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Abstract. For a multiplier on a semisimple commutative Banach algebra, the de-
composability in the sense of Folag will be related to certain continuity properties and
growth conditions of its Gelfand transform on the spectrum of the multiplier algebra. If
the multiplier algebra is regular, then all multipliers will be seen to be decomposable. In
general, an important tool will be the hull-kerne} topology on the spectrum of the typi-
cally nonregular multiplier algebra. Our investigation involves varions closed subalgebras
of the multiplier algebra and includes perturbation results of Wiener-Fitt type fox the
invertibility of multipliers. Under suitable topological assumptions on the spectrum of
the given Banach algebra, we shall characterize decomposable multipliers, Riesz multi-
pliers, and multipliers with natural or countable spectrum. Maost of these results are new
even in the case of convolution operators given by measures on a locally compact abelian
group. We shall obtain various classes of measures for which the corresponding convolu-
tion operators are decomposable both on the measure algebra and on the group algebra,
Moreover, the spectral properties of a convolution operator will be related to the behavior
of the Fourier-Stieltjes transform of the underlying measure on the dual group and on the
spectrum of the measure algebra. Finally, it will be shown that the decomposability of
convolution operators behaves nicely with respect to absolute continuity and singularity
of measures.

Introduction. Some rather significant examples of the development of
spectral theory outside the realm of Hilbert space are found among convo-
lution operators on group algebras. Even here it is surprising how spotty
and sketchy progress has been. One early result is due to Akemann [4],
who characterized the compact and also the weakly compact left convolu-
tion operators on the group algebra I;(G) for a compact group G as those
operators for which the corresponding measure is absolutely continuous with
respect to Haar measure on G. For general locally compact abelian groups,
Colojoars and Foiag [10] considered the multiplication operator given by a
fixed element of a regular semisimple commutative Banach algebra, of which
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the group algebra Li(G) for a locally compact abelian group & is an ex-
ample. They showed that any such multiplication operator is decomposahle
in the sense of Foiag [10}, [25]. Their approach is similar to the one of the
present paper in that they approached the specific from the general, using
the theory of regular Banach algebras. They also posed a problem which is
a guiding principle for the present work: to describe all the measures in the
measure algebra M(G) which define decomposable convolution operators.
In 1982, independently, Albrecht [5) and Eschmeier [11] gave some answers,
They showed that, for any nondiscrete locally compact abelian group, there
will always exist a nondecomposable convolution operator. They also proved
that any measure on @ whose continuous part is absolutely continuous with
respect to Haar measure on G will induce a decomposable convolution op-
erator on L1(G). A somewhat stronger result was obtained by the present
authors in [18], but a measure-theoretic characterization of all those mea-
sures for which the corresponding convolution operator is decomposable on
L1{G) or on M(G) is still missing.

Tt turns out that this problem is related to the classical inversion problem
for measures p on G whose Fourier-Stieltjes transform ji on the dual group
T is bounded away from zero. This inversion problem dates back to work
of Beurling [7] and Wiener—Pitt [26] from 1938. In the same vein, let us
also mention the investigation of Zafran [27] on measures p on (i which
have a natural spectrum in the sense that o{u) = JI(J")”. Our results on
decomposable convolution operators in the last section of this paper will
shed some new light on these problems.

Recently, an intrinsic characterization of the decomyposability of multipli-
cation operators on an arbitrary semisimple commutative Banach algebra A
has been given in [19]: decomposability of the operator L, of multiplication
by an element e € A is equivalent to continuity of the Gelfand transform @
in the hull-kernel topology of the spectrum A(A)} (see also [20]). This de-
scription of decomposability has some immediale consequences for perma-
nence; sums, products, and uniform limits of such decomposable elements
will be decomposable. This is the starting point of the present paper. The
hull-kernel description of decomposability allows a unified approach to the
questions that we have alluded te, based in the general theory of semisimple
commutative Banach algebras. Thus the objects of study will often he subal-
gebras and ideals of the algebra A and of its multiplier algebra M(A), rather
than individual elements. Particularly definitive results will be obtained for
two classes of multipliers that satisfy certain growth conditions: the class
My (A) of all multipliers on A whose Gelfand transforms on A(A) vanish at
infinity, and the class Myp(A) of all multipliers on A whose Gelfand trans-
forms on A(M(A)) vanish outside A(A). In the classical case of the group
algebra A = Ly(G) for a locally compact abelian group G, these classes
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correspond to certain important ideals My(G) and Myo(G) of the measure
algebra M (G).

The section headlines indicate the program of this paper. In the pre-
liminary first section, we collect some basic definitions and facts on de-
composable operators and multipliers. The next section contains our main
results on decomposable multipliers on a semisimple commutative Banach
algebra A. We discuss the relationship between the decomposability of a-
multiplier on A, the hull-kernel continuity of its Gelfand transform on the
spectra A(A) and A(M(A)), and a natural spectral property for multipliers
in the spirit of Zafran [27]. Typical results include the following: under the
strong assumption thai the multiplier algebra M(A) be regular, all multi-
pliers are decomposable on A, whereas, under the weaker assumption that
A be regular, a multiplier T in My(A) is decomposable on A if and only if
T belongs to Myo(A). Moreover, if A is regular, then the greatest regular
Banach subalgebra of My(A) is seen to be precisely Mpo(A). Finally, from
the fact that all decomposable multipliers have natural spectrum, we derive
a general Wiener—Pitt type criterion [26] for the invertibility of multipliers
on a regular Banach algebra with a bounded approximate identity.

In the third section, we impose topological assurnptions on the spectrum
of the algebra A. If A(A) is scattered in the Gelfand topology, then the
decomposability of a multiplier T € Mp(A) is equivalent to the hull-kernel
continuity of its Gelfand transform on A(M(A)), to the natural spectrum
property of T, and also to the countability of the spectrum of T. And if the
topological condition on A(A) is strengthened to discreteness, then we can
add to this list of equivalences the condition that the multiplier T' € Mo(A)
be a Riesz operator on A. These results improve recent work of Aiena [3]
and apply directly to the case of group algebras on compact abelian groups.

In the last section, we investigate convolution operators given by regular
Borel measures on an arbitrary locally compact abelian group (G. By means
of the greatest regular subalgebra of the measure algebra M (G), we identify
some classes of measures for which the corresponding convolution opera-
tors are decomposable both on Li(G) and on M(G). We also describe the
apectral maximal spaces of these operators in simple terms and show that
decomposability is preserved under absolute continuity. For measures on GG
whose Fourier-Stieltjes transforms vanish at infinity in the dual group, we
obtain various characterizations of decomposability, thus extending work of
Albrecht [5]. We also locate certain singular measures which influce nonde-
composable convolution operators and characterize a class of Riesz product
measures for which convolution is decomposable on the circle group. More-
over, we improve some classical results due to Beurling (7], Wiener-Pitt [26],
and Zafran [27) and correct recent work of Alena [2] on the characterization

of Riesz multipliers on L1 (7).
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1. Preliminaries on decomposable operators and multipliers.
Given a complex Banach space X, let £L(X) denote the Banach algebra of
all continuous linear operators on X. An operator T € L(X) is called decom-
posableif, for every open covering {U, V} of the complex plane C, there exists
a pair of T-invariant closed linear subspaces Y and Z of X such that Y+ 2 =
X, o(T|Y) C U, and o(T]Z) C V, where o denotes the spectrum. We refer
to Theorem IV.4.28 of [25)] for various characterizations and to the mono-
graphs [10] and [25] for a thorough discussion of decomposable operators.

For a decomposable operator T' € £(X) and a closed subset " of C, let
Xy(F):={z € X : op(z) C F} denote the corresponding spectral mazimal
space, where or(z) C C is the local spectrum of T at the point = € X, Le.
the complement of the set of all those A € C for which there exist an open
neighborhood I of A in C and an analytic function f : U — X such that
(T — p)f(n) = = holds for all z € U. The spaces Xr(F') are hyperinvariant
closed linear subspaces of X (cf. {10]). ‘

Next, given a commutative complex Banach algebra A with or without
identity, let A(A) stand for the spectrum of A, i.e. the set of all nontrivial
multiplicative linear functionals on A. For each ¢ € A, let @ : A(A) — C
denote the corresponding Gelfand transform given by @(y) := @(a) for all
@ € A(A). On A(A) we shall have to consider both the Gelfand and the
hull-kernel topology. The latter is determined by the Kuratowski closure
operation cl(E) := hul(ker(E)) := {¢p € A(A) : ¢p(u) = O forall u € 4
with (u) = O for each ¢ € E} for all E C A(A). The hull-kernel topology
is always coarser than the Gelfand topology on A(A), and they coincide
if and only if the algebra A is regular. Consequently, for some @ € A the
Gelfand transform @ will not be hull-kernel continuous on A(A) whencver
the algebra A is nonregular. For further information concerning the hull-
kernel topology, we refer to [9] and [22]. We shall frequently use the following
result from [20]. Some related results can be found in [19].

1.1. PROPOSITION. Let A be a semisimple commutative complex Banach
algebra, and consider an algebraic homomorphism ¢ : A — L(X). Then for
every ¢ € A for which the Gelfand transform @ is continuous with respect
to the hull-kernel topology of A(A), the corresponding operator T i= $(a) €
L(X) is decomposable.

Finally, we shall use some standard results from the general theory of
multipliers as presented, for instance, in [17]. Throughout this paper, let A
be a semisimple commutative Banach algebra over C, and let M(4) denote
the corresponding mulliplier algebra consisting of all mappings T': 4 — A
with the property T(u)v = «T'{v) for all u,v € A. Every T € M(A) satisfies
T(uv) = T(u)v for all u,v € A; moreover, M(A) is a semisimple closed
commutative subalgebra of £{A) containing the identity operator I' {cf. [17]).
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For each a € A, let L, : A — A denote the corresponding multiplication
operator on A given by Lo(u) := au for all w € A. By semisimplicity, we can
identify A with the ideal {L, : a € A} of M(A). Note, however, that the
norm of A may be strictly greater than the operator norm inherited from
M(A) and that A need not be closed in M{A).

By the results of Section 1.4 in [17], the spectrum A(M(A)) of the mul-
tiplier algebra can be represented as the disjoint union of A(A) and H(A),
where A(A) is canonically embedded in A(M(A)) and H{A) denotes the hull
of Ain A(M(A)). When A(A) is regarded as a subset of A(M(A)), the hull-
kernel topology of A(A) coincides with the relative hull-kernel topology in-
duced by A(M(A)); the same result holds with respect to the Gelfand topol-
ogy. Obviously, A(A) is hull-kernel and hence Gelfand open in A(M{A)).
Moreover, it is easily seen that A(A) is hull-kernel dense in A(M(A)), but
this is certainly not always true for the Gelfand topology. Next let

My(A) := {T € M(A): T|A(A) vanishes at infinity

in the Gelfand topology of A(A)},

Mao(A)i= {T € M(A): T =0 on H(A)} = ker(hul(A4)}.
Clearly, Mo(A) and Mpo(A) are closed ideals in M(A) with A € Mypo(A4) C
Mq(A). In general, A is strictly contained in Mog(A), as a result of Hewitt—
Zuckerman [16] shows: in any nondiscrete locally compact abelian group
@, they construct a singular measure p for which the convolution square
ju# i is absolutely continuous. Since (p* p)® = p - p*, this implies pu €
Moo(L1 (G L1 (G). Also the inclusion Mgo(A) C Mp(A) may be strict, as
we shall see after the next proposition. Further information will be obtained
in 2.5.

We close this section by recalling some elementary spectral properties of
multipliers. As usual, the point and the residual spectrum of a continuous
linear operator 7' on a given Banach space will be denoted by op(T) and
(T, respectively; and o(T', B) stands for the spectrum of an element T' of
a Banach algebra B.

1.2. PROPOSITION. For each T' € M(A) we have:

() o(T) = (T, M(A)) = T(A(M(A))); and o(T) = o(T, Mo(A)) when-
ever T' € MO(A_).A

(b) ap(T) € T(A(A)) € ap(T) U r(T). R

(c) If T is hull-kernel continuous on A(M(4)), then o(T) = T(A(A)~.
_ (&) I A has no unit and T € Mo(A), then o(T) 2 T(A(A) U {0} =
FA(AY)-. i
_ (e) I A has no unit and T € Moo(A), then o(T) = T(A(A) U {0} =
T(a(4)). |
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Proof. Statement (a) is clear from Corollary 1.1.1 of [17], Theorem 2
of [3], and elementary Gelfand theory. (b) has been shown in Theorem 3
of [3]. (c) follows immediately from (a) and the hull-kernel denseness of
A(A) in A(M(A)). Finally, because of A(M(A)) = A(A)U H(A), (d) and

(e) are easy consequences of (a).

A multiplier T € M(A) is said to have natural spectrum if o(T) =
T(A(A))~. In the case of the group algebra A = Ly (@) for alocally compact
abelian group G, the systematic investigation of multipliers with natural
spectrum dates back to Zafran [27]. It is noted in [27] that there are always
multipliers T € My(L1(@)) with nonnatural spectrum, except for the trivial
case that G is discrete. In view of 1.2, this implies that Moo(A) # Mo(A)
whenever A = I,,(G) and G is a nondiscrete locally compact abelian group.
Of course, this fact is also closely related to the inversion problem for mea-
sures in the measure algebra M(G), which has a long tradition in classical
Fourier analysis; see for instance [7], [13], [26] and, in particular, 8.2.6 of [12].
In the following, we shall obtain some further information about multipliers
with natural spectrum.

2. Decomposable multipliers on semisimple commutative Ba-
nach algebras. We first prove that all decomposable multipliers on a
semisimple commutative Banach algebra A have natural spectrum. The
converse is not true in general: for group algebras over certain groups, Al-
brecht [5] has given an example of a nondecomposable multiplier which does
have a natural spectrum. On the other hand, we shall show in 3.1 that, un-
der a topological assumption on A(A), decomposability characterizes the
multipliers in Mp(A) with natural spectrum.

_ 2.1. PROPOSITION. Assume that T € M(A) is decomposable. Then
T|A(A) is hull-kernel continuous on A(A) and o(T) = T(A(A))~.

Proof. Suppose that the restriction T]A{A) is not hull-kernel con-
tinuous on A(A). Tlle.n there exists a closed subset F of C such that
E = {¢ € A(A) : T(p) € F} is not hullkernel closed in A{A). Let
¥ € d(E)\ E, where d(£) = hul(ker(E'}} denotes the hull-kervel closure of
E with respect to A(A), and consider A := T(4)) ¢ F. By decomposabil-
ity, there exist T-invariant closed linear subspaces ¥ and Z of A such that
o(T|Y) C C\{A},o(T|Z2) CC\F,and Y+ Z = A. From o(T|Y) C C\{A}
we conclude that for each v € Y there exists some v € Y such that
u = (T—AI)w, which implies ¢(u) = ¥(T0)—Ap(v) = T()p(v)=Ah(v) = 0.
Thus ¢ = 0 on Y. On the other hand, given an arbitrary ¢ € E, we note
that 4 := T(p) € F so that g ¢ o(T]Z). Cousequently, for each u € Z
there exists some v € Z such that w = (T — pl)v, which implies that
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o(u) = p(Tv) ~ pp(v) = T{e)p(v) ~ pp(v) = 0 and hence ¢ = 0 on Z.
From ¢ € cl(E) we conclude that also v = 0 on Z. Since Y + Z = A,
it follows that the functional 4 € A(A) vanishes identically on A. This is
a contradiction and shows that 7| A(A) is hull-kernel continuous on A(A).
To show that T has natural spectrum, let C*(A{A)) denote the Banach
algebra of all Gelfand continuous bounded complex-valued functions on
A(A), endowed with the supremum norm. Moreover, let R : A — C*(A(A))
denote the Gelfand transform given by R(u) := % for all # € A, and let
§: C*(A(A)) = C*(A(A)) denote the operator given by multiplication by
T, Then obviously RT' = SR. Since T' is decomposable and since R is in-
jective by the semisimplicity of A, we conclude from Lemma 1 of {11] that
#(T) G a(S). But it is trivial that o{5) C T(A(A))~ C o(T). Hence T has
natural spectrum.

In general, the hull-kernel continuity of the restriction T|A(A) does not
imply that T'is decomposable, Indeed, if A is regular, then every T' € M(A)
has the property that T|A(A) is hull-kernel continuous, since the Gelfand
and the hull-kernel topology coincide on A(A). But, as mentioned above,
even in the case of the group algebra of an arbitrary nondiscrete locally
compact abelian group, we know from [27] that there are multipliers with
nonnatural spectrum, and by 2.1 such a multiplier cannot be decomposable.
On the other hand, it follows immediately {rom 1.1 that a multiplier 7' €
M(A) is decomposable under the stronger assumption that T is bull-kernel
continuous on A(M(A)).

2.2. PROPOSITION. For each T € M(A), the following assertions are
equivalent:

(a) T € My(A) and T is hull-kernel continuous on A(M(A)).
(b) T € Moo(A) and T|A(A) is hull-kernel continuous on A(A).

Proof. (a)=(b). To show that T vanishes on H(A), let £ > 0 be
arbitrarily given, Then (a) implies that E := {¢ € A(A): [T(p)| > e} is a
Gelfand compact hull in A(A). Hence, by Theorem 3.6.7 of [22], the kernel
of Fin A is a modular ideal in A. Consequently, by Lemma 3.1.15 of [22],
there exists some u € A such that @ =1 on E. Since the element T(u) € A
satisfies [T'(u)?| = |74} 2 € on the hull E, we may apply Theorem 3.6.15 of
[22] to obtain some v € A such that TuY Ehl on E. We corlclude that the
multiplier § := [ — T(uv) € M(A) satisfies § = 0on E and § = 1 on H(A).
Therefore cl{ £)NH (A) = 8, where cl(E) € A(M (A)) denotes the hull-kernel
closure of E in A(M(A)). Now suppose that |T'(4)| > € for some P € H(A).
Then, by the hull-kernel continuity of T on A(M(A)), there exists some
hull-kernel open neighborhood U of ¢ in A(M(A)) sucl that T(el > €



200 K. B. Laursen and M, M. Nenmann

for all ¢ € U. Since A(A) is hull-kernel dense in A(M(A)), it follows that
U0V N A(A) is nonempty for each hull-kernel open neighborhood V' of 4
in A(M(A)). Since U N A(A) € E, we conclude that V N E s @ for every
hull-kernel open neighborhood V of 4 in A(M(A)) and hence ¢ € c(E).
Since cI(E) N H(A) = @, this is a contradiction and shows that |T(¢)| < ¢
for all ¢ € H(A) and all £ > 0, hence that 7' =0 on H(A).

(b)=(a). To prove the hull-kernel continuity of T on A(M(A)), lot F
be an arbitrary closed nonempty subset of C, and let E := {p e A(M(A)):
T() € F} be its preimage under T in A(M(A)). To show that £ is Tinll-
kernel closed in A{M(4)), we consider two cases. 1 0 € F, it follows from
7 = 0 on H(A) that AM(AN\ E = {¢ € A(A): T(p) € C\ F} € A(4).
Since A(A) is hull-kernel open in A(M(A)), the hull-kernel continuity of
F|A(A) implies that A(M(A))\ E is hull-kertel open in A(M(A)). Tence,
if 0 € F, the set E is a hull in A(M(A)). If 0 ¢ F, we have ¢ := inf{|A :
X € F} > 0. Since 7| A(A) is hull-kernel continuous and vanishes at infinity,
the set D = {p € A(A) : [T(y)| > ¢} is a Gelfand compact bull in A(A).
Hence, using exactly the same argaments as in the proof of the implication
(a) = (b), we obtain first u € A such that @ =1 on D and then v € A
such that 7475 = 1 on D. In particular, T3 = 1 on the subset E of D.
Again, it follows that the multiplier S := I — T'(uv) satisfies both §=0
on E and § =1 on H(A). This implies that cI(E) N H(A) = § and hence
cl{ E) C A(A), where cI(£) is the hull-kernel closure of [ in A{M(A)). By
assumption, E is a hull in A(A), so the inclusion c(E) € A(A) implies that
E = cI(E). This completes the proof of the hull-kernel coutinuity of T on
A(M(4)).

The following theorem subsumes the main result of [19], which charac-
terizes the decomposability of a multiplication operator in terms of the hull-
kernel continuity of its Gelfand transform on A(4). It also shows that, for
a multiplier T € My(A), the decomposability of T on A is equivalent to the
decomposability of the corresponding multiplication operator Ly on M(4).
This observation provides a partial solution to one of the problems posed
in [18, p. 50]. However, even in the case of the group algebra A = Li(G)
for a locally compact abelian group G, it is an interesting open problem

whether the decomposability of a multiplier always carties over from Ly ()
to M(G).

2.3. THEOREM. For an arbitrary T € M(A), consider the following slate-
ments:

(a) T is hull-kernel continuous on A(M(A)).

(b) Ly : M(A) — M(A) is decomposable.
(¢) T: A~ A is decomposable.
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(d) T|A(A) is hull-kernel continuous on A(A).

Then, for every T € M(A), we have (a)s(b)=(c)=(d). Moreover, if
T € Moo{A), then also (d)=>(a) so that all the conditions (a)~(d) are equiva-
lent in this case. Furthermore, for each T € Mo(A), we have (a)(b)«(c).
Finally, a multiplier T in My(A) is decomposable on A if and only if T
belongs to Moo(A) and satisfies (d).

Proof. For arbitrary T' € M(A), the equivalence of the conditions (a)
and (b) is clear from Theorem 1.2 of [19]. Actually, it is also an immediate
consequence of 1.1 and 2.1, applied to the left regular representation @ of
M (A) and the operator Lp. Similarly, the implications (a)={c)=>(d) follow
from 1.1 and 2.1, where 1.1 is applied to the inclusion mapping ¢ from
M{A) into L(A). For T € Mg(A), the implication (d)=>(a) is clear from
9.9. Moreover, the same result will prove the very last assertion, once for
every T € My(A) the conditions (a){c) are seen to be equivalent. Hence
it remains to show that every decomposable multiplier T' € Mp(A) satisfies
condition (b). By Theorem 3.2 of [18), this assertion can be reformulated as
follows: for every pair of spectral maximal spaces ¥ and Z of the operator
T : A~ A with o(T|Y)Na(T|Z) = 0, wehave to find an operator R € M(A)
such that R = 0 on Y and R = J on Z. Now, given such a pair of spectral
maximal spaces Y and Z, we observe that the sets

E = {p € A(4) : T(p) € o(T|V)},
F = {p€ A(4) : T(y) € o(T|2)}

are hulls in A(A), since T is hull-kernel continuous on A(A) by 2.1. More-
over, since o(T]Y) and o(T'|Z) are disjoint, we may as well assume that 0
does not belong to o(T|Z). Then, with ¢ :=inf{|]A|: A € o(T|Z)}, we obtain
l(T)] = & > 0 for all ¢ € F. Becanse of T € Mo(A), we conclude that F is
Gelfand compact in A(A). Since E and F' are disjoint, by Corollary 3.6.10
of [22] there exists some e € A such that ¢=0on Fandé=1on F. We
claim that R := L. € M(A) has the desired properties. To show that R =0
on Y, let u € Y be arbitrarily given, and consider some ¢ € A(A)\ E. Since
A= o(T) g o(TIY), there exists a v € Y such that u = (T — Alw, which
implies that w(u) = ((1") — Mp(v) = 0. Therefore u = 0 on A(A)\ B
and hence 2 = 0 on A(A). By semisimplicity, this implies Ru = 0 and
therefore R = 0 on ¥. A similar argument will show that R = I on Z,
which corapletes the proof.

The preceding theorem includes the following results. If M(A)is Te.gu'laF,
then every muliiplier T € M (A)is decomposable on A. Mqreover , if A is
regular, then a multiplier T' € Mo(A) s decomposable on A if and only if T
belongs to Moo(A).
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2.4, THEOREM. Let J be an M(A)-invariant closed linear subspace of A,
and consider a multiplier T € M(A) for which T is hull-kernel continuous
on A(M(A)). Then the resiriction S := T|J € L(J) 1s decomposable on J
and satisfies a(8) = §(A(J Y)~. Moreover, the spectral mazimal spaces of
5§ are given for all closed FF C C by

Js(F)= () (T=M)J)={ueJ:suppi T (F)},
AEC\F

where A(J) is canonically embedded in A(M(A)) and supp@ denotes the
closure of the set { € A(J) : p(u) # 0} with respect to the Gelfand topelogy
of A(J).

Proof. Consider the homomorphism ¢ : M(A) — £L(J) given by
#(R) := R|J for all R € M(A). Then § = &(T) is decomposable on J
by 1.1 and has natural spectrum by 2.1. Since J is an ideal in M(A), Theo-
rem. 2.6.6 of [22] shows that A(J) can be canonically embedded in A(M(A))
and that A(M(A)) = A(J)U H(J), where H(J) denotes the hull of J in
A(M(A)). For each closed F C C, it is easily seen that

Js(F)C [ (T=AM)J)C Zs(F):={ue J:supp@ C T-YF)}.
AEC\F

To prove the reverse inclusions, fix an arbitrary open neighborhood U of F
and choose an open subset V of C such that YUV = C and FNV = §.
Since T’ is hull-kernel continuous on A(M(A)) the proof of Theorem 1 in
[20] shows that there exists an R € M(A) such that o(S|R(J)) C U and
o(8|(L— R)(J)) € V. By spectral maximality, this implies R(J) C J(T)
and (7 — R)(J) C Js(V). Moreover, for u € Zs(F) we obtain

(I — B)(uw) € Zs(F)NJs(V) C Zs5(F)n Zs(V) = {0},

since F' and V are disjoint and J is semisimple. From (I — R)(u) = 0
we conclude that u = R(u) € Jg(U). Thus Zg(F) C Js(T') and hence
Zs(F) C Jg(F), as desired.

In connection with the preceding result, one may wonder which closed
ideals J in A are invariant under M(A). In addition to the trivial case
J = A, every ideal in A which is the intersection of maximal modular ideals
is certainly M (A)-invariant, as can be easily seen from Theorem 1.2.4 of [17].
This criterion is appropriate for the class of Malgebras [22], but not group
algebras because of the problem of spectral synthesis. On the other hand,
every closed ideal in a Banach algebra with a (not necessarily bounded)
approximate identity is obviously invariant under all multipliers. Thus 2.4
does apply to arbitrary closed ideals of the group algebra A = Li(G) for a
locally compact abelian group @. :
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We now turn to certain subalgebras which induce decomposable mul-
tipliers. By a Banach subalgebra of A we mean a subalgebra of A which
is endowed with some Banach algebra topology. Since we assume A to be
semisimple, such a topology is necessarily finer than the relative topology
induced by the norm of A. Nonclosed Banach subalgebras exist in abun-
dance. For instance, A is always a Banach subalgebra of M(A), but not
necessarily closed in M{A). Moreover, if # : B — A is an algebra homo-
morphism from a Banach algebra B into A, then the range ®(B) is easily
seen t0 be s Banach subalgebra of A, which need not be closed in A.

As in [19] and [20], one can show that, among all regular Banach sub-
algebras of A, there is a greatest one, denoted by Reg(A). Moreover, this
greatest regular subalgebra is closed in the spectral radius norm on A, If A is
self-adjoint and has a minimal approximate identity, then, by Theorem 1.8.3
of [17], the derived algebra Ap introduced by Helgason is a regular Banach
subalgebra of 4 and hence contained in Reg(A). Standard examples in the
group algebra setting show that the derived algebra Ay may be much smaller
than Reg(A).

Finally, let Dec(A) := {a € A : L, : A —+ A is decomposable}. By 2.3,
Dec(A) consists of all a € A4 for which @ is hull-kernel continuous on A(A4).
In particular, it follows that Dec(A) is a closed subalgebra of A and that
Dec(A) i even closed in the spectral radius norm on A; see also [5] and
[6] where Dec(A) has been studied by different techniques. 1.1 implies that
Reg(A) is contained in Dec(A). Also, by 1.1 and 2.3, it is easily seen that
Reg(A) = Dec(A) whenever Dec(A) is an ideal in A, but we do not know if
this identity holds in general. Of course, Reg(A) = Dec(4) = A whenever
A is regular, but even in this case it is interesting to investigate Reg(B)
and Dec( B) for certain subalgebras B of the typically nonregular multiplier
algebra M{A). Here, again, the motivating example is the group algebra
A = Ih(GF). . '

2.5, TurorEM. Let DM(A) 1= {T € M(A):T : A — A is decomposa-
ble} denote the set of decomposable multipliers on A. Then we have:

(a) DM(A) is a closed subalgebra of M(A) if A has a bounded approzi-
mate tdentity,

(b) Reg(M(A)) C Dec(M(A)) C DM(4).

(c) Reg(Mo(A)) C Dec{ Mo(A)) = DM({A) N My(A) € Moo(A).

(d) DM(A) N Mo(A) is e closed subalgebra of Moo(A).

(e) Reg(Mo(A)) = Dec(Mo(A)) = DM(A) N Mo(A) = Moo(A) when A
is regular.

(f) A is regular and A(Mo(A)) = A(A) if and only if Mo(A) is regular
if and only if A is regular and My(A) = Moo (A).

Proof. (a)follows from Theorem 2.6 of [5], while (b) and (c) are easy
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consequences of 1.1 and 2.3. Moreover, (d) is clear from the very last char-
acterization in 2.3. Now assume that A is regular. Since Myg(A) and A have
the same spectrum, it follows that Myo(A) is regular and hence contained
in Reg(Mo(A)). Thus, all the inclusions of (c) are identities when A is reg-
ular; this proves statement (e). Finally, (f) is an immediate consequence of
(c) and Theorem 3 of [20]. Indeed, if A regular and A(My(A)) = A(A),
then My(A) is obviously regular. If Mp(A) is regular, then () shows that
Mo(A) = DM(A)NMy(A) = Moo(A). Tn partticular, it follows that, for each
e € A, the multiplication operator I, € My(A) is decomposable on A. By
Theorem 3 of [20], this yields the regularity of A. Finally, Mo(A) = Mpo(A)
implies A(Mo(A)) = A(Mog(A)) = A(A). The assertion follows.

Statement (f) improves results of Birtel [8], who has shown by difTerent
methods that regularity of My(A) forces A to be regular and A(My(A)) =
A(A). The preceding theorem indicates that arbitrary decomposable mul-
tipliers in M (A) are much harder to handle than those in Mo(A). Indeed,
the proof of statement (a) due to Albrecht [5] requires the spectral theory
of several commuting operators and makes essential use of Cohen’s factor-
ization theorem [9], whereas the corresponding result for My(A) given in
assertion (d) is obtained by more elementary techniques and without any
additional assumption on A. Thus it would be interesting to know when
equalities occur in statement (b) of Theorem 2.5.

As an application, we finish this section with a general criterion for the
invertibility of multipliers. As we shall see in 4.3, this generalizes classical
results of Beurling {7) and of Wiener—Pitt [26] on the Fourier-Stieltjes trans-
form of measures. Note that condition (2) of Theorem 2.6 is fulfilled with
the choice R=T and § =V = 0, when T is a decomposable multiplier on
A satisfying (1). Thus, for small perturbations of decomposable multipliers,
condition (1} is sufficient to guarantee invertibility in M(A).

2.6. THEOREM. Let A be a regular semisimple commutative Banach al-
gebra with a bounded approzimate identity, and consider a multiplier T' €
M(A) for which
(1) mf{|T ()l : € A(4)} > 0.

Assume that T = R+ S for a pair of multipliers R, 8 € M(A), where R is
decomposable on A and the spectral radius v(S) of the operator § satisfies
the condition

(2)  r(S)<inf{|(R+V)(p)|: ¢ € A(A)}  Jor some V € Moo(A).
Then T is invertible in M(A),

Proof. From (a) and (e) of 2.5 we know that DM(A) is a subalgebra of
M(A) which contains Mog(A). Hence R + V is decomposable on A4, which
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implies )
(3) o(R+V) = (E+V)(AA), |
by 2.1. From condition (2) we conclude that 0 & o( R+ V) so that R+ V is
invertible in M(A) by assertion (a) of 1.2, Furthermore, we have

-1
SR+ VY < r(S(B+ V)™ = r(§) sup{|A|: A € o((R+ V)™1)}
= r(S)sup{[A~t: A€ o(R+V)}
= r(S)/ Wi{{(R+ V)(¢)| : o € A(A)} < 1,
diti ] o ition 5.6 of
here we made use of the conditions (2) and (3) and of Proposi : .
E;].cSince (SR +V)™1) <1, it follows from the stancl.a.rd geometric series
argument that the operator I + S(R+ V)~1 is invertible in M(A). Next
observe that 1
T=R4+VA+§-V=T+85R+V)'=V(R+V)"NR+V)
=W({I+8R+V)")WR+V),
where the operator W A — A is given by .
W= I=V(R+V) " I+ S(R+VY™) ™ = I-V(THV)™L = T(T+V) ).
i io1 inc A) is an ideal in M(A),
Since by assumption V € Mgp(A4) and since Mpg( ' .
we conclude from 2.5 that W e I + Mgo(ALg DM(A). Again by 2.13 ?he
decorposability of W implies that o(W) = W(A(A))~. But from condition
(1) it is clear that

inf{|W(p)| : ¢ € A(A)} o
2 wf{[P(e)] : ¢ € AU sup((F + V) 0 € A4} >0,
so that W is invertible in M(A). Thus T is the product of three invertible
operators in M(A). This completes the proof.

3. The case of scattered and discrete spectra A(A). Agfmn, let
A be a semisimple commutative Banach algebra over C. In. this Se(':t;i?n, v;re
shall obtain some further characterizations of decomposable znuitlp ers in
M{A) by imposing additional assumptions on the spectrum ( 3 e

Recall that a locally compact Hausdorfl space J?. is scatbere cgor s
persed) if every nonempty compact subset of {2 contains an 1solate. pon‘ll .
For the basic facts on scattered spaces, we refer to [21] and [23]. I(t1 is easily
seen that every discrete space is scattered and .that every .scattere stPa,ce ;Z
totally disconnected. Moreover, {2 is scattered 1f a.nd_ only if each (‘.10);1 inuo .
complex-valued function on f2 that vanishes at 11:1ﬁn1ty has counta ‘imfng .
This characterization will be one principal tool; its proo.f follows easily r?n:
the Main Theorem of [21] and Theorem 2 of [23], applied to the one-poin

compactification of f2.
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The other too] is the observation that any semisimple commutative Ba-
nach algebra with scattered spectrum A(A) is regular. This is not hard to
check by means of the Shilov idempotent theorem [9], Alternatively, one can
use Theorem 2.3 of [18] to conclude that évery multiplication operator on
A is decomposable whenever A(A) is totally disconnected. Then Theorem
3 of [20] yields the regularity of A.

3.1. THEOREM. Assume that the spectrum A(A) is scattered in the Gel-
fand topology. Then, for each T € Mo(A), the following statements are
equivalent:

(a) T is hull-kernel continuous on A(M(A)).

(b) T : A — A is decomposable,

(c) T: A — A has a natural spectrum o(T) = T(A(A))".

(d) o(T) is countable.

(e) T=0 on H(4).
Moreo(ver)', Reg(My(A))=Dec(Mo(A))={T € Mo(A) : T satisfies (a)-(e)}
:Mgo A).

Proof. Note that T(A(A))™ C T(A(A)U {0}, since T € My(A),
and that 7'|A(A) has countable range, since A(A) is scattered. Ience we
obtain (¢)=(d), and the implications (a)=(b)=>(c) follow from 2.3 and 2.1.
Conversely, (d)=+(b) is clear, since every operator with totally disconnected
spectrum is decomposable; see, for instance, Theorem 3.1.19 and Example
3.1.20 of [10]. Moreover, the implication (b)=(e) holds again by 2.3. It
Temains to see that (e) implies (a) and that Reg(Mo(A)) has the stated
description. All this follows immediately from 2.3 and 2.5 since A is regular.

Under the stronger assumption that the spectrum 'A(A) is discrete, the
characterization of 3.1 can be extended to include Riesz operators. Recall
that an operator T € £(X) on a complex Banach space X is said to be a
Riesz operator if for each A € C\ {0} the dimension of the kernel ker(T - A1)
and the codimension of the range (7' — AI)(X)in X are both finite. There
are various equivalent definitions of Riesz operators [14], but for our pur-
poses this one is the most expedient. Since Riesz operators have countable
spectrum [14], it follows that all Riesz operators are decomposable (cf. [10])
For certain multipliers we can prove the converse.

3.2. THEOREM. Assume that the spectrum A(A) is discrete in the Crelfand
topology. Then a multiplier T € My(A) satisfies the equivalent conditions
(a)—~(e) from Theorem 3.1 if and only if T : A — A is a Riesz operator,

Proof. It remains to show that every decomposable multiplier T €
Mg.(A) is a Riesz operator when A(A) is discrete. First note that, given an
arbitrary & > 0, the set E, := {p € A(A) : |o(T)| >} is compact in "A(A4)
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becanse of T & My(A). By the discreteness of A(A), this implies that E, is
finite. Since we know from Theorem 3.1 that the multiplier T € Mo{A) has
natural spectrum, we conclude that o(T) is either finite or countable with
0 as the only accumulation point. Hence, given an arbitrary A € o(T") with
X # 0, we can find closed sets F, ¢ ¢ C with Fno(T) = {A} and A ¢ G such
that C is covered by the interiors of F and G. Since T'is decomposable on A,
we obtain A = Ap(F) + Ap(G). Also, Ap(F) = Ap(Fno(T)) = Azr({A})
and consequently Ar(F)N Ap(G) = Ap({A} N @) = Ar(@) = {0}. Hence
A = Ap({\}) ® Ap(G) holds as a direct sum decomposition. Moreover,
gince

ker(T ~ A1) € Ar({A}) and Ap(G) C (T ~ M) Ar(G)) S (T — AD(A),

all that remains to show is that Ap({\}) is finite-dimensional. Now, since T
vanishes at infinity and A(A) is discrete, it is clear that E := {p € A(4) :
@(T) = A} is finite. It follows that the space Yg of.adll cqmple)f-valued
functions on A(A), vanishing on A(A)\ E, is of finite dimension. Since the
Gelfand transform is injective and maps Ap({A}) into Y, we conclude that
Ap({)}) is finite-dimensional. Thus the dimension of ker(T — AI) and the
codimension of (7' — AI)(A) in A are both finite for each A € o(T) with
A # 0, so that T is a Riesz operator. '

3.3. Remarks. (a) With certain assumptions on the family I(A) of
isometric multipliers from A onto 4, some of the characterizations given in
3.2 have been obtained by Aiena in his recent paper [3]. If 7(A) satisfies the
following condition:

(4)  I(A) separates the points of A(A) and is compact in the strong op-
erator topology,

then Theorem 10 of [3] shows that a multiplier T € Mo(A) has natural
spectrum if and only if T is a Riesz operator on A. Since, 1?y Theorem
1.6.4 of [17], condition (4) forces the spectruin A(A) to be discrete, this
result is contained in 3.2. The approach in [3] depends heavily on the more
restrictive assumption (4). ‘ _

(b) Aiena [3] also investigates the algebraic properties of the family C of
all multipliers 7' € Mp(A) with natural spectrum. Again under :'mssmyption
(4), Theorem 11 of [3] shows that C is a-closed ideal in MO(A) with discrete
spectrum A(C). This generalizes a main result of Zafran [27] in the classwgl
setting A = Ly(G) for a compact abelian group G. Now, 3.1 she_ds some
new light on these results, since, even under the weaker assum‘g)txon that
A(A) is scattered, we obtain the identity C = Moo(4) so that C is a closed
ideal in Mo(A) with spectrum A(C) = A(A). - '

(¢) Given a complex Banach space X, let A(X) denote the; clas§ of
all operators T € L£(X) for which the restriction T|Y" to any T-invariant
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closed linear subspace Y of infinite dimension is not bijective [1]. It is clear
from Theorem 52.8 of [14] that A(X) contains the class R(X) of all Riesz
operators on X, and it seems interesting to investigate how different these
two classes can be. In the case X = L{(T) for the circle group T, Alena [1]
has found am example of a convolution operator on X which belongs to
A(X}, but not to R(X). By means of the preceding theorems, we can
obtain a more precise version of this result: indeed, if A is any semisimple
commutative Banach algebra with discrete spectrum, then R{(A)N Mp(4) =
Myo(A) by Theorem 3.2 whereas A(A) N My(A) = My(A4) by Theorem 7 of
[3]. Since discreteness of A(A) implies that A is regular, we conclude from
2.5 that R(A) # A{A) whenever My(A) is not regular. This covers the case
A = L)(@) for an arbitrary compact abelian group G.

(d) In connection with 3.2, it is natural to ask for a characterization of
the class of compact multipliers on A. If A has a hounded approximate
identity, it is not hard to show that every compact multiplier on A4 has to
be a multiplication operator on A. Banach algebras on which all multipli-
cation operators are compact were studied by Kaplansky under the name
of completely continuous algebras; see also the discussion of the larger class
of compact Banach algebras in [9]. Hence, if A is completely continuous
and has a bounded approximate identity, then a multiplier 77 € M(A) is
compact if and only if T is a multiplication operator on A.

(e) Concerning the topological assumptions in 3.1 and 3.2, it is clear
that A(A) may be scattered without being discrete. But for the group
algebra A = L,(@) for a locally compact abelian group G, the spectrum
A(A) is scattered if and only if it is discrete, since A(A4) can be identified
with the dual group of G and since it is easily seen from the principal
structure theorem for locally compact abelian groups [24] that such a group
is scattered if and only if it is discrete. Consequently, both 3.1 and 3.2 apply
to a group algebra 4 = L, () exactly when ¢ is compact and abelian.

4. Decomposable convolution operators. Throughout this sec-
tion, let G denote an arbitrary locally compact abelian group with dual
group I'. The corresponding group algebra A = Ly{(G) is a regular semi-
simple commutative Banach algebra with a bounded approximate identity
and spectrum A(A) ® I' (cf. [24]). Moreover, via convolution, its multi-
plier algebra M(A) can be canonically identified with the meagure algebra
M(G) consisting of all regular complex Borel measures on G (cf. [17]). With
this identification, Moo(A) becomes the subalgebra Muo(G) of all measures
# € M(G) whose Fourier-Stieltjes transforms u on A(M(G)) vanish out-
side I', and My(A) becomes the subalgebra My(G) of all measures in M(G)
whose Fourier—Stieltjes transforms on. the dual group I' vanish at infin-
ity. Tdentifying L;(G) with the ideal M,(G) of all measures on G which
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are absolutely continuous with respect to Haar measure on G, we have
Li(G) 2 My (G) G Moo(G)y G Mo(G) C M(G). Finally, for each u in
M(G), let Ty, : M() - M(G) denote the corresponding convolution oper-
ator given by T\, (v) := p v for all ¥ € M(G). From 1.2, 2.3, and 2.4 we
obtain immediately:

4.1. TueoREM. For each p € M(GQ), the operator T, is decomposable on
M(G) if and only if u” is hull-kernel continuous on A(M(G)). Moreover,
in this case, T, is also decomposable on X := Ly(G) and we have a(il.’,‘). =
(T I (@) = p NI~ The speciral mazimal spaces of the resiriction
T = Tyu| X are given for all closed F' C C by

Xr(F)= (] (@=M)(X)={u€ L:(G) :suppB & A7 (F)},
AEC\F

where the Fourier iransforms are taken with respect to the dual group I'.

Although we do mot know of a measure-theoretic characterization of
the decomposable multipliers on M(G) or L1(G), we can use the inclu-
sion Reg(M(G)) C Dec(M(@)) from 2.5 to identify classes of measures to
which 4.1 applies, Indeed, since Lq(G) is regular, 2.5 shows that Moo(G)
is a regular closed subalgebra of M(G) and hence contained in De.c(M(G)).
Similarly, if H is a closed subgroup of G and if Ly(H) is canonically identi-
fied with the space of all measures on & which are concentrated on and
absolutely continuous with respect to Haar measure on H, then Li(H ) is a
regular closed subalgebra of M{() and therefore contained in Dec(M(G}).
Since all measures in this subalgebra are singular with respect to Haar mea-
sure on (G whenever the subgroup H is nontrivial, it follows that Reg(M(G))
and hence Dec(M(G)) may contain singular measures. Finally, since the
subalgebra My(@) of all discrete measures on (7 may be identified with
L1(Gg) where (74 stands for G with the discrete topology, we l?ave M (G) C
Reg( M(G)) € Dec(M(G)). Now, 2.5 and 4.1 yield the following result.

4.2. COROLLARY. Let p € Moo(G)+ Ma(G) + Ly(H ) where H is a closed
subgroup of G, Then T, is decomposable both on M(G) and on Li(G) and
satisfies o(T,) = o{Ty|I1(G)) = p™(I)™.

This result applies, in particular, to all measures on & whqse continuous
part is absolutely continuous and therefore generalizes classical resu‘lt.s of
Beurling [7] for the real line G = R and of Hartman [13] for the circle
group G = T. The fact that all measures in Ma(G) + Ma(G) have natural
spectrum can be reformulated as follows: if a measure pi in Ma_(G) + My(G)
satisfies |u®| > 6 > 0 on I" for some § > 0, then p is invertible in M(G). We
next show that this criterion is stable under small perturbations by singular
measures. '
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4.3. COROLLARY. Let pp € M(G), and let pu = p, + pg + g, be the
decomposition of u into its absolutely continuous, discrete, and singular
part. Assume that || > § > 0 on I’ for some & > 0 and that the spectral
radius of the singular part satisfies either '

(8) () <inf{|27):v €T} or r(ne)<inf{|(Ra+Ae)(1)| 7 € T},
Then p is invertible in M(G).

Proof. Let T, R, S, V denote the operators of convolution on Ly(G)
given by p, pa + pba, pts, and —p, , respectively. Then V € My (@), and
R is decoraposable on L (G) by 4.2. Hence, under the first assumption on
r(¢ts) in condition (5, the assertion is clear from 2.6. In the second case,
2.6 has to be applied with the choice V := 0.

Note that the second condition in (5) is fulfilled whenever u, = 0, which
shows that 4.3 improves results of Beurling [7] and of Hartman [13]. On the
other hand, the first condition in (5) is fulfilled whenever the total variation
norm of the singular part satisfies ||, || < inf{|uf(y)] : ¥ € I'}, which
shows that 4.3 contains a classical result due to Wiener—Pitt [26] for the
case G = R. It follows from the counterexamples given in Theorem 3 of
[26] that the condition on u, cannot be weakened in general, We next use
the fact that the decomposable multipliers form a closed subalgebra of the
multiplier algebra to prove that decomposability is preserved under absolute
continuity.

44. THEOREM. Let p € M(G) be such that T, is decomposable on I (@),
and assume that v € M(G) is absolutely continuous with respect to . Then

T, is decomposable on L1(G). The same conclusion holds Jor decornposabil-
ity on M(G).

Proof. We first consider the case of decomposable convolution opera-
tors on M(G'). Hence assume that T, is decomposable on M (G) and consider
an arbitrary character 7 in the dual group I'. Since it is easily seen that
(7)) *(YA) = 4(u* X) holds for all A € M(@), it follows that the continuous
linear operator U, : M(G) — M(G) given by Uy(A)i=yA for all A € M(Q)
satisfies T, Uy = U,T, on M(@). Since U, is invertible on M(G), we
conclude that the operators T), and T, are similar on M (&), which im-
plies that the decomposability on M (G} carries over from T, to T.y,. Since
Dec(M(G)) is a subalgebra of M(G), we obtain fu € Dec(M(@)) for every
trigonometric polynomial f on G, i.e. for every linear combination of con-
tinuous characters on G. Since, by Lemma 31.4 of [15], the trigonometric
polynomials on G are dense in L;(|u|) and since Dec(M(G)) is known to
be closed in M(G), we conclude that fu € Dec(M{(G)) for all f € Li(|u)),
where |u| denotes the total variation of . Hence, by the Radon-Nikodym
theorem, T, is decomposable on M. {G) whenever v is absolutely continuous
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with respect to u. For decomposability on Ly (G), the argument is‘ba:sically
the same, except that we use the fact that the decomposable multl,plllers on
Ly(G) form a closed subalgebra of M((7); this follows from assertion (a)
of 2.5,

We now turn to the more tractable subalgebrar My(G) of M {G). For this
the characterization of decomposable convolutioh operators in 4.1 can be
improved. The following result generalizes work of Albrecht [5] and Zafran
[27]. Its proof is an immediate consequence of 1.2, 2.3, 2.5, and 3.2.

4.5. THEOREM. For each p € My(@), the following statements are equiv-
alent:

(a) fi is hull-kernel continuous on A{M(G)).

(b) Ty : M(G) — M(G) is decomposable,

(¢) Ty : L1 (@) = L1(G) is decomposable.

(d) p € Moo (G).

Moreover, we have Reg(Mo(G)) = Dec(Mo(G)) = Moo(G). If, in addi-
tion, G is compact, then, for each i € MQ(Q), the statements (a)~(d) are
also equivalent to each of the following assertions:

(e) T}y : L1(G) — Ly(G) has a natural spectrum o{u) = (Tl (&) =
‘u(l()f)'fl“,u 2 In(G) = L1(G) has countable spectrum.

(&) Tu : L1(G) — L1(G) is a Riesz operator,

In the following, we shall modify some techniques developed by Zafran
[27] to locate certain singular measures which induce nondecomposable con-
volution operators.

4.6. LEMMA. If a measurev € M(G) is absolutely continuous with respect
to some u € Moo(G), then also v € Mo (G).

Proof. Given an arbitrary 4 € I', we consider, as in the proof of 4.4,
the automorphism Uy on M(G) given by U,(A) = 7A fo: all A e_]lff(Cf?).
Uy induces a homeomorphism U} on A(M(G)). Since A (x) qug x\ ;r
all x € I, we have U}(I") = I' s0 that U_’,“(A(M_(G))\ Iy = A(M( ))f e
Therefore j1 € Mog(G) implies that yu = Uy(r) € Moo(G) and h\ﬂmcf:a31 fof
Moo(@) for all trigonometric polynomials f on G. Since, bykLgmm:hec;rem
[15], these polynomials are dense in Li{|u]), the Radon—Nikodym
implies that v € Mye{G).. .

4.7. LEMMA. Let p eM (G) be @ measure on G such that the convolution
powers ™ are all singular with respect to Haar measure on G, for alln € N.

Then p is singular with respect to each v in Moo(G).
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Proof. Suppose, to the contrary, that there exists some v € Myo(G)
which is not singular with respect to u. By 4.6 we may assume that » is
nonnegative. From the Lebesgue decomposition theorem, we obtain a pair of
nonnegative measures o, € M(G) such that v = o+ 3, & € p, and § L p.
E-lecause of our assumption on v, it is clear that o is nonzero. Moreover,
since 0 < o < v and since v € Myo(G), we conclude again from 4.6 that
& € Myp(G). TFinally, the basic assumption on g and o < g imply that

(6) a" € u" and hence o™ L Aforall n €N,

where A denotes the Haar measure on G. Since Moo(G) and Ly (G) have the
same spectrum, the quotient algebra Moo(G)/L1(G) is radical. Therefore,
tl.le equivalence class [a] := a + L1{G) in this algebra is quast-nilpotent.
Since (6) implies that

o™ -+ 7l = lla®ll + ISl Z lle™]| ~ for all f € Ly(G) and n € N,

we conclude that l|lee™ I = la®|| for all » € N, which shows that a is
quasi-nilpotent in M (). Since M(G) is semisimple, we obtain the desired
contradiction o = 0,

48 COlROLLARY. Let u € My(G) be a nonzero measure such that p™ is
singular with respect to Haar measure on G for all n € N. Then T, is not
decomposable on L,(G). g

' Actually, it follows from 4.5 and 4.7 that the measure f in 4.8 is singular
with resp'ect to each v € My(G) for which the corresponding convolution
operator is decomposable on L1(G). Measures in Mo(G) for which all convo-
]..llt_IOIl powers are singular with respect to Haar measure on ( arise naturally
in the.context of Riesz product measures; see [27] and Chapter 7 of [12]. The
fo].lovymg .cha.ra.cterization of decomposable convolution operators given by
certain Riesz product measures on the wunit circle T follows immediately
from 4.5 in combination with Theorem 3.9 of [27].

4.9. ExaMPLE. Consider a sequence of nonzero real numbers ay € (~1,1]
such that ey — 0 as k — oo. Moreover, let ¢ > 3 be a fixed real numb’e:r
and consider a sequence of integers n; € N such that Nkt1 & GNp for a,If
k € N. Tinally, let ; denote the measure on T represented T)v the Riesz
pl‘Odl{Ct IT5s1 (1 + ax cos(nikz)), 0 < z < 2. Then p € MO(T): Moreover
# satisfies the equivalent conditions (a)~(g) of Theorem 4.5 for the circﬁg
group G = T if and only if 3377, lax|™ < oo for some n & N, o

4.10. Remark. Assume that G is a compact abelian group. Then
4.5 shows that the class of measures p € Mo(G) for which T, is a Riesz
operator on L;(G) coincides with the ideal Moo(G). Consequently, if a
measure p € M(G) satisfies the condition ' ’

(7) " € Li(G) for somene N,
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then T\, is a Riesz operator on Ly(G). As noted by Ajena in [2], this result
can also be derived from the fact that each measure in Ly(G) induces a
compact convolution operator on Ly(G) (see for instance [4]). A partial
converse follows immediately from 4.8. Indeed, if for a measure p € Mo(G)
the operator T}, is a Riesz operator on Ly(G), then there exists an n € N
such that the corresponding convolution power of  is not singular with
respect to Haar measure on (7. The main result of [2] claims that even
movre is irue, namely that condition (7) characterizes Riesz multipliers on
L,(@). However, the following argument will show that this result is wrong
whenever the underlying group G is nondiscrete. Suppose that Alena’s
result were correct. Then the preceding characterization of Riesz multipliers
in terms of Moo(() implies that every p € Moo(G) satisfies condition (7).
Hence the quotient algebra Moo (G)/L1(G) contains only nilpotent elements,
which by a result of Grabiner forces this quotient algebra to be nilpotent (see
Theorem 46.3 of [9]). We conclude that there exists some n € N such that
p™ € Ly(G) for all p € Moo(G). But this is impossible unless & is discrete,
since it follows, for instance, from Corollary 7.2.4 of (12] that, for every
nondiserete locally compact abelian group G and every n € N, there exists
some probability measure p € M(G) such that u® ¢ L1 (&), but urtl g
L1(@) and hence p € Moo(G). This observation disproves the result of [2].
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