A strong mixing condition for second-order stationary random fields

by

RAYMOND CHENG (Louisville, KY)

Abstract. Let \(\{X_{mn}\} \) be a second-order stationary random field on \(\mathbb{Z}^2 \). Let \(\mathcal{M}(L) \) be the linear span of \(\{X_{mn} : m \leq 0, n \in \mathbb{Z}\} \), and \(\mathcal{M}(R_N) \) the linear span of \(\{X_{mn} : m \geq N, n \in \mathbb{Z}\} \). Spectral criteria are given for the condition \(\lim_{N \to \infty} c_N = 0 \), where \(c_N \) is the cosine of the angle between \(\mathcal{M}(L) \) and \(\mathcal{M}(R_N) \).

1. Introduction. Suppose that \(\{X_n\}_{n=-\infty}^{\infty} \) is a stationary process on the probability space \((\Omega, \mathcal{B}, \nu) \). A classical (linear) prediction problem is to estimate \(X_n, n \geq 1 \), based on the past of the process; that is, to find \(X \) in the linear span \(\mathcal{P} \) of \(\{X_{-2}, X_{-1}, X_0\} \) for which the mean error \(\int |X - X_n|^2 \, d\nu \) is a minimum (see [4], [5], [17]). A variation on this idea is to replace \(X_n \) by the span \(\mathcal{F}_n \) of \(\{X_n, X_{n+1}, X_{n+2}, \ldots\} \), and to investigate the linear dependence between the subspaces \(\mathcal{P} \) and \(\mathcal{F}_n \). This class of problems is addressed in, for instance, [6], [8]-[11], [16], [18], [20]. These concerns, in turn, admit a multitude of generalizations.

In this article, we consider prediction problems in which the process is replaced by a random field, \(\{X_{mn}\}_{m,n} \). For any subset \(S \) of \(\mathbb{Z}^2 \), we define \(\mathcal{M}(S) \) to be the linear span of \(\{X_{mn} : (m,n) \in S\} \); such spaces play roles analogous to \(\mathcal{P} \) and \(\mathcal{F}_n \). Now the issue is to understand the dependence between \(\mathcal{M}(S_1) \) and \(\mathcal{M}(S_2) \). In particular, we seek descriptions of those fields for which the dependence tends to zero as the distance between the generating sets \(S_1 \) and \(S_2 \) increases to infinity in some way—a sort of “strong mixing” condition. As in the case of processes on \(\mathbb{Z} \), we pass to the spectral domain and apply techniques from function theory. This yields spectral criteria for strong mixing to occur.
2. Preliminaries. Let \(\{X_{mn}\}_{Z^2} \) be a complex-valued, zero-mean, wide-sense stationary random field on \(Z^2 \). Its spectral measure \(\mu \) is a finite nonnegative Borel measure on the torus \(T^2 \). We now identify the space \(\mathcal{M}(S) \) of its spectral isomorph, the span in \(L^2(\mu) \) of the functions \(\{e^{im\pi x + in\pi y}: (m,n) \in S\} \). As the measure of linear dependence between \(\mathcal{M}(S_1) \) and \(\mathcal{M}(S_2) \), we take the cosine \(c(S_1, S_2) \) of the angle between them:

\[
c(S_1, S_2) = \sup \left\{ \left| \int f_1 \overline{f_2} \, d\mu \right| : f_j \in \mathcal{M}(S_j), \|f_j\| \leq 1 \right\}.
\]

Among natural choices of generating sets are the left halfplane

\[L = \{(m,n) \in Z^2 : m \leq 0 \} \]

and the right halfplanes

\[R_N = \{(m,n) \in Z^2 : m \geq N \} \).

The goal is to describe those \(\mu \) for which \(\lim\limits_{N \to \infty} c(L, R_N) = 0 \), a program generalizing that of Helson and Sarason in [8]. In the analysis that follows, the principal tools include function theory on the unit circle \(T \), and on the unit disc \(D \). (Duren [3] served as the reference.) It will be convenient to identify a function \(f(e^{i\theta}) \) on \(T \) with its harmonic extension \(f(z) \) into \(D \), and likewise a function \(g(z) \) on \(D \) with its radial limit \(g(e^{i\theta}) \), wherever these make sense. Normalized Lebesgue measure on \(T \) will be denoted by \(\sigma \).

3. Principal results. In [8] (along with [20]) it was shown that the cosine of the angle between the past and future of a stationary process tends to zero if and only if the spectral measure of the process is of the form

\[
|P(e^{i\theta})|^2 \exp \varphi(e^{i\theta}) \, d\sigma(e^{i\theta}),
\]

where \(P \) is a polynomial and \(\varphi \) is a real function of vanishing mean oscillation on \(T \). This turns out to have a close analogue in the random field picture.

The axial alignment of \(L \) and \(R_N \) in \(Z^2 \) allows a “separation of variables” technique. That is, with \(Z^2 \) parametrized by \((m,n) \), and \(T^2 \) by \((e^{ia}, e^{ib}) \), the shifting occurs only in the \(m \)-direction; hence the variable \(e^{im\theta} \)—which is coupled with \(m \)—is the important one in determining the mixing behavior. Thus, one might expect the condition \(c(L, R_N) \to 0 \) to occur exactly when \(\mu \) is sufficiently well-behaved in the variable \(e^{im} \), uniformly (in some sense) in \(e^{ib} \). This is, in fact, the case.

The search for a precise statement enjoys a first reduction via an extension of Szegö’s alternative. Here, \(\mu_2 \) is the second marginal of \(\mu \).

3.1. Theorem. The space \(\cap_{N=0}^\infty \mathcal{M}(R_N) \) is trivial if and only if

\[
\int \log|d\mu / d(\sigma \times \mu_2)| (e^{ia}, e^{ib}) \, d\sigma(e^{i\theta}) > -\infty, \quad a.e. [d\mu_2(e^{i\theta})].
\]

Proof. See [13, Theorem 3].

3.2. Lemma. In order that \(c(L, R_M) < 1 \) for some \(M \), it is necessary that \(\cap_{N=0}^\infty \mathcal{M}(R_N) = \{0\} \).

Proof. Fix \(\epsilon > 0 \) and \(M \in \mathbb{Z}_+ \). Suppose that \(\mathcal{M}_\infty = \cap_{N=0}^\infty \mathcal{M}(R_N) \) contains a nonzero vector \(f \). There exists a finite trigonometric sum \(\sum f \) for which \(|f - \sum f| < \epsilon \). Choose an integer \(m \) such that \(e^{im\pi x + in\pi y} \) is in \(\mathcal{M}(L) \). Note that \(e^{im\pi x} \) is in \(\mathcal{M}_\infty \), and hence in \(\mathcal{M}(R_M) \). And now

\[
c(L, R_M) \geq \|e^{im\pi x}f(e^{i\theta}) e^{im\pi y}p(e^{i\theta})\| \geq \|f\|^{-1} \|e^{im\pi y}p(e^{i\theta})\| \geq \|f\|^{-1} (\|f\| + \epsilon) \frac{\|f\|}{\|f\| + \epsilon}.
\]

This forces \(c(L, R_M) = 1 \).

Accordingly, we can assume that the restrictions on \(\mu \) in (3-1) hold. With that, we define

\[
h(x, e^{i\theta}) = \exp \frac{1}{2} \int e^{ix} \log w(e^{ia}, e^{ib}) \, d\varphi(e^{i\theta}),
\]

where \(w = |d\mu / d(\sigma \times \mu_2)| \). The radial limit function \(h(e^{ia}, e^{ib}) \) is outer in \(e^{ia} \) for \(\mu_2 \)-almost every \(e^{ib} \), and \(|h|^2 = w \) a.e. on \((\sigma \times \mu_2) \) on the torus. This provides the needed spectral factorization for passing to the Lebesgue space, as has been done so successfully in the univariate problem. For, suppose \(L^2(S) \) is the span in \(L^2(\sigma) \) of \(\{e^{im\pi x + in\pi y} : (m,n) \in S\} \).

3.3. Lemma. If \(h \) exists, then \(h^{-1} \in \mathcal{M}(R_0) \), and \(hM(R_0) = L^2(R_0) \).

Proof. This is the content of [1, 2.2 and 2.3].

The next assertion, a consequence of the spectral factorization and some duality theory, effects the separation of variables. As such, it makes use of the univariate cosine

\[
\phi_N(e^{i\theta}) = \sup \left\{ \int f(e^{i\theta}) g(e^{i\theta}) w(e^{ia}, e^{ib}) \, d\varphi(e^{i\theta}) : \right\},
\]

\[
\left\{ \begin{array}{l}
f \in L^2(w(e^{ia}, e^{ib}) \, d\varphi(e^{i\theta})) - \text{span}\{e^{im\pi} : m \geq N\}, \\
g \in L^2(w(e^{ia}, e^{ib}) \, d\varphi(e^{i\theta})) - \text{span}\{e^{im\pi} : m \leq 0\}, \\
\int |f(e^{i\theta})|^2 w(e^{ia}, e^{ib}) \, d\varphi(e^{i\theta}) = 1, \\
\int |g(e^{i\theta})|^2 w(e^{ia}, e^{ib}) \, d\varphi(e^{i\theta}) = 1,
\end{array} \right.
\]

(*)
and a dual extremal quantity
\[K_N = \inf \left\{ \left\| \frac{h(e^{it}, e^{iu})}{\overline{h}(e^{it}, e^{iu})} \right\|_{L^\infty(R_0)} : A \in L^\infty(R_0) \right\}. \]

3.4. Theorem. If (3.1) holds, then \(c(L, R_N) = K_N = \|g_N(e^{it})\|_{L^\infty(\mu_\delta)}. \)

Proof. First, note that \(g_N(e^{it}) \) is bounded by 1. Moreover, it is measurable, since the set \(\{ e^{it} : g_N(e^{it}) < \alpha \} \) can be expressed as the countable intersection
\[\bigcap \left\{ e^{it} : \alpha > \left| \int f(e^{it}) g(e^{it}) w(e^{it}, e^{iu}) d\sigma(e^{is}) \right| \right\}, \]
\[\int |f(e^{is})|^2 w(e^{is}, e^{iu}) d\sigma(e^{is}) \leq 1, \int |g(e^{is})|^2 w(e^{is}, e^{iu}) d\sigma(e^{is}) \leq 1, \]
and \(f \) and \(g \) are polynomials with complex rational coefficients in \(M(R_N) \) and \(M(L) \), respectively.

Hence \(g_N(e^{it}) \in L^\infty(\mu_\delta). \)

Now for \(F \in M(R_N) \) and \(G \in M(L), \)
\[\left\| F \right\|^{-1} \left\| G \right\|^{-1} \left| \int F \overline{G} w d(\sigma \times \mu_\delta) \right| \]
\[\leq \int \left\{ g_N(e^{it}) \left[\int |F(e^{is}, e^{iu})|^2 w(e^{is}, e^{iu}) d\sigma(e^{is}) \right]^{1/2} \right. \]
\[\times \left[\int |G(e^{is}, e^{iu})|^2 w(e^{is}, e^{iu}) d\sigma(e^{is}) \right]^{1/2} \left\| F \right\|^{-1} \left\| G \right\|^{-1} \right\| d\mu_\delta(e^{it}) \]
\[\leq \|g_N(e^{it})\|_{L^\infty(\mu_\delta)}. \]

Taking a supremum over \(F \) and \(G \) gives
\[c(L, R_N) \leq \left\| g_N(e^{it}) \right\|_{L^\infty(\mu_\delta)}. \]

Next, let \(\varepsilon > 0 \), and choose \(A \in L^\infty(R_0) \) satisfying
\[\|A - \overline{h} e^{(N-1)s}\| \leq K_N + \varepsilon. \]

For \(\mu_\delta \)-almost every \(e^{it}, A(e^{it}) \) lies in \(H^\infty(T) \). It follows that
\[\inf \left\{ \left\| a(e^{is}) - \overline{h}(e^{is}, e^{iu}) e^{i(N-1)s}\right\|_{L^\infty(\sigma)} : a \in H^\infty(T) \right\} \]
\[\leq K_N + \varepsilon, \text{ a.e.} \mu_\delta(e^{it}). \]

But this l.h.s. is just \(g_N(e^{it}), \) by [8, Theorem 3]. This yields
\[\|g_N(e^{it})\|_{L^\infty(\mu_\delta)} \leq K_N. \]

3.5. Theorem. The strong mixing condition
\[\lim_{N \to \infty} c(L, R_N) = 0 \]
holds if and only if
\[(\exists) \mu \subset (\sigma \times \mu_\delta). \]
Thus, in accord with the univariate case, strong mixing occurs exactly when the spectral measure is continuous in the appropriate variable, its density is logarithmically integrable in that variable, the zero set of that density is removable by a type of polynomial, and the remaining factor satisfies a smoothness condition. Efforts here to express the smoothness condition in terms of VMO, as was done in [20], have been unsuccessful. The principal obstacle is that the smoothness condition needs to be uniform in the variable \(e^{it} \), in a sense which is difficult to control with norms. The example in 4.3 shows that without this uniformity, nonmixing can occur even if \(w(\cdot, e^{it}) \) is analytic for almost every fixed \(e^{it} \).

Proof of 3.5. Suppose that (a), (b) and (c) hold. Fix \(\varepsilon, 0 < \varepsilon < \pi/8 \), and let \(Q_\varepsilon, r_\varepsilon \) and \(S_\varepsilon \) be the functions associated with \(w_0 \) through (3.3). Put

\[
N_\varepsilon(e^{it}) = \deg Q_\varepsilon(z, e^{it}) = \lim_{p \to \infty} \frac{1}{2\pi i} \int_{|z|=p} Q'_\varepsilon(z, e^{it}) \, dz;
\]

\[
A(e^{is}, e^{it}) = \exp[-r_\varepsilon(e^{is}, e^{it}) - i\varepsilon(e^{is}, e^{it})]; \quad \text{and}
\]

\[
B(e^{is}, e^{it}) = \exp[iN_\varepsilon(e^{it})]Q_\varepsilon(e^{is}, e^{it})/Q_\varepsilon(e^{is}, e^{it}).
\]

Observe that \(A \) is bounded, and \(A(z, e^{it}) \) is analytic in \(z \in \mathbb{D} \). Also, \(B(z, e^{it}) \) is a Blaschke product in \(z \) with \(N_\varepsilon(e^{it}) \) factors. Moreover, its zeros are the reciprocal complex conjugates of those of \(Q_\varepsilon(z, e^{it}) \). To see this, compare the expression for \(B \) with the equation

\[
\frac{z - \frac{1}{\bar{\alpha}}}{\bar{\alpha} - \frac{1}{z}} = \frac{z - \frac{1}{\bar{\alpha}}}{\bar{\alpha} - \frac{1}{z}},
\]

with \(|z| = 1\) and \(|\alpha| > 1\).

From the definition of \(W_0 \), we see that \(\log w_0(\cdot, e^{it}) \) is integrable, a.e. \([\sigma_2(e^{it})] \). Hence we can define

\[
h(z, e^{it}) = \exp \frac{1}{2} \int e^{it} + \frac{z}{e^{it}} \log w_0(e^{is}, e^{it}) \, d\sigma(e^{is}).
\]

Now, for fixed \(e^{it} \) and computation modulo \(2\pi \),

\[
\arg(Ah^2 e^{-iN_\varepsilon}) = \arg A + \arg h^2 + \arg(B e^{-iN_\varepsilon})
\]

\[
= \arg A + \arg\left(\log w_0 + \arg(B e^{-iN_\varepsilon})\right)
\]

\[
= \arg A + \rho_\varepsilon - \int \gamma e^\sigma d\sigma + \arg(B e^{-iN_\varepsilon})
\]

\[
= \rho_\varepsilon - \int \gamma e^\sigma d\sigma + \arg(B e^{-iN_\varepsilon}).
\]

(Here, choose the branch of the argument function which vanishes at \(z = 1 \).) It follows that

\[
|\arg(Ah^2 e^{-iN_\varepsilon})| \leq 2\varepsilon.
\]

This, together with

\[
|\log |ABe^{-iN_\varepsilon}|h/\bar{h}| = |\log |A|| |r| < \varepsilon,
\]

yields

\[
\left|\frac{h}{\bar{h}} - e^{i(N-1)s} - AB e^{i(N-N_\varepsilon)s}\right|_{L^\infty(\sigma \times \mu_2)} < 2\varepsilon,
\]

where \(N = 1 + ||N_\varepsilon(e^{it})||_{L^\infty(\sigma \times \mu_2)} \).

Let \(\Gamma(e^{it}) = \min\{1, |\int w_0 d\sigma(e^{it})|^{-1}\} \), so that \(\Gamma(e^{it})w_0(e^{it}, e^{it}) \) is \([\sigma \times \mu_2] \)-integrable. Applying 3.4 to the last inequality shows that under the measure \(\omega(d\sigma \times \mu_2) \), the cosine for \(L \) and \(R_N \) is less than \(2\varepsilon \).

Finally, let \(d \) be the degree of \(\mathbb{P}^1 \) as a member of \(\mathcal{G}_0 \). Choose any \(f \in \mathcal{M}(R_{N+d}) \) and \(g \in \mathcal{M}(L) \) with \(||f|| \leq 1 \) and \(||g|| \leq 1 \), as objects associated with \(L^2(\mu) \). Then

\[
\int f \overline{g} \, d\mu = \int (\Gamma^{-1/2} P_f)(\Gamma^{-1/2} P_g)(\Gamma w_0) \, d(\sigma \times \mu_2).
\]

But \(\Gamma^{-1/2} P_f e^{-ids} \) and \(\Gamma^{-1/2} P_g e^{-ids} \) lie in the subspaces of \(L^2(\Gamma w_0 d(\sigma \times \mu_2)) \) generated by \(L_{N+d} \) and \(L_\varepsilon \), respectively. We conclude that

\[
e(\varepsilon, R_{N+d}) \leq 2\varepsilon.
\]

This proves the sufficiency assertion.

Conversely, suppose \(\lim_{N \to \infty} \mathbb{P}^1(L, R_N) = 0 \). Then (a) and (b) must hold.

From 3.4 it follows that for each positive integer \(k \), there exist \(A_k \in L^\infty(R_0) \) and a positive integer \(N_k \) such that

\[
|1 - A_k e^{-i(N_\varepsilon-1)h/\bar{h}}|_{L^\infty(\sigma \times \mu_2)} < \frac{\pi}{4} \cdot 2^{-k}.
\]

Put \(r_k = -\log |A_k| \) and \(s_k = -\arg(Ah^2 e^{-iN_\varepsilon}) \), so that \(||r_k|| + ||s_k||_{L^\infty(\sigma \times \mu_2)} < (\pi/2)2^{-k} \). Consider the function

\[
u = Ah^2 \exp(-iN_\varepsilon) - \bar{s}_k + is_k).
\]

Note that \(u \) is nonnegative on \(T^2 \), and \(u(z, e^{it}) \) is analytic in \(z \in \mathbb{D} \). As in [8, p. 10], it follows that \(u(z, e^{it}) \) has an analytic continuation across \(|z| = 1 \). And now the reflection principle asserts that for \(\mu_2 \)-almost every fixed \(e^{it} \), \(u(e^{it}, e^{it}) \) is the squared modulus of a polynomial \(P_k \) in \(e^{it} \), of degree at most \(N_k \). Observe that

\[
|P_k e^{it}/P_k e^{it}|^2 = \exp((r_{k} - r_{j}) + (\bar{s}_k - \bar{s}_j))
\]
is $\sigma(e^{it})$-integrable, a.e. $[\mu_2(e^{it})]$. Therefore, the unimodular roots of each $P_k(z, e^{it})$, $k = 1, 2, \ldots$, must coincide.

To construct P as in (c), choose any P_k and define

$$
\lambda(e^{it}) = \lim_{t \to \infty} \frac{1}{2\pi i} \int_{|z| = 1} \frac{P_k(z, e^{it})}{P_k(z, e^{it})} \, dz,
$$

$$
\lambda_1(e^{it}) = \lim_{e^{it} \to 1} \frac{1}{2\pi i} \int_{|z| = 1} \frac{P_k'(z, e^{it})}{P_k(z, e^{it})} \, dz,
$$

$$
\lambda_0(e^{it}) = \lim_{e^{it} \to 0} \frac{1}{2\pi i} \int_{|z| = 1} \frac{P_k'(z, e^{it})}{P_k(z, e^{it})} \, dz;
$$

these give the numbers of roots of $P(\cdot, e^{it})$ in C, in D, and at 0, respectively.

For each e^{it}, factor P_k into $P_0 P_0 P_0$, such that the roots of P_0, P_0 and P_0 lie in D, on T, and outside T, respectively, such that $P_0(0, e^{it}) = 1$ and

$$
\int \log |P_0(e^{it}, e^{it})| \, d\sigma(e^{it}) = 0, \quad \text{a.e.} \ [\mu_2(e^{it})].
$$

We establish the measurability of P_0, P_0, and P_0 as follows. First let

$$
H(z, e^{it}) = \exp \int \frac{e^{it} + z}{e^{it} - z} \log |P_k(e^{it}, e^{it})| \, d\sigma(e^{it}),
$$

$$
J(z, e^{it}) = P_0(z, e^{it}) / H(z, e^{it}),
$$

$$
C(e^{it}) = \frac{1}{2\pi i} \int \frac{P_0(z, e^{it}) z^{-1} \lambda(e^{it}) + 1} z \, dz.
$$

We find that

$$
J(z, e^{it}) z^{\lambda_0(e^{it}) - \lambda_0(e^{it})} = \frac{C(e^{it})}{C(e^{it})} \cdot P_0(z, e^{it}) z^{-\lambda_0(e^{it})} z^{-\lambda_0(e^{it})}.
$$

(To see this, compare with

$$
-\frac{\alpha \cdot z + \alpha}{|\alpha| \cdot 1 - \alpha z} = -\frac{\alpha z + \alpha}{|\alpha| \cdot 1 - \alpha z}.
$$

for $|z| = 1$, $0 < |\alpha| < 1$.) It follows that $\arg(P_k P_k)$ is measurable, and hence $P_0 P_0$ is measurable. Repeating this argument with P_0 replaced by $z^{\lambda_0(e^{it})} P_0'(z, e^{it})$ shows that $P_0 P_0 P_0$ is measurable, as are P_0, P_0, and P_0 separately.

Now $P_0(e^{is}, e^{is})$ is of the form

$$
P_0(e^{is}, e^{is}) = \sum_{m=0}^{J} a_m(e^{is}) e^{ims},
$$

where each $a_m(e^{is})$ is μ_2-measurable. Define

$$
P(e^{is}, e^{is}) = A(e^{is}) P_0(e^{is}, e^{is}),
$$

with

$$
A(e^{is}) = \left[1 + \sum_{m=0}^{J} |a_m(e^{is})| \right]^{-1}.
$$

Then $P(z, e^{it}) \in G_0$, and its roots are exactly those unimodular roots common to all the $P_j, j = 1, 2, \ldots$. Finally, let

$$
Q_k(z, e^{it}) = \exp \int \frac{e^{it} + z}{e^{it} - z} \log \frac{P_0(e^{it}, e^{it})}{P(e^{it}, e^{it})} \, d\sigma(e^{it}).
$$

Observe that $|Q_k| = |P_0 / P|$ on T^2, and $Q_k(z, e^{it})$ is a polynomial whose roots all lie outside T.

We have, at last, the representation

$$
w = |P|^2 w_0,
$$

where

$$
w_0 = |Q_k|^2 \exp(\tau_0 + \tilde{S}_k)
$$

satisfies (3-3) with $\varepsilon = (\pi/2)2^{-k}, k = 1, 2, \ldots$.

4. Further developments. The separation of variables approach, as realized through 3.4, has other consequences as well. First, following a course parallel to that of [8], we find spectra for the condition $c(L, R_N) < 1$.

4.1. Theorem. In order that $c(L, R_N) < 1$, it is necessary that $d\mu(e^{is}, e^{is})$ be of the form

$$
\Gamma(e^{is}) P(e^{is}, e^{is})^2 \exp[\tau(e^{is}, e^{is}) + \bar{S}(e^{is}, e^{is})] d\sigma(e^{is}) \times \mu_2(e^{is})
$$

where $P \in G_0$ is of degree less than N, τ and S are real functions in $L^\infty(\sigma \times \mu_2)$, $\|S\| < \pi/2$, and Γ is μ_2-measurable.

Proof. If $c(L, R_N) < 1$, then the restrictions (3-1) on μ hold. Hence 3.4 applies; given $\varepsilon, c(L, R_N) < 1 - \varepsilon < 1$, there exists $A \in C^\infty(R_0)$ such that

$$
\left\| A - \frac{1}{h} e^{iN - 1} \right\| \leq c(L, R_N) + \varepsilon < 1.
$$

(As before, h is defined through (3-2).) This implies that for some constants $K < \pi/2$ and C,

$$
|\arg(A h^2 e^{-i(N-1)} e^{is})| \leq K < \pi/2, \quad \text{a.e.} [\mu_2],
$$

and

$$
|\log |A| | \leq C, \quad \text{a.e.} [\mu_2].
$$
Put \(r = -\log |A|, S = -\arg(Ah^2e^{-i(N\pi)} \times \mu_2) \), and \(u = Ah^2 \exp(-iN\pi - iS) \). As in the proof of 3.5, \(u \) turns out to be \(\Gamma(e^{it})|P(e^{it}, e^{it})|^2 \), where \(P \in \mathcal{G}_0, \operatorname{deg} P < N \), and \(\Gamma(e^{it}) \) is a nonnegative \(\mu_2 \)-measurable function of \(e^{it} \). Now, if \(|h|^2 = \int A^2 d\sigma \times \mu_2 \),

\[
w = h^2 \cdot \exp(-2i \arg h) = \Gamma|P|^2 A^{-1} \exp[r(N-1)s + iS - i\arg h] = \Gamma(P)^2 \exp[r + iS - i\arg(Ah^2e^{-i(N-1)s})] = \Gamma|P|^2 \exp[r + iS]. \]

Thus, \(f = e^{it} \) is of the form

\[
\int |h|^2 \, d\sigma \leq \left(\begin{array}{c} \frac{2}{|2 - e^{-it}|^2 - 1} \frac{1}{|2 - e^{-it}|^2} \\ \frac{2}{|2 - e^{-it}|^2 - 1} \end{array} \right) \leq 2.
\]

Next, note that \(h(\cdot, e^{it}) \) is outer in \(H^2(T) \) for \(e^{it} \) fixed. Accordingly,

\[
\left\| e_N(e^{it}) \right\| = \sup \left\{ \left\| \int \frac{1}{r} e^{iN\pi} e^{it} \, d\sigma(e^{it}) : F(e^{it}) \in e^{it}H^1(T), |F|_{H^1} \leq 1 \right\}
\]

\[
= \sup \left\{ \left\| \int \frac{2 - e^{-it} - e^{it}}{2 - e^{-it} - e^{it}} e^{i(N-1)\pi} F(e^{it}) \, d\sigma(e^{it}) : F(e^{it}) \in e^{it}H^1(T), |F|_{H^1} \leq 1 \right\}
\]

\[
= \sup \left\{ \left\| \int \frac{2 - e^{-it} - e^{it}}{2 - e^{-it} - e^{it}} \cdot e^{i(N-1)\pi} F(x) \, dx : F \in H^1(T), |F|_{H^1} \leq 1 \right\}
\]

\[
= \frac{2 - e^{-it} - (2 - e^{-it})^{-1}}{|2 - e^{-it}|^2} \cdot \sup \left\{ \left\| F \left(\frac{1}{1 - e^{-it}} \right) : F \in H^1(T), |F|_{H^1} \leq 1 \right\}
\]

Put \(\omega = (2 - e^{-it})^{-1} \), and \(F(x) = (1 - \omega x)^{-2} \). Then \(|F|_{H^1} = (1 - |\omega|^2)^{-1} \), and

\[
\theta_N(e^{it}) \geq \frac{\omega_N - \omega}{|\omega_N - \omega|} \left(\left(1 - |\omega|^2 \right)^{-2} \right) \left(\left(1 - |\omega|^2 \right)^{-1} \right) = |\omega|^{N-1} = |2 - e^{-it}|^{1-N}.
\]

By 3.4, \(c(L, R_N) = \| \theta_N(\mu) \|_{\infty} \geq |2 - e^{-it}|^{1-N} = 1 \). This proves the claim. \(\square \)

Of course, there do exist \(\mu \) for which \(c(L, R_N) \to 0 \). The next result exhibits a large class of examples. Here, let \(K_0 \) be the collection of finite
trigonometric sums in $e^{i \xi}$ with coefficients in $L^\infty(\sigma(\xi))$, and let K_1 be the closure in $L^\infty(\sigma^2)$ of $R \setminus K_2$.

4.4. Proposition. Suppose that $d\mu$ is of the form $|P|^2 \exp(U + \bar{V}) \, d\sigma^2$ where $P \in K_0$, and U, $V \in K_1$. Then $c(L, R_N) \to 0$.

Proof. It suffices to show that $\exp(U + \bar{V}) \in W_0$. Let $\varepsilon > 0$. There exist real functions U_0 and V_0 in K_0 such that

$$\|U - U_0\|_{L^\infty(\sigma^2)} + \|V - V_0\|_{L^\infty(\sigma^2)} < \varepsilon.$$

Note that V_0 is again a real function in K_0. Now $\exp(U_0 + \bar{V}_0)$ has a series expansion in $e^{i \xi}$ which converges in $L^\infty(\sigma^2)$. In particular, it can be expressed in the form $|Q_0|^2 \exp \psi$ where $Q_0(e^{i\xi}, e^{i\xi})$ is a polynomial in $e^{i \xi}$ with no roots on the circle a.e. $(\sigma(e^{i\xi}))$, and ψ is a bounded real function satisfying $\|\psi\|_{L^\infty(\sigma^2)} < \varepsilon$. Put $r = U + \psi - U_0$, $S = V - V_0$, and

$$Q(z, t) = \exp \int \frac{e^{i \xi} + z}{e^{i \xi} - z} \log |Q_0(e^{i \xi}, e^{i \xi})| \, d\sigma(e^{i \xi}).$$

Then

$$\exp(U + \bar{V}) = \exp(U_0 + \bar{V}_0) \exp(U - U_0) \exp(V - V_0) = |Q|^2 \exp \psi \exp(r - \psi) \exp S = |Q|^2 \exp(r + S).$$

This shows that $\exp(U + \bar{V}) \in W_0$. \blacksquare

The representation of $\mathcal{M}(R_N)$ in 3.3 makes possible a formula for the distance from the function 1 to the space $\mathcal{M}(R_N)$, an N-step prediction error for halfplanes of a random field. For $N = 1$, this was done in [12], and for a process on L, see [5], [17]. In the present situation, let $d\mu = w(d(\sigma \times \mu_2) + d\lambda$ be the Lebesgue decomposition of μ with respect to $\sigma \times \mu_2$. There is a measurable subset A of the circle such that

$$\int \log w(e^{i \xi}, e^{i \xi}) \, d\sigma(e^{i \xi}) > -\infty$$

if and only if $e^{i \xi} \in A$. For such $e^{i \xi}$, define h on T via (3-2).

4.5. Theorem.

$$\inf \{ \|1 + f\|_{L^2(\mu)}^2 : f \in \mathcal{M}(R_N) \} = \sum_{m=0}^{N-1} \int_A \int_T h(e^{i \xi}, e^{i \xi}) e^{-\imath ms} \, d\sigma(e^{i \xi}) \, d\mu_2(e^{i \xi}).$$

Proof. There is a Borel subset Ω of the torus such that $\lambda(\Omega^c) = 0 = (\sigma \times \mu_2)(\Omega)$. Put $E = (T \times A) \cap \Omega$, so that $\mu = \mu_2 + \mu_3$, where

$$d\mu_3 = 1_E d\mu = \int_k |h|^2 \, d(\sigma \times \mu_2),$$

$$d\mu_2 = 1_E d\mu = \int_k \omega(d(\sigma \times \mu_2) + d\lambda.$$

Also, let $\mathcal{M}(A_j)$ be the subspace of $L^2(\mu_3)$ generated by R_N. It is known (see [12] or [13]) that

$$\bigcap_{m=1}^{\infty} \mathcal{M}(A_m) = (0), \quad \bigcap_{m=1}^{\infty} \mathcal{M}(A_m) = \bigcap_{m=1}^{\infty} \mathcal{M}(A_m) = L^2(\mu_2).$$

Fix N and suppose that P is the projection operator of $L^2(\mu_3)$ onto $\mathcal{M}(R_N)$. By the above observations, $1_E \in L^2(\mu_3) \subset \mathcal{M}(R_N)$, hence $P1_E = 1_E$. Now for any f in $L^2(\mu_3)$, observe that

$$Pf = 1_E Pf + 1_E Pf$$

is its representation with respect to $\mathcal{M}(R_N) \oplus L^2(\mu_2)$. (The second term $1_E Pf$ clearly lies in $L^2(\mu_3)$, and the first in $L^2(\mu_2)$; moreover, $1_E Pf = Pf - 1_E Pf$ belongs to $\mathcal{M}(R_N)$.) In particular, $(1_E Pf, 1_E Pf)$ is the projection operator of $L^2(\mu_2)$ onto $\mathcal{M}(R_N)$. To see this, let $f \in L^2(\mu_2)$ and check

$$1_E Pf, 1_E Pf = 1_E Pf, 1_E Pf ;$$

and for $f, g \in L^2(\mu_2)$

$$\{1_E Pf, 1_E Pf, 1_E Pf, 1_E Pf\} = \{1_E Pf, 1_E Pf, 1_E Pf, 1_E Pf\} = \{1_E Pf, 1_E Pf, 1_E Pf, 1_E Pf\} \mu = \{1_E Pf, 1_E Pf, 1_E Pf, 1_E Pf\} \mu.$$

Therefore

$$\|1 - P\|_{L^2(\mu)}^2 = (1 - P1, 1 - P1)_{\mu} = (1 - P1, 1 - P1)_{\mu}$$

$$= ((1 - P1)1_E, 1_E)_{\mu} + ((1 - P1)1_E, 1_E)_{\mu} + ((1 - P1)1_E, 1_E)_{\mu} + (1_E - 1_E Pf, 1_E)_{\mu} + 0$$

$$= ((1 - P1)1_E, 1_E)_{\mu} + (1_E - 1_E Pf, 1_E)_{\mu} = (1_E - 1_E Pf, 1_E)_{\mu} + 0 = (1_E - 1_E Pf, 1_E - 1_E Pf)_{\mu} = (1_E - 1_E Pf, 1_E - 1_E Pf)_{\mu}$$

$$\leq \sum_{m=0}^{N-1} \int_A \int_T h(e^{i \xi}, e^{i \xi}) \, d\sigma(e^{i \xi}) \, d\mu_2(e^{i \xi}).$$

In the last step we took

$$\phi(e^{i \xi}, e^{i \xi}) = h(e^{i \xi}, e^{i \xi}) - \sum_{m=0}^{N-1} \int_A \int_T h(e^{i \xi}, e^{i \xi}) e^{-\imath ms} \, d\sigma(e^{i \xi}),$$

\begin{align*}
\text{such that } &\int_T h(e^{i \xi}, e^{i \xi}) \, d\sigma(e^{i \xi}) > -\infty \\
&\phi(e^{i \xi}, e^{i \xi}) > -\infty, \\
&\phi(e^{i \xi}, e^{i \xi}) > -\infty. \\
\equiv &\int_T h(e^{i \xi}, e^{i \xi}) \, d\sigma(e^{i \xi}) > -\infty \\
&\phi(e^{i \xi}, e^{i \xi}) > -\infty, \\
&\phi(e^{i \xi}, e^{i \xi}) > -\infty.
\end{align*}
which lies in $L^2(R_N)$.

For the reverse inequality, note that

$$
\inf_{E} \left\{ \int \| h + \phi \|^2 d(\sigma \times \mu_2) : \phi \in L^2(R_N) \right\}
\geq \int \inf_{T} \left\{ \int \left| h(e^{is}, e^{it}) - \Phi(e^{is}) \right|^2 d\sigma(e^{is}) : \Phi \in \mathcal{H}^2(T) \right\} d\mu_2(e^{it})
= \int \left(\sum_{m=0}^{N-1} \int \left| h(e^{is}, e^{it}) e^{-ims} - \Phi(e^{is}) \right|^2 d\sigma(e^{is}) \right) d\mu_2(e^{it}).
$$

Acknowledgment. The author is indebted to Professor Loren D. Pitt, who was his thesis adviser when this research was performed.

References

Department of Mathematics
University of Louisville
Louisville, Kentucky 40292
U.S.A.

Received April 2, 1989
Revised version May 7, 1991