB(X),Ie€ B,and ||T||s > ||T|| (the operator norm of T) for all T € B.
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Assume § is a closed linear operator with domain D(S) in X. Let
os(8)={reC:(A-8"1eB}.
The notation (A — §)~! will always be understood to mean
A=A -8)"e=2 forallze X; and
A=8)""A-8z =z forallze D(F).

DerFiNITION 1. A closed operator § is affiliated with B if pg(5) is non-
empty.

Assume 5 and B are as above. When § is affiliated with B8, we usually
assume for simplicity that S-! € B. Formulas or results in the general
situation can always be easily derived from those that hold in this special
case,

Define the B-spectrum of § by ¢5(S) = C\ es(5)-

THEOREM 2. Assume S is a closed operator in X withT = S~! € B.
(1) For A# 0, A € p(9) & A~ € 05(T), and in this case,
A== 27T =)

(2) os(8) = {3 : A€ an(T)\ {0}}.
(3) 08(S) is open and og{§) is closed.

Proof. Parts(2) and (3) easily follow from (1). We prove (1). For A # 0
we have (A = §)T = =A(A~! = T) and (A — §) = —=A(A™! - T) on D(5).
Therefore if A~' ~T is invertible in B, then (A—8)~t = —A"1T{(A"1-T)"1,
Conversely, assume (A—S)~! = R € B. Note that T+ R = T[(A—5)+ SR =
ATR. Then

(AT =Y A~ NRy=T - AT - AR+ NTR=1T-AT - AR+ )T+ B] = L.

Also, TR = RT,s0 (A" =T}y 1= A- AR € B.

It is worthwhile to note that when S is a closed densely defined operator
on X which is affiliated with B, then a B-operational calculus can be defined
for §. The definition and properties of this operational calculus are stated
exactly as in the case where B = B(X) as in {8, pp. 599-602]. In this
case, when f is analytic on some open set containing oz(5) and at oo, then
f(§)eB.

Next we consider the main topic of this section, Fredholm theory relative
to B. In order to have a useful Fredholm theory in B, we must assume that
B contains sufficiently many operators of finite rank. Ifz € X and a € X',
where X' is the dual space of X, then let a ® = denote the operator on X
defined by

(e@z)(y)=ay)z (yeX).
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We will assume that B has the following property:

(#) There exists a total subspace ¥ of X’ such that « @ z € 8 for all
z€ X andallaeVY.

We omit the proof of the following proposition.
PROPOSITION 3. Assume B C B(X) as before and that B satisfies (#).

(1) B is a primitive Banach algebra.
(2) Fora€Y, a@ X ={a®z: s € XY} is o minimal left ideal of B.

The socle of a primitive algebra B, denoted by goc(B), is the smallest
left ideal of B which contains all minimal left ideals of B [7, Def. 8, p- 156].
In fact, B being primitive implies that soc(B) is an ideal of B. This ideal
is easily identified for the algebras under consideration. Basic properties of
soc(B) are discussed in [6, BA.3] or [7, pp. 154-160].

We will make use of the general Fredholm theory in the primitive Banach
algebra B as defined and studied in [6]; see especially pp. 29-35. There Fred-
holm theory is developed relative to soc(B). The next proposition identifies
soc(B) in our present situation.

PROPOSITION 4. Assume B satisfies (#). Let Tz be the set of all finite
rank operators in 3. Then Fg = soc(B).

Proof. Since the algebra 8 is primitive, soc(B) is a minimal ideal of B.
As Fp is an ideal of B, it follows that soc(B) C Fp.

Conversely, as noted in Proposition 3(2),fora €Y, a® X is a minimal
left ideal of B, so & ® X C soc(B). Therefore

(%) a®zesoe(B) (ze€X, acY).
Assume F € Fp and that {=1,...,z,)} is a basis for the range of F'. The
argument in [12, Lemma 4.13, p. 41] shows that 3{as,...,0,} C V with

ap(®;) = 6k, 1 < k,§ < n. Let E = Y k=1 ® z € B. Then E is a
projection with EF = F. By (+), E € soc(B),s0 F = EF € soc(BB).

Assume B satisfies (#). Fix @ € Y, o # 0, and let L be the minima] left
ideal of 8, L = a® X. For T € B, define T: I, — Lby T(a®z) = a®Ta.
Let V' : L — X be the bicontinuous isomorphism of L onto X defined by
Vie®@z) =2, 2 € X. Then V7TV = T, so T and T are similar. The
B-Fredholm properties of T € B relative to Fg = soc(B) are defined in terms
of Tin [6, pp. 30-31]. In particular, if T is B-Fredholm, then 7 is a Fredholm
operator ou L, and the B-inder of T is defined to be ind(7). Thus in our
case, since T is similar to 7, the B-index of T will be just ind(T) = ind(T)
(as an operator on X). We use this fact in what follows.

For the remainder of this section we assume that B is a unital Banach
subalgebra of B(X) which satisfies (#).
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Let Kg be any closed nonzero inessential ideal of B [6, F.3.12, p. 42]; Kg
may be taken to be the closure of F in B, for example. In the primitive
Banach algebra B, Fredholm theory in B relative to Fg is equivalent to
Fredholm theory in B relative to Kp. The key fact here is that by [6, BA
24],for T € B, AV,W € B and IF,G € Fg such that TV = I — F and
WT¥ = I — G if and only if the same holds for T with F,G € K. We
sumnmarize our notation involving Fredholm theory relative teo B:

?(B) = {T € B:T is invertible in B relative to F (or Kg)};
#°(B) = {T € #(B) : ind(T) = 0};
we(T)={A€C:A-T ¢ $(B)};

We(T)={AeC: AT ¢ #°(B)}.

Let S be a closed operator in X. Next we extend the B-Fredholm the-
ory to §. As part of the usual definition of being Fredholm for a closed
operator S in X, it is required that D(S) be dense in X. We do I].(.)t make
this requirement. In our terminology, § is a Fredholm in X if § is Fred-
holm as an operator from D(S} into X in the usual sense; see [15, p. 162].
Let $(Z, W) be the collection of all Fredholm operators densely defined

“in Z with values in W. Thus in this notation, we consider § Fredholm

in X if § € #(D(5),X). We use the notation $°(Z, W) for the set of all
S € ¢(Z,W) such that ind(S) = 0.

DEFINITION 5. Let § be an operator in X. Then S is B-Fredholm if
AV, W e B and F,G € Kg with

SV=I—-F onX, and WS=I-G onD(5).

If § is B-Fredholm, then we write § € &(B); if § € #(8) and § € #°(D(5), X),
then we write S € #°(B).

THEOREM 6. Assurne T = §~1 € B. For A #0
A-Se®B) & A1 -T e d(B).

In this case R(A — §) = R{A™1 - T), N(A = §) = TN(A71 = T), and
ind(A — §) =ind(A-' - T).

Proof. For A# 0,
(%) (A= 8T=-AAT-T).

From () it follows immediately that R(A~§) = R(A~1—T) and N:(A—S) =
TAN{A~! — T). Furthermore, A — § € #(D(5),X) is clearly equivalent to

A7} — T being Fredholm on X by applying the usual criteria [15, p. 162]

and (*). When these two operators are Fredholm, then that ind(A — 5) =
ind(A~! — T') follows from these observations.
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Now assume A~ — T' € $(B), so IV, W € B and F, G € Kz with
AV ~TW=I-F and WA'-T)=1-@.
Using (*), it is immediate that

A= S)(ATV)=T-F and (-A'"WT)A-S)=I-G on D(5).

Thus, A — § € ¢(B).
Conversely, assume 3V, W € B and F,G € Kg such that
A=8SWV=I-F and WA-8§)=I~G on D(S).
Note that ATV = T'[(A — §) + S]V = T(I — F) + V. Therefore
(AT =TYA= NV)=T - AT - AV + ATV
=1~ AT - AV AT +V ~TF]l=1-XTF.

Similarly, AWT = W 4+ T — GT, and (A — X2W)(A~! — T)=1TI-)\GT.

This proves A~ — T € &(B).

LEMMA 7. Assume T € B, A# 0, and A~ T € ¢°(8). Then 3G € Fs
such that A — T 4 pGT is invertible in B for all u # 0.

Proof. We assume for convenience that A = 1. By Propositions 3
and 4 we can apply the Fredholm theory in a primitive Banach algebra as

developed in [6, F'1 and F2]. First by [6, F.1.10] there exist idempotents
P,@Q € Fg such that

(I—T)B: (I- P)B and B(I—-T) =B(I - Q).
Set = QT € Fg. Note that since TQ = Q, wehave E? = QTQT = QT =
E. {ﬂso, QE=Fand EQ = Q. Now (I-Q)E = 0,50 B(I—-Q) C B{I- E).
Again, (I — E)Q = 0,50 B(I - E)C B(I - Q).
‘ By [6, F.2.11] we can choose F € PBE such that I — T+ uF is invertible
in B for all y # 0. Since F = FE = FQT, setting G = F(, we have
I—T + pGT is invertible in B for all u # 0.

- TarEorEM 8. Assume T' = S~ € B. For A # 0, the following are
equivalent:

(1) A~ S € 9°(B).

(2) A7 — T € 9°(B).

(8) 3G € Fi such that (A — 5 + @)™ € B for all p # 0.

(4) 3K € Kp such that (A~ S+ K)"'e B,

Proof. By Theorem 6, (1) and (2) are equivalent. Clearly (3)=>(4).
Also, if (4) holds then A - §+ K € $°(B), so A~ § € 9°(B). We complete
the proof by showing that (2)=(3). : L
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Assuming (2) holds, by Lemma 7, 3G € Fg such that A™! — T+ uGT is
invertible in B for all u # 0. Now assuming g # 0,

(A= S+p@)T = =M1 =T — A"uGTY
is invertible in B. If R is the inverse of this operator in 3 for some p, then

(A~ 8+ pG)TR = I. Also, TR(A~ S + pG)(TRz) = TRz for all z € X.
Since R{(TR) = D(S5), TR(A— 8§ + pG) = I on D(S). This proves (3).

Next we define and verify some properties of two essential spectra for §
relative to B,

DEFINITION 9.
we(S)={AeC:A-5¢8(B)}, Ws(S)={AeC:2-5¢eB)}.

The wg(S) is the Fredholm essential spectrumn of § relative to B, and Wg(S§)
is the Weyl essential spectrum of § relative to . We use the notation w(5)
and W{S) when B = B(X).

When § is affiliated with B, then clearly wg(S5) € Wa(S5) C os(S5).
THEOREM 10. Assume S is affiliated with B with T = (§ — )" ! € B.

(1) O'B(S) = {()\ — /‘_\0)"1 = JB(T), A ?—L /\0}.
(2) ws(S) = {(} = Ao)™1 : A € wa(TY, A% Ag)
(8) Wa(S5) = {(A=20)7 : A e Wp(T), A# Ao}
(4) Wa(S) = {os(S+ K) : K € K}

Proof. Part (1) follows from Theorem 2. Parts (2) and (3) are an
immediate result of Theorem 6.

To prove (4) first note that for any K € g,
A-S§ed®B) & A-5~-Ked'B).

This is a direct result of the definition, Definition 5, and a standard property
of the index [15, Theorem 2.1, p. 167] (or use Theorem 8(4)). It follows that
for any K € K, Ws(8) C N{os(S5 + K) : K € Ks}. On the other hand, if
X & Ws(S), then by Theorem 8(4), 3K € Kg with A — (5 + K) invertible
in B. Therefore A & og(S + K). This proves the opposite inclusion.

3. Operators affiliated with a J6rgens algebra. Let (X,Y) be a
dual system. Dual systems are used in the theory of linear integral operators
([11] and [12]). Many linear differential operators have an inverse which is
an integral operator. This is one motivation for studying closed operators
affiliated with the algebra A(X,Y). In this settion we develop information
concerning such operators using the general theory presented in Section 2.
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If Z is a subspace of X and W is a subspace of ¥, then let

Zt={yeY:{z,y)=0forall z€ 2},
Wt ={zeX:(z,w)=0foral weW}.

The subspace Z is Y-total if Z1 = {0} and W is X-total if W = {0}.
Now we define the adjoint of an operator 5.

DEFINITION 11. Let § be an operator in X with D(S) Y-total. Define
y €Y tobein D(ST)if Jw € Y such that (Sz,y) = (z,w) forall 2 € D(S5).
For y € D(S"f) and w as above, set §Ty = w.

Note that ST is well defined since D(S) is assumed to be Y-total. Also,
by definition

(Sa:,y)m(m,STy) (:BED(S), yED(Sf))'

ProprosiTION 12. Assume (5,D(S)) is a closed operator in X with
D(S) Y-total. Assume S is affiliated with A(X,Y). Then D(S§1) is X-total
and St is a closed operator in Y, ’

Proof. We may assume T € A(X,Y) with §~1 = 7. For any y €
Y, x € D(S), (§2,T1y) = (TSz,y) = (z,y) so R(TY) C D(S1). Also,
R(TT}is X-total since if (z,Tty) = 0 for all y € Y, then (T'z,y) = 0 for all
y € Y,s0 Tr = 0. But then 0 = §Tz = z. That St is closed is easy to
verify.

We mention one situation where an operator may not have an adjoint
in the usual sense, but does have an adjoint with respect to a natural dual
system.

EXAMPLE 13. Let X be a nonreflexive Banach space. Assume S is an
operator in X' with D(§) X-totalin X’. Consider the dual system (X', X)
with the obvious bilinear form {a,2} = a(z) (a € X',z € X). Define D(51)
and 51 as in Definition 11. In this situation St is called the preconjugate

of 5. This is a useful concept in the theory of ordinary differential operators;
see [9, p. 126].

Now we note that A(X , Y') does satisfy condition (#) postulated in Sec-
tion 2. First, Y can be considered as a subspace of X' via the identification
yz) = (z,9) (y € Y,z € X). Forz € X and y € Y, define as before
(y®@z)(z) = {z,¥)z (z € X). It is easy to check that (y ®z)! is the operator

(yo2)t(w) = (z,w)y (weY).

Therefore the collection {y@z:2 € X, y € Y} C A, so A satisfies ().
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The socle of A is easily identified as soc(A) = F4 = span{y @ = :
z € X, y €Y} We take as K 4 the ideal

Ka4={T € A:both T and T' are compact}.

The following result is the main theorem concerning operators affiliated
with a Jorgens algebra.

THEOREM 14. Assume S 1s a closed operator with D{S)} Y-total in X.
Also assume §7' =T € A= A(X,Y).

(1) For any X, if (A — §)™' € A, then (A~ §H)™1 = ((A - §)~)t.
(2) For A# 0, '

A€Eoa(8) & (A—5)"teB(X) and (A- SN~ € B(Y).
(3) For A # 10,
A -8 € ®(D(5),X), and

A-Sed(Ad) {,\ - St e $(D(S1),Y), and
ind(A — §) = —ind(X — 5).

(4) For A#0,

A— 8 e d%D(9),X), and
A St e e(D(ST), ¥).
(3) For A#£ 0, if A\ — 5 € B(A), then

() N\ - §) = R(A = 1)

(b) N\~ §)L = R(A— 81,

() NA — §1) = RO - 8)5

(&) M\ - STYE = RO = )

{e) nul(A — §) = def(A — §T);

(£) nul(A — S1) = def(A — 5).

P roof. To prove (1) it suffices to show that (§T)=! = T'. Forz € D(5)
and y € Y, (Sz,Tly) = (TSz,y) = (v,y). This shows TTy € D(S7) and
5H(Tty) = y. To show Tt = (§%)~1, it remains to verify that St is one-to-
one on D(S'). Suppose y € D(S1) with Sty = 0. Then for all z € D(S),
0 = {z,5Ty) = (Sz,y) = y = 0. This proves (1).

To prove (2), first assume A # 0 and (A — §)™! € A. Then certainly
(A= §)"1 € B(X), and applying (1), (A - SH)~? = ((A - §)"1) € B(Y).
Conversely, assume (A — §)™' € B(X) and (A - 81"t € B(Y). If z € X,
y € ¥, then Ju € D(S),v € D(S1) such that z = (A~Fuand y = (A—-5T)o.
Then

(A= 8) 1z, y) = (u,(A— ST} = (A = S)u, v) = (z, (A~ §1) 7 y).
Thus (A= §)~* € Aand (A= 5)™)T = (A - S, :

A-Sed'W) & {
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By Theorem 6 we have for A # 0, setting g = A7, A - § € #(A) &
p—T € $(A). By [2, Theorem 2.5],
p—T e $(X), and
6) u—T e d(A) & { p—TTe H(Y), and
ind(p — T) = —~ind(p — T1).
Also we have

(1) (p—=T)8 = -A"(A—8§)on D(5),and (g~ T8t = A1 (A - §1
on D(S?).

Assume (6) holds. Now § € #°(D(S5), X), so by (7), A— 8§ € #(D(5), X)
and ind(A — §) = ind(x — T') [15, Theorem 1.3, p. 163]. Similarly, A — 57 €
$(D(S1,Y) and ind(A — §1) = ind(p — T1). Thus, using (6), ind(A - §) =
~ind(X — §T). This proves (3).

Part (4) is an immediate consequence of (3).

Now we prove (5). Since A # 0 and A — § € #(A), we have, as shown
in the proof of (3), that for u = A™Y, u — T € &(X), p— Tt € $(Y), and
ind(g—T) = —ind(p~T7). Tt follows from [11, Theorem 5.16, p. 111] that:

(i) M(p = T) = R(u— TH*;

(i) M(u —TT) = R{p ~ T)*;

(iii) nul(p — T') = def(u — T);

(iv) nul(p = TT) = def(pu — T).

Let {z1,...,2zn} be a basis for A(p — T). By [12, Lemma 4.3, p. 41]
Hu1, -, ¥n} C Y such that (zg,y;) = 6, 1< k7 < n. If Ay € C and
)q'y1.+ et An¥n € N(pp — Ty then Ay = Ap = ... = A, = 0. Using (i),
this implies that codim(R(u — THAL) = codim(N(p — T)L) > n. By (iii),
codim(R(p — T1)) = n. Since R(p — TT) C R(p — THLL, it follows that
Rp~T%) = R(p—TH = M(p —T)L. This proves

(v) M = T)* = R — T).

A similar argument shows
(vi) N(p = THE = R(u - T).

Now as shown in Theorem 6, R(A-5) = R{u—-T)N(A-9) = TN (u—T),
R(A~ 51 = R{u—T"1), and N (A~ §1) = TTA (- T*). Therefore (i}~(vi)
imply that (a)-(f) hold.

Let § be an operator affiliated with A(X,Y), and assume D(5) is
Y-total in X. In this situation the operator St can be defined, although §
may have no adjoint on X' in the usual sense. One advantage gained from
the existence of ST is that equations determined by § have corresponding

related adjoint equations, For example, we note the following application of
Theorem 14,
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COROLLARY 15. Let § be as in Theorem 14, and assume that A — 5 is
A-Fredholm. Consider the equations:

(h) (A-8)z=0; (8 (A=-5r=yz
Y (A-Shy=0 (g (A-Shy=w

The solution spaces of (h) and (h') are the finite-dimensional spaces
N{A = 8) and N (X — S1) respectively. For z € X, equation (g) has a solu-
tion ezactly when z € N(A— S+, Forw € Y, equation (g1) has a solution
exactly when w € N{(X — 5)L. Furthermore, when A — § € #°(A), then
the dimensions of the solution spaces of (h) and (h') are the same and the
codimensions of R(A — §) and R(A — §1) are the same.

The Fredholm of index zero case is of special interest. We summarize
the results from the general theory, Theorem 8, for a Jorgens algebra.

THEOREM 16. Assume S is a closed operator with D(§) Y-tofal and
Sl =TeAd=A(X,Y).

(1) For A # 0, the following are equivalent.
(i) A— 8 € 8°(A).
(i) 3G € F such that (A—5+pG) ™" € B(X) and (A=ST—pGH)~1 e
B(Y) for all p #£ 0.
(i) 3K € K 4 such that (A~S+K)™" € B(X) and (A—-St+ KN e
B(Y).
(2) WalS)=N{ou(S+K): K € Ka}.

When S has an inverse §~' = T € A, then any special spectral prop-
erties that 7' might have relative to A have consequences for 5. The next
proposition illustrates this.

PROPOSITION 17. Assume S is a closed operator in X, D(S) is Y-total,
and S is affiliated with A(X,Y). If o(S) and o(8T) are both countable, then
o(8) = a(Sh. '

Proof. Assume §™' = T € A. By Theorem 14(2), 0 4(8) = o(5) U
o(5T), which is countable. By Theorem 2(2), o4(§) = {27! : A € au(T)
{0}}, so g 4(T) is countable. Consider the two maps ¢ : A — B(X) and
% A — B(Y) defined by @(R) = R and 9(R) = R for R € A. Applying
(4, Theorem 4.5), any isolated point of ¢.4(T) is in o((T)) and a((T)).
Since o 4(T) is countable, the isolated points in o.4(T) form a dense subset,
s0 a4(T} C o(p(T)) and cu(T) C o(¥(T)). The opposite inclusions always
hold, so o A(T) = o(T) = o(TT). From this it follows that o(5) = o(ST).

Now we prove a proposition which we use in what follows. This result is
of independent interest; it adds to the information given in [3, Theorem 4].
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ProrosiTioN 18. Assume Y is a Banach space and X is a closed sub-
space of Y. Let W € B(Y), and suppose W(Y) C X. Denote by Wy the
restriction of W to X, so Wy € B(X).

(DRI -Wy)=R(I~W)NnX.
(2) R(I — Wo) is closed in X & R(I~ W) is closed in Y.

Proof. Clearly, R(I-Wy) C R(I-W)NX. K (J-W)g = fand f € X,
then as W(g) € X, we have g € X. Therefore R(I - W)N X C R(I — Wy).

To prove (2), first note that if R(I — W) is closed, then (1) implies
R(I — Wy) is closed. Conversely, assume R(I — Wp) is closed. Let N =
N(I —~ W), and note that N = A’(I — W). Define V; and V by

Vi(Y/N)=Y, V(y+N)=y+W(),
Vo: (X/N)= X, Vo(z+N)=z+ Wy(x).

If R(I ~ W) = R(V) is not closed, then for every n, Jy, such that
IV(yn + N)|| < 2" Y|y, + N||. Therefore I{z,} C V¥, ||z, + N|| = 1, with
[[2n + W(za)ll = {[V(2a + N)|| = 0. Setting v, = ~W(z,), we have
{vn} € X and ||z, — vy)| - 0. Now [|(2 + N) — (vn + N)|| ~ 0, so
we may assume ||vn, + N|| =1, n > 1. Also,

IVo(vntN)I| = [[on—Wo(en)|| < I(vn =20 )+ W (vn =20 )[|+] |20+ W (2] | — 0.

This contradicts the fact that Im > 0 such that ||Vp(v + M = m|jv+ N]|
forall v € X.

When § is closed and densely defined in X and has a densely defined
adjoint 5’ in X', then S and S’ share many properties. For example: o(5) =
o(5"), w(8) = w(8"), and R(S) is closed if and only if R(S5") is closed. In the
general situation relative to a dual system, the spectral theory of § and St
can be almost completely unrelated. In particular, any of the relationships
listed above may fail when 51 is substituted in place of &',

Next we consider an interesting special case where the spectral and Fred-
holm properties of § and ST are related in the same strong ways as those of §
and S’. Let £2 be a locally compact Hausdorff space which is o-compact and
let i be a positive regular Borel measure on 2. Denote by BC = BC(2) the
Banach space of all bounded continuous complex-valued functions on £2. Set
L' = I}, p) and [* = L(2, ;). Assume that  satisfies the condition:
If U is a nonempty open set, then s( U) > 0. This condition implies that if
J € BC and f =0 p-ae. on 12, then f=0on 2. Thus the embedding of

BC into L is one-to-one. Now (BC, L!) is a dual system with the natoral
form

(fiy= [fgdp (feBC,gelLl).
ﬂ.

.
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We consider operators affiliated with A(BC, L) which have a special,
but common, property. Assume S is a closed operator in BC with D(S)
L'-total in BC and also that:

(a) D(S1) is dense in L'; and

(b) §71 =T € A(BC, L') and (T1)(L>) C BC.

THEOREM 19. Let § and T be as above, so in particular (a) and (b) hold.

(1) o(§) = o(51) = 0.4(5).

(2) W(5) = W(ST) = Wa(5).

(3) w(8) = w(5T) = wa($).

(4) R(A -~ §) is closed in BC & R(X — S1) is closed in L.

(5) A~ S e H(D(S5),X) & A-Ste &(D(SN,Y), and in this case,
(a) N(A— 53 = R(A - §1); and
DYNA-SDHL =R(A-5).

Proof. First we note two key facts:

(A) The spectral and Fredholm properties of T on L and (T1Y on L
are related in ways well known in standard operator theory; a reference is
[11, Corollary 3, p. 91], for example.

(B) The spectral and Fredholm properties of T and (1)’ are identical.
This follows from assumption (b) and [3, Theorem 4].

Parts (1), (2), (3), and (5) of the theorem follow by combining (A), (B)
with the statement and proof of Theorem 14.

To see (4), first apply Proposition 18 with ¥ = L™, X = BC, W =
A(T1Y, and Wy = AT, A # 0. Thus, for g = A=Y, R — (T1)') is closed if
and only if (g — T') is closed. Now apply the theorem that R(u — T1) is
closed if and only if R{(p — (T'1)') is closed [9, Theorem IV.1.2, p. 95]. This
yields the conclusion:

R(p—T)is closed & R(p~TT)is closed.

Finally, as noted before, R(A—§) = R(u—7T) and R(A - ST) = R(pu—-T1),
so this proves (4).

Let § be a closed differential operatorin BC = BC{f2) having an inverse
T" which is an integral operator on BC. Very often T" will have a natural
extension T on L°(£2) (given by the same kernel that determines 7°) with
the property T(L*°) C BC. In this situation it is usual that properties (a)
and (b) are satisfied, so that Theorem 19 holds.

4. Operators affiliated with B, ,. Let B, ; be the algebra of operators
introduced in Example I of the Introduction. The theory of spectral and
Fredholm properties of an operator in B, , relative to the algebra B, , is
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developed in [4], so this information can be used to study properties of an
operator § in LP N L? with 7! € B, ,. This study is the object of this
section. We need some basic facts concerning minimal closed extensions.

ProPosITION 20, Assume Y is a Banach space and X is a dense subspace
of Y which is ¢ Benach space continuously embedded in Y, Assume 5 is
a closed operator in X with S~ = T € B(X)} and that T has a bounded
egtension T € B(Y).

(1) § has a minimal closed extension § inY if and only if N(T') = {0}.
(2) When N(T) = {0}, then (S)1 =T

Proof. First assume A(T) = {0}. Suppose {z,} C D(8), ||zn|ly — 0
and [[S(z) — ylly — 0. Then ||zn = T()lly = IT(S20 ~ Blly — 0, s0
T(y) = 0. Therefore y = 0, so S has a minimal closure in Y.

Conversely, assume y € A(T), y # 0. Choose {y,} C X such that y, —
yin Y. Then 3{z,} C D(S) with Sz, = yn, and {|z.lly = H-T"S(xn)ﬂy =

IT(S(ﬂ’n) - lly — 0 and ||S%y — ylly — 0. This proves that § is not
closable in Y.

Now assume NM(T) = {0} so § exists in Y. Let y € Y be arbitrary.
Choose {2} C X with ¢, — y in Y, so |[Tz, - Ty|ly — 0 and |[ST(z,) -
Yy = ||zn —¥l|ly = 0,50 Ty € D(S) and §Ty = y. Finally, assume
y € D(5). Then 3{z,} C D(S) with z,, > y in ¥ and S(z,) — S(y) in Y.
Therefore &, = TS(zy,) = T(Sz,) = TSy in Y, s0 TSy = v.

COROLLARY 21. Assume § is a closed operator in LPNL* and (A~ 8)~! =
R € B, ;. If for some » € {p,s], S has @ minimal closure S, in L', then
(A= 8:)"1 = R,. Also, S, ezists exactly when N(R,) = {0}.

Throughout this section 5 is an operator in L* N L*. When for some
7 € [p,s}, § has a minimal closed extemsion in L, then this extension is
denoted by §,. Assuming §~' = T € B, ,, the next corollary notes the
basic relationship between the operators §, and T..

CoroLLARY 22. Let § be closed in LPNL* and S™' = T' € B, ,. Assume
Sy exists for some r € [p, s].

(1) For A # 0, (A~ §,)T, = —A(A=1 = T... -

(2) R(A = 8,) = R = T,) and TN — T,) = N(A~ 5,). In
particular, dim(N' (X — §,)) = dim(NM (XA~ = T,)).

Proof. The key fact here is that 5! = T, by Corollary 21. Thus, for

AA0 (A= .S',)Tf = AT —I= w\(,\ ~1 —T,). Part (2) follows immediately
from (1) and $71

Next we look at conditions which imply that § is affiliated with Bp,s

icm
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THEOREM 23. Let § be a closed operator in LP 11 L® such that S has
minimal closures S, on L* and S, on L°. § is affiliated with B, , if and
only if for some A€ C, A~ 8, A— 8y, and X~ S, have bounded inverses on
LPFIL" L?, and L?, respectively. In this case, setting R = (A — §)~1, then

R, = (A S,,)‘ and R, = (A — §,)~1.

Proof. First assume § is affillated with B, .. By definition 3 such
that (A~ )" € B,,. Set R = (A - S) ~1, It follows from Corollary 21 that
Rp=(A—5,)"" and R, = (A — §,)-L.
Conversely, assume R = (A~ 5§)"1, V = (A-8§,)"!,and W = (A - §,)?
all exist for some A. For f € LP N L%, R(f) € D(§) and f = (A = S)Rf =
(A= Sp)Rf = (A— S,)Rf. Thus, Rf =V f = W . This implies R € By -

The algebra B, , satisfies conditon (#) in Section 2. To see this let g be
the conjugate index of p and let £ be the conjugate index of s. If X = LPNL*
and ¥ = LI L*, then the operators

{g®f:f€X’ QEY}QB;:.M
where ¢ ® f acts on L N L* in the usual way:

(f®g)(h)= (fhfd,u)y (he LPNL*).
2

We use the notation _
Fps = {F € By, : R(F) is finite-dimensional in L7 N L*}.

Also, let Ky , be the closed inessential ideal consisting of all T’ € B, , such
that T, is compact on L7 for all » € [p,s]. These are the ideals in B, ,
relative to which Fredholm theory in B, ; is developed.

The next theorem describes the basic B, ,-spectral theory and B8, .-
Fredholm theory for a closed operator in LP N L*. Concerning the Fredholm
part, of the theory, it is assumed that p £ I or s # 00 . Fredholm theory can
be developed relative to By o, but we omit this case here to avoid technical
complications.

When the measure space is finite, then all of the conditions stated in
Theorem 24 simplify since LF N L® = L. In this case parts (2) and (3) of
the theorem also hold for p = 1 and s = cc.

THrOoREM 24. Let S be a closed operator in L? N L* such that ,‘5'1D and S,
exist. Assurme S~1 =T € B=B,,. ForA#0:

(A= 8)"! € B(L?), and

(1) A€ es(S) & { (A= 8,)71 € B(L?), and
(A= 5)"1e B(IPn L*).
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(2) Assume either p# 1 or s # 00. Then
A— 8§, € &(D(5,),L7), and
A= S5, € 8(D(5,), L"), and
x-S e &(D(5), L* N L*), und
ind(A— 5,) = md(A — S,) = ind(X — ).
(3) Assume either p# 1 or s # 0. Then
A= S, € °(D(S,), LF), and
A-Sed'B) & { A8, c#(D(5,), L"), and
A~ 8 € e%(D(S), LPn L*).

A-SedB) &

Proof. By Theorem 2
(i) A€ 08(8) & AL e os(D).
Also, by the characterization of spectrum in B, 4, [4, Theorem 5.1], we have
(- Tp)"* € B(17), and
(i) n€es(T) & { (u—Ts)"" €B(L%), and
(w—TYeB(IPn L.
Then (1) follows from (i), (ii), and Corollary 21.
The proof of (2) proceeds along similar lines. First by Theorem 6
(i) A-Sed(B) & A\1-Te ¢B).
From [4, Theorem 5.6] we have
g~ Tp € B(LP), and
p—Ts € (L%, and
u~T €S(LP N L), and
ind(p —Tp) = ind(p — T) = ind(p — 1.
Set §=5,, T =1T,, and L? = [P N L*. We have the additional fact from
Corollary 22 that _
(v) RA-S)=RA-T.), dmN(A-S5,))=dmNA1-T,))
. (T =0,p, 3) .
It follows from the defining properties of a Fredholm operator [15, p. 162]
that A — 8. € &(D(S,), L") if and only if A=' - T}, ¢ @(L7), and in this
case, ind(A — §,) = ind(A~! — T}), r = o,p,s. Therefore (2) follows from
this argument and (iv).
Part (3) is a consequence of (2).

(iv) p-Te&B) &

There is an elementary condition on a closed operator S in LP N L which
assures that S, exists for all r € [p, s]. In order to prove that this condition
suffices, we nieed some basic properties of an operator T € B, ,. We state
these in the following note.
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NOTE. Assume T ¢ By, and fiz r € [p, 5.

, (S) Ffelrnlr, ihen Tp(f) = T.(f). If f € I" 0 L?, then To(f) =
(2Q)IffeL, then f= fi+ f, where f; € LP 1 L and fo € L™ N LS.
Also, To(f) = To( f1) + Tu( o).

Proof. Assume f € IPNL". We may assume f > 0. Choose a sequence
of simple functions {s,} with 0 < $p < [ and s, T f pointwise on 2. Since
[$n — fI" < 27| f]" and [s, — fIP < 27|f]7, it follows from the Dominated
Convergence Theorem that [|s,, — f||, — 0 and llsn — fll, — 0. Now
{sn} € LP N L™, s0 Tp(s,) = T:(sn) for n > 1. Therefore T,(f) = T,.(7).
The proof of the second statement in (1) is the same.

To prove (2) assume f € L" and set E = {z € 2:|f(z)] < 1}. Letting
Xe and xp. denote the characteristic functions of F and the complement
of £, we have fo = fxg € L°n L, fi= fxge € INL", and f = f3 + fo.
Also, Tr(f) =Tu(fi)+ To(f2) by (1).

THEOREM 25. Assume § is a closed operator in L*nL*, S, and S, exist,
and 5 is affiliated with B, ,. In eddition assume D(5,) N D(8,) = D(S5).
Then for all r & {p, s}, 8, exists. :

Proof. Fixr, p < r < 5. We may assume §~! = T ¢ B,.. By
Corallary 21 it suffices to show that A'(T}) = {0}. Suppose f € N(T:). As
noted above, f = f1 + f, where f; € L™ N L” and fo € L™ N L*. Therefore
0=T-{f)=T(A)+ T(fo) = Tp(f1) + Ts(f2). By Corollary 21, S;l=1T,
and §71 = T,. Therefore Tp(~f) = T.(f2) € D(S,) N D(S,) = D(8) (by
assumption). Therefore 3g € L? N L*® such that T(g) = Tp(~f1) = Ts(f2).
Th(;m g= S(Tg) = Spr(_fl) =-f = SsTs(f2) = fa Thus, f = fi + f2

- When the measure p is finite, then Z*N L? = L*. Thus § = §, and Sy is
an extension of §,. Therefore D(8,) N D(Sp) = D(S) automatically in this
case. Similarly, when (42, 1} is special discrete (se¢ [4]) it will always follow
that D(S,) N D(5,) = D(8).

One of the main objects of studying the spectral and Fredholm theory
of a closed operator § relative to By, is that by using this tool, properties
that §, S,, and S, have in common can often be “interpolated” to S, for
all 7 € [p,s]. The next two results are applications of this type. Again, the
situation for the finite measure case is much simpler.

THEOREM 26. Assume S is a closed operator in LP N L* and S, and 8,
evist. Assume D(Sp) N D(8s) = D(S), and 571 =T € B, ,. Set S, = §
and L° = LP N L*. For A # 0:
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(1) Consider the property
(A) (A—5.)"1e B(L").
If (A) holds for r = p, s, 0, then (A) holds for all r € [p, s].
In (2) and (3) assume p# 1 or s # oco.
(2) Consider the properiies
(B) A— S, € ®(D{5,), L") and ind(A-S,)=ind(A-9).

If (B) holds for v = p, 3,0, then (B) holds for oll r € [p, s].
(38) Consider the property

(€) A= 5 € D(8,), L.
If (C) holds for r = p, 3,0, then (C) holds for all r € [p, s].

Proof. First note that by Theorem 25, 5, exists for all r € [p, s].

Given that (A—S,)"! € B(L") for r = o, p, s, it follows from Theorem 24
that A € pu(5). Set R = (A~ 5)™! € B,,. Then by Corollary 21, for all
r € [p,s], (A~ S;)"' € R, € B(L"). This proves {1).

Now assume A — S, € $(D(.5,), L") and ind(A~ §,) = ind(A - S) for r =
0,p, 8. Then Theorem 24 shows that A — .§ € #(18), and also, by Theorem 6,
A~ —T € &(B). Therefore (4, Theorem 3.3] implies that A~1 — T, € ¢(L")
and ind(A~! — 7}) = ind(A= = T) for all » € [p,s]. Furthermore, by
Corollary 22, we have R(A — 5,) = R(A™! —T}) and dim(NMN (A — §,)) =
dim(A (A~ — 7)) for all r € [p,s]. Therefore A — S, € #(D(S,), L") and
ind(A— 5;) = ind(A - §) for all r € [p, s].

Part (3) is a direct consequence of (2).

THEOREM 27. Assume all the hypotheses of Theorem 26. Assume A # 0
and p# 1 or s # oo,

(1) IF A~ 5, € #°(D(5,), L") for r = o,p, s, then AK € K, , such that
(A= Sr+ K, )" € B(L") for allr € [p,s] and (A~ S+ K)~! € B(LPn L*).
(2) Wa(5) = N{os(S + K) : K € K,.0).

Proof. The assumptions in (1) imply that A — § € #°(8) by The-
orem 24(3). By Theorem 8, 3K € K, , such that (A — § + K)~! € B.
Therefore the conclusions in (1) follow from Corollary 21.

Part (2) is immediate from Theorem 10(4).

The final result in this section is another application of spectral theory
relative to B, ,. Again, assuming §~! € B, ,, certain spectral properties
of §~1 force corresponding properties of 5. The result below is not the
most general possible, but it has the virtue of being both elementary and
interesting.
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PROPOSITION 28. Assume S is closed in LP N L*, 8, and S, exist, and
S-l=T1 € Bp’,.

(1) Assume the underlying measure space has finite measure. For all
7€ [p, 9]
a(Sr) € a(Sp) U a(S,).
(2) If 0(8,) and o(5,) are countable, then 0(S,) = o(S,) for allr € [p, s]
such that §, exists.

Proof. The statements in (1) and (2) hold for T, by [4, Theorem 5.1
and Corollary 5.2} Since o(S,) = {A=' : A # 0, A € o(T})} whenever S,
exists (Corollary 22), then (1) and (2) hold for S,..

5. Semigroups affiliated with an algebra of operators. Let B C
B(X) be a Banach algebra of operators, and let C be a subset of B. A
semigroup of operators on X, {E(t)}ixo, is affiliated with C if {E(t)} C C.
In the first part of this section we develop a theory of semigroups affiliated
with certain subsets C and the corresponding infinitesimal generators. We
make no attempt at full generality; we deal only with the most basic aspects
of the theory. Most of this theory is a straightforward modification of what
happens in the situation where C = B(X). In fact, we directly use and
modify the arguments in Chapter X of M. Schechter’s book [15]. Later in
this section applications are given in the cases when B is a Jorgens algebra
and when B = B, ,.

The strong convergence of certain sequences of operators on X is an
important ingredient in the development of classical semigroup theory. Thus
it is no surprise that C must satisfy a closure property with respect to strong
convergence. We deal with this property first.

DEFINITION 29. A subset C C B has the strong convergence property,
denoted by SCP, if {T,} CC, ||Tulls £ M for n > 1, and Tpz — Tz for all
z &€ X, implies that T € € and ||[T||s < M. :

Both B, , and ,A(X,Y) satisfy the SCP on the relevant Banach space.
It is straightforward to verify this for B, ,.
Provosition 30. By , satisfies the SCP on LP N L°.
Proof. The complete norm on LP N L¥ is
1 fllp,s = max(|| fllp, }lflls} (f € LPNL%),

Assume {T,} € B = B,,, T € B(L? N L*), ||Ty|ls < M for n > 1, and
| Tn(f) - T(f)|]p,s — 0 for all f € L? N L*. Then for each f € L N L*,

M|Ifllp 2 {1 Tnflls = 1T fll, and M|Flls 2 [[Taflls = HTF]Ls-
Therefore T € B and ||T||s < M.
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The situation with respect to the SCP property is more complicated in
case of the Jorgens algebra. Before going further, we need to be precise
concerning the properties the set C must satisfy. One necessary property
is the SCP discussed above. We also need that C is closed under certain
algebraic operations.

DEFINITION 31. Let B be a Banach algebra with unit 1. A subset C cB
is a power closed cone (p.c.c.) if:
(iy1ec;
() T,ReCanda>0,b>0 = aT +bR€C; and
(L)TeC,n>1 = TheC.

Note that if C is a p.c.c. in B and C is closed in B, then when T € C,
{ar}rzo C [0,00), and 3332 axT* converges in B, then the sum of this
series is in C. In particular, T € C = &7 = exp(T) € C.

Let A = A(X,Y) be the Jorgens algebra relative to the dual system
(X,Y). Let X ¢ Y be the direct sum of X and ¥ with norm [lz & yl| =
max(|{z], |ly||) where z € X, y € Y. Define a mapping ' — T of A into
B(X@Y)by T =T @ Tt where TO&TYWz@y) =Tz @Tly. Tt is easy to
check that 7' — T is a linear isometry with the property that (T™) "= (f)“
for n > 1.

PROPOSITION 32, Assume the setling above. Then A CBXoY)isa
closed p.e.c. and satisfies the SCPon X @ Y.

Proof. Assume {T,.} C A with T, — S in the strong operator topology
in B(X®Y). It follows that for all z € X and all y €Y, {T(z)} is Cauchy
and {T}(y)} is Cauchy. Define T € B(X) and R € B(Y) by

T(2)= lm Tn(z), R(y)= lim Ti(y).
- Therefore for 2 € X,y €Y,
(sz y) = lim(Tn.’E, y) = hm(x,T,Iy) = (zi Ry)-

~ Thus, R =Tt, and it follows that 7@ 77 = S. Finally, by the construction
it follows that if ||T,|| = max(||T.||, || TH]) < M for n > 1, then ||T|| < M.
That A is a p.c.c. is easily verified.

The next two results form the basis for a theory of semigroups of oper-
ators affiliated with a closed p.c.c.

THEOREM 33. Let B C B(X) be a Banach algebra of operators, Assume
C C B is a closed p.c.c. in B with the SCP relative to X. Let § be an
operator in X, and assume Ja > 0 such that Jor A > 0:

(1} (A= 9"1eC:and

(2) (A= $) M8 < (a+ M)
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Let {E(t)} be the semigroup of operators in B(X) associated with S. Then
{E()} S C ond [|E(t)]]s < e, 1 > 0.

Proof. We modify and use the proof of [15, Theorem 3.1, p. 229]. For
A > 0 set
Th=AS(A-85)1=_)4 NA=-5.
For t > 0, by (1)
exp(tT)) = exp(—tA) exp(tA*(A - Sy N ec.
Also, using (2),

lexp(tT3)||5 < exp(~tA) exp(tA?[|(A = §)~1|1)
< exp(—tA) exp(tA(a + X)) = exp(—~tia(a + A)71).
By the proof of [15, Theorem 3.1, p. 229], exp(tTh)z — E(t)c forall z € X

and all ¢ > 0. By assumption C has the SCP, so E(t) € C and ||E(2)||s <
e~ for ¢ > 0.

Next we prove a converse by modifying the proof in [15, Theorem 4.2,
p. 238). '

THEOREM 34. Let B C B(X) be a Banackh algebra of operators. Assume
that C C B is a closed p.c.c. in B with the SCP relative 10 X. Let {E(t)} be
& family in C having the properties:

(a) E(s)B(t) = B(s + 1), 5> 0, 1 > 0

(b) BO)=1;

(c) 3a 2 0 such that ||E(t)||s < e~ for t > 0;

(d) E(t)z is continuous on [0,00) for each z € X.

Then E(t) has an infinitesimal generator W affiliated with C, (A-w)
€C for all A > 0, and ||(A~ W)=Y |g < (a+ X))~ for all A > 0.

Proof. Weessentially follow the proof of [15, Theorem 4.2, p. 238], mod-
ifying the arguments when necessary. For s > 0, let W(s) = s"HE(s)-I) €
B. As shown in {15, p. 237] the infinitesimal generator of {E ()} has domain
D(W) = {z € X :lim, o+ W(s)z exists} and Wz = lim,_q¢ W(s)x for
x € D(W). For A >0, s >0,

A= W(s) = 57 (As = B(s) + I) = [s~ (As + L)][I = (B(s)(As + 1)~1].

Using (c), we have [| E(s)(As + 1)7!||5 < 1. Therefore [[ -~ E(s)(As+1)~Y]
is invertible in B and is given by the series : :
1~ Bs)s+ )7 =Y (e + 1)*E(s)t e C,

k=0
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and

1 = B(s)hs+ 1)l < 3" (s + 1)H(e)*
k=0

_ 1 _ ( As+1

Ti-eer(As+ 1)1 T \dstl—emar )’
Therefore for s > 0, A > 0, A — W(s) is invertible in B, (A - W(s))™! € C,
and

B 4 s As+1 _ s < 31
1= e < (557) (5ot = s <7

Now we follow the argument of Schechter [15, pp. 239-240] (with W(s) in
place of A(s) and W in place of A). Near the bottom of p. 239 there is the
conclusion that for all y € D(W), [|(A — W)X —-W(s)) 'y —y|| — 0 as
s — 0%, Also, as shown in the proof, (A — W)~! € B(X). Therefore for all
¥ € DW), ||(A-W(s)) ly~(A-W) 1yl = 0 as s — 0F. It follows from
[15, Lemma 3.2, p. 230] that lim,_o+(A — W(s)) 'z = (A — W)z for all
z € X. Therefore since C has the SCP, (A~ W)~ £ C, and also,

5

. A— e < 1 P -1
1= W)l < i, (5 ) = O 0™

Now we apply Theorem 33 to the case of a Jérgens algebra, A(X,Y).
The result gives a condition under which an operator S is an infinitesimal

generator of a semigroup of operators {E(t)}, and at the same time, §T is
the infinitesimal generator of { E(t)}. :

THEOREM 35. Let C C A(X,Y) be such that { = {T @ Tt : T € C}
is a closed p.c.c. in B(X ®Y) with the SCPon X ®Y. Assume § is ¢
closed densely defined operator in X with 51 densely defined in Y. Suppose
da > 0 such that (A— S}~ €C and |[(A = 5) |4 £ (a+ X! for X > 0.
Then I{E(t)} C C with {E(t)} a strongly continuous semigroup on X with
infinitesimal generator S, and {E(t)'} is a strongly continuous semigroup
on Y with infinitesimal generator §7.

Proof, Set D(5) = D(5)® D(51) in X @Y, and define
Sz@y)=5z08y (z@ye D).
By Theorem 14(1) for all A > 0, ((A — 8)~1)f = (A — §1)~1, Therefore
for A > 0, (A= 8)")7"= (A=8)""@ (M~ N1, and by hypothesis,
(A~ )"l € (a+A)"L. By Theorem 33, 3{F(t}} a strongly continuous
semigroup on X @ Y with infinitesimal generator § = § @ ST such that
{F{1)} C C. By definition of C, F(t) has the form F(t) = E(t) @ E(t}!

(t = 0) where {E(t)} C C. The conclusions of the theorem now follow
easily.
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By Proposition 32, Theorem 35 applies in the case where C = A(X,Y).
The next example describes another situation where Theorem 35 applies.

EXAMPLE 36. Let X and ¥ be Banach lattices which are also a dual
system (X,Y). Let C = {T" € A(X,Y) : T and T are positive }. For
information on Banach lattices and positive operators see [14], especially
pp. 233-246. It is easy to verify that C is a closed p.c.c. in B(X @ Y).
Assume § is a closed densely defined operator with the properties:

(1) 5t is densely defined in Y;
(2) (A—-8)"1eC, A>0;and
(3) da > 0 such that [|[(A= 5)"[ia < (a+ A}, A>0.

By Theorem 35, the strongly continuous semigroup {E(t)} on X associ-
ated with § is in C and {E(¢)!} has infinitesimal generator S1.

Next we consider an important topic, the adjoint semigroup. The theory
of the adjoint semigroup is part of the standard theory of semigroups of
operators. The treatment we give here is close to that in [10, pp. 422-426].
Another approach to the adjoint semigroup can be found in {14, pp. 16-18}.

Before proving the main theorem on adjoint semigroups, we need a pre-
liminary result. Assume that S is a closed densely defined operator in X
and 3{),} € C with }X,] — oo such that (A, — §)™? € B(X) for n > 1
and [|(An = 8)7Y|] = 0 as » — oco. Let S’ be the usual adjoint operator
in X’. Consider the case where D(5') is not dense in X'. Set Y = D(S’).
Now (X,Y) is a dual system with the obvious bilinear form: (z,%) = y(2),
z € X,y €Y. The fact that this form is nondegenerate follows from the
property that D(S') is X-total {15, Theorem 4.1, p. 177]. Form 5t for the

dual system (X,Y).

ProprosITION 37. (1) §1 is densely defined on Y,
() If (A~ 85)"1 € B(X), then (A — S§H=1 € B(Y) and ||(A — ST <
(A= 57

Proof. First assume (A —§)1 € B(X). Fora€ X', §'A-8§)'a =
MA = §~ta— a. Since (A~ §')"'a € D(§') for all o, it follows that

(3) §(A -5y e D8] (ve D).

o D(S), y € ¥ = (5, then (5z,(A = SN™p) = {a,5'(A =
§)y) = (z,z) for some z € Y by (3). Therefore if (A — 5)™" € B(X),
then w = (A — §)~'y € D(ST) for all y € ¥ and Stw = S'w. Therefore
(A — §1)~1 exists and (A — §1) 'y = (A= §")'y for y € Y. Furthermore,
1A= 811 < 1|(A = 8")7[, and this proves (2).
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To prove (1), let y € D(S’). Then
Anldn = 89y ~ull = [[(An = 5V (An = 5y + (n = )1 5"y — 4|
=||(An =85)715'Y)] -0 asn— 0.

Since (A, — §")~ly € D(5%) as shown above, this proves y € D(S1). There-
fore D(S") € D(S51), and so ¥ = D(S1).

The following theorem is the basic result concerning the adjoint semi-
group. It is an easy consequence of Proposition 37 and Theorem 35.

THEOREM 38. Let §' be closed and densely defined in X. Assume Ja > 0
such that

(-5 TeBX) and [J(A-S) U< (@t AT, A>0.

Set Y = D(5") and A = A(X,Y) (as above). Then (A —8)"1 € A and
I[(A—=8)7tl4 < (@+ A)™* for A > 0. The adjoint ST is densely defined in
Y and o(8) = o(SY). If{E(2)} is the semigroup in B(X) associated with §,
then {E(t)} C A and {E(2)"} is a strongly continuous semigroup on Y with
infinitesimal generator St.

Now we give our final application of Theorem 33. In this case the setting
is the algebra By ;. The aim s to provide a condition which implies that
a semigroup {E(#)} C B, has the property that {E(t),} is a strongly
continuous semigroup on L” for all r € [p, s]. Some related results are given
in [13, §4] and [14, pp. 335-336).

Recall the notation

llgllp,s = max(ilglly, llglls) (g€ ZP A L*).

TaBOREM 39. Let C be a closed p.c.c. in By ,. Assume S is a closed
densely defined operator on LP N L* such that Ja > 0 such that Jor A >0,

D (x=95)1el; and

2 A= 8)"ls < (a+ 2. _

Let {E(t)} be the strongly continuous semigroup on LP N L* with infinitesi-
mal generator §. Then :

(a) {B(1)} CC.

(B) IE@)|s < e7*, ¢ > 0.

(¢) Forr € [p, 5], {E(t),} is a strongly continuous semigroup on L7,

(d) For r € [p,s], S has a minimal closure 8, on L™ and S, is the
infinitesimal generator of {E(t),}.

Proof. Parts (a) and (b) follow immediately from Theorem 33.

Now Cj:msider the semigroup {£(t),} on L7, We know that for all f €
LPn L lime o+ |E(t)f ~ £llp,s = 0. Since ||g[|» < ||g]|,.. for g € L7 N L,
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it follows that
Jim B ()ef - fll, = 0

for all f € LPN L*. Let g€ L™ and € > 0. Choose f € L? N L® such that
llg — fll- < &. Then

IE()eg = gll» S HE@-f = flle + 11 E@rlg = Nll- + 1S — gll-
S NE@rf ~ flle+2¢.
Therefore
t]i%l+ 1E(f)rg - gl|» = 0.
Now let W, be the infinitesimal generator of E(t), on L7. Let f € D(S),

50
E@)f - f _
t—0+ t B S(f) P8 =0
by definition [15, p. 236]. Therefore
. VEMf -] -
i [ - s =o.

and this implies f € D(W,) and W,(f) = §(f). This proves W, is an
extension of § on L. Tt follows that §, exists. Now by (1) and Corollary 21,
{A = 5;)71 exists for all A > 0. Therefore for A > 0 sufficiently large both
(A= 5:)"" and (A — W,)"! exist. Thus, D(S,) = D(W,.).
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Weighted norm inequalities
on spaces of homogeneous type

by

QIYU SUN (Hangzhou)

Abstract. We give a characterization of the weights (u,1) for which the Hardy-
Littlewood maximal operator is bounded from the Orlicz space Lg(u) to La(w). We
give a characterization of the weight functions w (respectively u) for which there exists
a nontrivial u {respectively w > 0 almost everywhere) such that the Hardy-Littlewood
maximal operator is bounded from the Orlicz space Lg(u) to Ls(w).

1. Preliminaries and main results. The main objective of this paper
is to study weight pairs (u,w) for which the Hardy-Littlewood maximal
operator is bounded from the Orlicz space Lg(n) to Lg(w) in the context
of spaces of homogeneous type. Some work in this direction was done in
[11-[3], [4]-[9], [11]-[15]. With this aim, we introduce some notations.

Let X be a sel. A nonnegative symmetric function d(z,y) defined on
X % X will be called a quasi-distance if there exists an absclute constant D
such that

d(z,y) £ D{d(z,2) + d(z,9))

for every z,%,2 € X, and d(z,y) = 0 if and only if # = y. Let u be
a positive measure defined on a o-algebra of subsets of X which contains
balls B(z,r) = {y;d(z,y} < r}. Now we say that (X,d,u) is a space
of homogeneous type if X is a set endowed with a quam—dlsta.nce d and a
positive measure ¢ such that:

(i) The family {B(z,r);2 € X, r > 0} is a basis of the topology of X;

(ii) There exists a natural number ¥ such that for any = € X and r >0
the ball B(z,r) contains at most N points z; with d&(z;, ;) > 375

(iii) p is a doubling Borel measure, i.e., there exists a constant D such
that 0 < pu(B(z,27)) < Dp(B(z,r)) for all g € X and r > 0.

Hereafter, we shall suppose that the continuous functions with compact
support are dense in LP(X,du) for 1 < P < oo.
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