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A noncommutative version of
8 Theorem of Marczewski for submeasures

by

PAOLO DE LUCTA (Napoli) and PEDRO MORALES (Sherbrooke, Qué.)

Abstract. Tt is shown that every monocompact submeasure on an orthomodular
poset is order continnous. From this generalization of the classical Marczewski Theorem,
several resulis of commutative Measure Theory are derived and unified.

1. Introduction. According to the well known theorems of Aleksan-
drov [2], von Neumann [22] and Marczewski [19], a mild regularity condition
is sufficient for the c-additivity of a real-valued set function defined on a
family of sets. One of the purposes of this paper is to unify these apparently
unrelated results via an extension of the Marczewski Theorem to submea-
sures on an orthomodular poset. Incidentally, we indicate that one of the
particular interests of the noncommutative Measure Theory is its relevance
to the Hilbert space formulation of Quantum Mechanics (see [16], [23], [28]
and {31]).

The paper is organized as follows: In Section 2 we give some elemen-
tary notions of orthoposets and uniform semigroups, and we define some
pertinent classes of functions from an orthoposet into a uniform semigroup.
Section 8 introduces the notion of an approximating paving for the aforesaid
kind of functions, and this notion is illustrated with appropriate examples.
In the next section we extend properly the notion of compact measure of
Marczewski to the noncommutative setting, and we establish the first of
the main results of this paper. We also deduce, as by-products, several
results bearing the names of Aleksandrov [2], K. P. S, Bhaskara Rao and
M. Bhaskara Rao [5], Glicksberg [13], Huneycutt [14], Kluvanek [17], Mar-
czewski [19], Millington [20], von Neumann [22] and Topsge [30]. In the last
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Section 5 we introduce the notion of regularity, and we establish the second
of the main results of this paper. This theorem improves a noncommutative
result of Béaver and Cook [3] and yields, as corollary, the o-additivity of an
additive regular [0, +o00]-valued set function defined on an s-class of sets.

2. Preliminaries. Let I be a nonempty subset of a partially ordered
set. If the supremum (resp. infimuin) of D exists, it will be denoted by \/ D
(resp. A D). In particular, we shall write: \/{a,b}=a Vb, A{a,b} =aAb,
V{aiziel} =V, a, V{ai:i€{0,1,...,n}} = Vigai where n€ w =
{0,1,2...}, etc.

A bounded poset is a quadruplet (L, <,0,1) where (L, £) is a partially
ordered set, 0 is the least element of L, 1 is the greatest element of L and
0#1.

Let L = (L, <,0,1) be a bounded poset. An orthocomplementation on
L ig a function / from L into L satisfying the following conditions:

(i) ' is idempotent.
(1) ' is decreasing.
(ili} Forall @ € L, a A & exists and it is equal to 0.

From these axioms it follows that 0’ = 1, 1’ = 0 and, forall a € L, a Va'
exists and it is equal to 1.

We call a bounded poset with an orthocomplementation an orthoposet.
An ortholuftice is an orthoposet which is also a lattice. An orthomodular
lattice is an ortholattice I = (L, <,’,0, 1) satisfying the orthomodular law:
fa,be Landa < b, thenb= aV(a'Ab). A Boolean algebrais an ortholattice
satisfying the distributive law: If a,b,c € L, then aA(bVe) = (aAb)V(aAc).

An orthoposet L = (L,<,",0,1) is called an orthomodular poset if the

following conditions hold:

(i Ifa,b€ L and a < ¥, then a V b exists.
(ii) L satisfies the orthomodular law.

It is obvious that every orthomodular lattice is an orthomodular poset
and every Boolean algebra is an orthomodular lattice.

Let L = (L, <,,0,1) be an orthoposet. Consider the following binary
relation L on L: ¢ L bif a <¥. It is clear that L is symmetric and a L a
implies a = 0. If a € L and B is a nonempty subset of L, we write a L B if
a L bforevery be B. If b L B\ {b} for every b € B, we say that B is an
orthogonal set.

Let L be an orthomodular poset. Consider the following binary relation
C on L: aCb if there exists an orthogonal subset {u,v,w} of L such that
a=uVvand b =uVuw Itiseasy to see that, if aC'd, then aC¥’, a’Ch,
@'CY and the elements a Vb and a Abexist. Tf Disa nonempty subset of L,
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we write C(D) = {a € L : aCb for every b € D}. Clearly 0,1 € C(D), and
C(L) = L if L is a Boolean algebra.

Three important examples of orthomodular posets are the following:

1) Let H be a Hilbert space over R or C with inner product (-,). Let
L(H'} be the set of all closed vector subspaces of H. Consider the function L
from L{H ) into L(H) defined by the formula: M — ML = {z € H : {z,y) =
0 forall y € M}. Then (L(H),C,L,{0},H)is a complete orthomodular
lattice, where A;o; M; = [V;ep Mi and V; ; M; = closed span of (J;c; M;
for every family (M;)ier in L(H) (see [15, Proposition 1, p. 65]). Since
C(L(H)) = {{0}, H}, L(H) is not a Boolean algebra if dim(H) > 2.

2) Let £2 be a nonempty set and let 27 denote its power set. If ¢ denotes
the usual set complementation, then (27,C,¢,@, 2} is a complete Boolean
algebra and it will be denoted by 29,

3) A subset C of 27 js called an s-class in 2 if the following conditions
are satisfied:

(iygec.
(ii) If A € C, then A® € C.
(iii) Every finite disjoint union of elements of C belongs to C.

If C is an s-class in 12, then (C, C, ¢, 0, 12) is an orthomodular poset which
is not necessarily a Boolean algebra (see [26]).

Let E be a nonempty subset of 2. Then the symbol A(E) will denote
the Boolean subalgebra of 27 generated by E.

If Ly and Ly are two orthoposets, then the product orthoposet LIy X Ls
is defined in the obvious way.

If L is an orthoposet, any subset of I containing 0 is called a pevingin L.

For more details concerning orthomodular posets or orthomodular lat-
tices we refer to [4], [15] and [24]. '

A uniform semigroup is a quadruplet (S, +,0,4) where (5, +) is a com-
mutative semigroup, 0 is the neutral element for 4 and I/ is a uniformity
on § such that the function (z,y) — z 4+ y from § x § into § is uniformly
continuous.

Let § = (8,+,0,{) be a uniform semigroup and let P be the set of
all continuous pseudo-metrics p on § such that p(z + z,¥ + 2) < p(z,v)
for all z,y,z € § (semi-invariant property). It is well known that the set
{{(z,y) € S x § : p(x,y) < €} : p € P and € > 0} is a subbase for the
uniformity . Tf, further, § is a group, then the elements of P can be
chosen invariant.

Two important examples of uniform semigroups are the following:

1) Any commutative topological group is a uniform semigroup.
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2) Let Uy, be the uniformity on [0, 4-oc] generated by the semi-invariant
psendo-metric
3? y
1+z 14y
on [0,+00] with the convention that +00/(1 + (+00)) = 1. Then ([0, +00],
+,0,Us) is a Hausdorff uniform semigroup which will be denoted by §co-

pw(m: 'y) =

Let I be an orthoposet, let 5 be a Hausdorff uniform semigroup and let
A: L — 8§ be a function such that A(0) = 0. We say that

(i) A is additive if, for every finite orthogonal sequence (a;)ogi<n, ® € w,
in L such that \/I_, a; exists, we have A(\/1—y ai) = 57 Mas).

(ii) X is o-aedditive if, for every orthogonal sequence (a;)igw in L such
that \/;¢, 8 exists, we have A(V; ¢, @i) = limp 2 5g Aas).

(iii) A is s-bounded if, for every orthogonal sequence (a;)ig, in L, we
have lim;_q, A(a;) = 0.

(iv) X is order continuous if, for every decreasing sequence (a;)ig, in L
such that A, a; = 0, we have imy_, o A(a;) = 0.

Let now § = $.. We say that

(v) X is subadditive if, for every finite sequence (a;)o<icn, n € w, in L
such that \/].; a; exists, we have A(\/1ny @) <€ 3500 M)
(vi) X is o-subadditive if, for every sequence (0;)iew in L such that V/; ., a;
exists, we have AV, ;) < 37704 A(a).
(vii) Ais a submeasureif A is increasing and subadditive.

Remark. Let L be a Boolean subalgebra of 27 and let § = R or C.
Using Lemmas II1.1.5 and II1.1.6 of [8], it is easy to show that every additive
bounded set function A : L — § is s-bounded.

Let now L be a Boolean algebra, let S be a Hausdorff uniform semigroup,
let p € Pandlet A: L — § be an additive function. The function A, :
L — Sy defined by Ap(a) = sup{p(A(5),0) :b € L and b < a} is called the
p-semivariation of A, 1t is easy to verify that A, is a submeasure dominating
p(A(-),0). Moreover, A, is s-bounded if A is s-bounded.

3. Approximating pavings. Let Ly = (Lo, <,’,0,1) be an orthoposet,
let L be a suborthomodular poset of Lo, let § = (5,+,0,4) be & Hausdorff
uniform semigroup and let A : L — § be a function such that A(0) = 0.
A paving F in L X Ly is called an approzimating paving for X if, for every
o € L and every U € U, there exists (b,¢) € F such that b < ¢ < o and
AMd) € U[0] wheneverd € L and d < a A B'.

The following example is due to Marczewski [19, p. 116]: Let L be the

Boolean subalgebra of 211 of all finite unions of intervals of the form [, 3],
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where 0 < o < f < 1,let § = R and let Moy, B} = B — a. If a set E of
L has the form E = | i) I;, where the I; are disjoint intervals of the type
described, we put A(E) = YU i M(L). Then X is well defined, additive
and the paving F' = {{E,K): £ € L and K is a finite union of closed
subintervals of {0,1]} in L x 20 is an approximating paving for A.

If 5 is a Hausdorff uniform semigroup, it is shown in [21] that ev-
ery S-valued Baire measure on a locally compact Hausdorff space X has
{(UZ6 K1, UZ, Ki): each K is a compact G subset of X} as an approxi-
mating paving. Further, if S is a Havsdorff commutative topological group,
it is shown in [29] that every $-valued Borel measure on a Polish space X
has {(K, K): K is a compact subset of X} as an approximating paving.

The following two propositions yield more examples:

ProPOSITION 3.1 (see {3}). Let H be an infinite-dimensional separable
Hilbert space over C with inner product ('} and let A : L{H) — [0, 400[ be
a o-additive function. Then A has L(H) x {M € L(H) : dim{M) < +oo}
as an approrimaling paving.

Proof. By the Gleason Theorem {12] (see also [16]) there exists a unique
positive bounded linear operator ' : H — H of trace class such that tr(7) =
1 and A(:) = A(H) - tr T'P(-) where P(-) is the projection of H onto (). For
fixed € > 0, M € L(H), dim{M) = 400, let (€;);ew be an orthonormal basis
in M. Then

trTP(M) =Y (Te;,e;) = Tim > {Tes,e)
i=0
and the closed span N of {eg,eq,...,6,}, with a suitably large n, satisfles
(N,N)e F, tr T(P(M)A P(N)1) <e.

A subset F of 27 is called a §-paving in 27 if the following conditions
are satisfied:

(i) 0,2 € F.
(ii) Tf (F})iew is a sequence in F, then N2, F; € F.
(iii)_lf F,Fpe F,then LUK € F.

Clearly (i) and (ii) imply that, if Fy, Fy € F, then 1N F; € F.

Let F be a 6-paving in 27. A function f : 2 — R is called F-
continuous if, for every a € R, the sets f~1(] — o0, a]) and f~{([a, +o0[)
belong to F. Trivially every real-valued constant function on 2 is F-
continuous. Let fi, fa : 2 — R be two F-continuous functions and let
o, € R. Tt is easy to see that 8f; is F-continuous, and from the identities
Ifll_l (] -'--OO,C!]) = f1—1 (] - oc,a]) n f;l([—a’ '|"°°D and ]fll—l ([aa +°OD =
(e, +oo[) U fi(] — o0, ~e]) it follows that |fif is F-continuous. If Q
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denotes the set of rational numbers, the identity
{ze:(fi +fi)z)<a}
= U({:UE 2: file) <y}n{z e 2: fo(z) <e—17}),

vEQ
the similar identity for > and the De Morgan law imply that fi + fo is
F-continuous. Hence max(fi, fz) = +(fi + fo + i — fol) and min(f1, /) =
LA+ fo — |f1 — fa]) are also F-continuous.
A subset Z of 2 is called an F-zero-set if there exists an F-continuous
function f: 2 — Rsuch that 0 < f < 1 and Z = f~1(0). The set of all
F-zero-sets will be denoted by Z(F). Clearly 9,12 € Z(F).

LEMMA 3.2. Let F be a §-paving in 2%. Then
(a) Z(F)C F.
(b) Z],Zz [ Z(]'-) = 23U Zs, ZiNZqy € Z(f)

(c) Every element of Z(F) can be wrilten as a countable intersection of
sets belonging to Z(F)* = {G C N:G°e Z(F)}.

Proof. (a) Let Z € Z(F). Then Z = f~1(0) where f : 2 — R is an
F-continuous function and 0 < F < 1. Since f~1(0) = f~Y] — 00,0]) N
F71([0, +00]) it follows that Z € F.

(b) For i = 1,2 write Z; = f;1(0) where f; : £ — R is F-continuous and
0< fi £1. Since Z U Z, = {:z: = :min(fl,fg)(:c) = 0} and Zy N 2y =
{z € 2 :min(f; + f2,1)(z) = 0} it follows that Z; U Z,, Z1 N Zy € Z(F).

(c) Let Z € Z(F), Z = f~1(0) with f as above. For every n € w let
Gn={z€2: f(z)<1/(n+1)}. Then Z = (,_, Gn. Since

1

Gf,_:{xe.!?:f(m)zn—“}

e{xeﬂzﬁ—f—min (f,n—}H)(w)J},

it follows that G, € Z(F)".

LEMMA 3.3. Let F be a §-paving in 27 and let L = A(Z(F)). Then
every element of L can be written as a countable union of sets of Z(F).

Proof. Let Z(F), = {U2y Zi : Z: € Z(F)} and Z(F)§ = {Nizo Gi :
G; € Z(F)°}. From Lemma 3.2(b) it follows that Z(F), and Z(F)§ are
closed under the formation of finite unions. Since a set belongs to Z(F),
if and only if its complement belongs to Z(F)5, it follows that Ly = {B €
2% . B € Z(F), and B € Z(F);} is a Boolean subalgebra of 2. By
Lemma 3.2(c), Iy contains Z(F)}. So L C L.

Taking into account the Remark of Section 2, the following proposition
improves Lemma 1 of {2, p. 605]:
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PROPOSITION 3.4, Let F be a §-paving in 27, let L = A(Z(F)), let § be
a Housdor[f uniform semigroup and let X : I, — § be @ o-additive s-bounded
set function. Then X has L x Z(F) as an approzimating paving.

Proof. Let p € P and consider the p-semivariation A, of A. Then A,
is an s-bounded submeasure on L. We shall show that A, is e-subadditive.
Let (Bi)icw be a sequence in [ such that B = {Ji2, B; belongs to L. We
may assure that the B; are pairwise disjoint. Let C be an arbitrary set in
L. Then BNC = JZ,(B: NC). Since X is o-additive and p is continuous
and semi-invariant, we have

p(MBNO),0)= p(nlgnw Z A(B; N 0),0) = ngxgop(i A(BiN c'),o)

< Bm 3 p(A(BiNC),0)< Y Mp(Bi),
=0 i=0

and therefore A, (B) < T2, A,(B:).

From Theorem 5.3 of [7, p. 280] it follows that A, is order continuous.

To prove that L X Z(F) is an approximating paving for A, let B be a
set in L and let U € U. We may suppose that ¥ = /L {(u,v) € Sx 5 :
pi{u,v) < €} where p; € P and € > 0.

By Lemma 3.3 there exists a sequence (Z;)ie., in Z(F) such that B =
Ui2e Zi. Put By = Jjg Z: for every » € w. By Lemma 3.2 every By
belongs to Z(F). Since (B \ B, )new is a decreasing sequence in L whose
intersection is empty, it follows that Imp_eo Ay, (B \ Bn) = 0. Thus, for
every j = 0,1,..., m there exists n; € w such that n € w and n > n; imply
Poo(Ap, (B \ B),0) < &/(1 4 ¢), and therefore A, (B \ Bn) < ¢ whenever
n > ng. Let k = maXogj<m ®j. Then Ay, (B\ By) <egforall j =0,1,...,m.

Clearly (By, Bi) € L x Z(F). Let D be an element of L such that D C
B\Bj. Then p;(A(D),0) < Ap, (D) < Ap;(B\ Bi) < eforall j =0,1,...,m.
Hence A(D) € U[0].

4. Monocompact snbmeasures. Let Ly = (Lo, <,,0,1) be an or-
thoposet. A paving K in Lo is called monocompact if, for every decreasing
sequence (a;)igw in K such that A, a; = 0, there exists n € w such that
ay = 0.

The following list gives some interesting examples of monocompact
pavings:

1. Let H be a Hilbert space over R or C and let K = {M € L(H) :
dim(M) < +oc}. Then K is a monocompact pavingin L(H). In fact, let
(M:):iew be a decreasing sequence in K such that Ao, M= {0}. .For every
i € w write k; = dim(M;). Then (k:)icw i_s a decreasing sequence in w such
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that im;_ .0 k; = 0. So there exists n € w such that &k, = 0.

2. Following Marczewski [19] a compact class in 2 is a subset K of 29
satisfying the following condition: If (A;)ie. is a sequence in K such that
Nizp A: # @ for every n € w, then 25 A; # 0. Tt is clear that if X is a
compact class in £2, then K U {#} is a monocompact paving in 27,

3. A topological space is said to be pseudo-compact if every continuous
real-valued fanction on it is bounded. For example, if A(-) denotes the Cech~
Stone compactification, then S(R)\(8(w)\w)is a Hausdorff pseudo-compact
space which is not countably compact (see [9, Example 3.10.29] and [11]).

Let {2 be a pseudo-compact topological space and let F be the set of all
closed subsets of 27, Then Z(F) is a monocompact paving in 2. In fact,
F is a 6-paving in 27 and, since £ is pseudo-compact, it is easy to see that
Z(F) is the set of all zero-sets in £2. Then the implication (i)=(viii) of [27,
Theorem 2.3] assures that Z(F) is a compact class in f2.

4. Let F be a d-paving in 27. Following Aleksandrov [1, p. 314] the pair
(12, F)is called a space. A space (£2, F) is said to be F-compact if, for every
sequence (Fi)ie, in F such that 2 = [J72, F?, there exists n € w such that
12 = i, Ff. Tt is clear that a é-paving F in 27 is monocompact if and
only if the space (2, F) is F-compact.

5. Let C be a nonempty subset of 2% x 2. Following von Neumann [22]
we say that the pair (£2,C) is a space if C satisfies the following conditions:

() If ((z:)iew, 2) € C and ((zi)icw,y) € C, then z =y,
(i) ¥ ((2:)iew, =) € C and (zg,)igw is a subsequence of (2;)i., then
((zx }iew 7) € C.

For example, let X be a topological space, let Y be a Hausdorff topolog-
ical space, and let {2 be the set of all continuous functions from X into Y.
Consider the following subset € of 2% X £2: ((fi)iew, f) € C & the sequence
(fi(%i))iew in Y converges to f(z) whenever (&, )ie., is a sequence in X con-
verging to z. Clearly C # @ and the pair (£2,C) satisfies (i). Using the
argument of [18, p. 198] we can show that (£2,C) satisfies (ii). We note that
this “continuous convergence” is not topological in general {see [10]).

Let (£2,C) be a space and let F be a nonempty subset of £2. We say
that F is C-closed if whenever (2;)ie, is a sequence in F' for which there
exists z € (2 such that ((2:)iew, 2} € C, we have z € F. We assume that §
is C-closed, A subset C' of £2 is called C-compact if

(a) C is C-closed.

(b) For every sequence (z;)ie, in C there exists a subsequence (zk )iew
of (#;)iew and an element ¢ € 2 such that ((z4,)iew, z) € C.

It is obvious that @ is C-compact, _
Let (£2,C) be a space and let K = {C'C 2: ('is C-compact}. Then K is

icm

Theorem of Marczewski 131

a monocompact paving in 27, In fact, using Theorems 10.1.16 and 10.1.18
of [22] it is easy to show that K is a compact class in £2.

Now, let Lo be an orthoposet, let L be a suborthomodular poset of Lg,
let § be a Hausdorff uniform semigroup and let A : I — § be a function such
that A(0) = 0. We say that A is monocompact if there exists a monocompact
paving K in Lo such that C(L) x K is an approximating paving for A.
| For the proof of the first main result of this paper, we need the following
emma;

LEMMA 4.1. Let L = (L,<,',0,1) be an orthomeduler poset and let
(bi)icw be a decreasing sequence in C(L). Then, for everym € w, Vimo(bic1 A
bl) ewists (where b_y = 1) and it is equal to b’ _.

Proof. Since (C(L),<,',0,1) is a Boolean algebra (see [4, Exercise
VIIL2]), Vito(bic1 A b)) exists for every m € w. We shall show the formula

m
() \/ (bica A ) = b,
=0
by induction on m. For m =0, the formula (*) is trivial. Suppose that (*)
holds for m, Then
m+1 m
V i A8 = (\ (Bica ABD) V (b A Blayy) = B,V (b A Bl
=0 i=0
- (bfm v bm) A (b;n v b’m-l-l) =1A b:'n+1 = b:n+1 ’
and (#) holds for m + 1.

THEOREM 4.2. Let Ly = (L0,<,%,0,1) be an orthoposet and let 1. be a
suborthomodular poset of Ly. Then every monocompact submeasure on L is
order continuous.

Proof. Let A: L — S be a submeasure and let K be a monocompact
paving in Lp such that C'(L) x K is an approximating paving for A. Let
(@i)igw be a decreasing sequence in L such that A;., e = 0 and let U € U,
We may suppose that U = {(u,v) € [0, +o0[ [0, +00[: peo(u, v) < £} where
e > 0. For every i € w, put U; = {(u,v} € [0, 400 X[0,+00]: poo(tt,v) <
&/2"1}. Then U; € Uoo and 35y Us[0] C U[0] for all n € w.

Using the monocompactness of A, we can construct inductively a se-
quence (b;)igw in C'(L) and a sequence (c;)ie, in K such that b; £ ¢; £
ai Abi—y and Ale; A bi—g A D)) € Uif0] for every i € w, where by = 1. Then
(ei)iew 15 a decreasing sequence in K such that ¢; < a; for all i € w. So
Migw ¢i = 0. Since K is a monocompact paving in Lo, there exists n € w
such that ¢, = 0, and therefore b, = 0.

Since (a; Abi_y Ab))igw is an orthogonal sequence in L, \ing(ai Abi—1 A
b) exists for all m € w. Let m € w be such that m > n. We shall
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show that an, < V7ol A by AB)). Let i € {0,1,...,m}. Since a;Cd;
for all j € {-1,0,1,...,m}, we deduce, by {4, Remark VIIN2.15], that
a;C(bi_y AbL) and, because an,Cay, it follows that ¢, C(aiAbi—1 AY;). Then
[4, Theorem VIII.2.14] implies that

B A (i}o(ﬂi Abing A bé)) = f\=/l)(a’“ Abicg AB) = am A (i\=/0(b1-~1 A bi)) -

Since (b;)icw is a decreasing sequence in C(L}), Lemma 4.1 implies that
V(b1 ABL) = B, But b, > b = 1. So ap A(V2g(aiAbi-1AD})) = dm,
and therefore am < Vieg{a; Abi—1 A bl).

Since A is a submeasure, we have A(an) < A(Vigg(ai Abioy A Bl)) <
S o A(aiAbi_1 ABY) € Ying Ui[0] € U0l form 2 n. Solimpy—yee Alam) = 0.

COROLLARY 4.3. Let L be a Boolean subalgebra of 27, let § be a Haus-
dorff uniform semigroup and let X: L — §. If A is additive and monocom-
pact, then A is o-additive.

Proof. Let pg P. Then the p-semivariation A, is a submeasure on L.

We shall show that A, is monocompact. Let K be a monocompact paving
in 22 such that L X K is an approximating paving for A, Let A € L and let
U € Us. We may suppose that T = {(u,v) € [0, o x [0, +-00[: poo(2,v) <
g/(14-€)} wheree > 0. Then V = {(z,y) € §x.5: p(z,y) < £/2} belongs to
U. So there exists (B,C) € L x K such that B C C C A and A(D) € V(0]
whenever D € L and D C A\ B. Hence D € L and D C A\ B imply
#{A(D),0) < £/2. Then M, (A\ B) < /2 < &, and therefore A (D) < .
Consequently, A (D) € U{0] whenever D € L and D C A\ B.

By Theorem 4.2, A, is order continuous. Since p € P is arbitrary and
Ap dominates p(A(-),0), it follows that A is order continuous, and therefore
o-additive.

Remarks 4.4. (a) The classical Marczewski Theorem [19, 4(i)] and a
topological group-valued result of Millington [20, Lemma 4.1] are immediate
consequences of Corollary 4.3.

(b) The first statement following Lemma 1 of Topsge [30] is obviously

" contained in Corollary 4.3.

(c) Let £2 be a topological space. For a real- or complex-valued set
function ) defined on a Boolean subalgebra L of 27, the regularity of A
in the sense of [8, Definition II1.5.11] implies that A has L x {F C 2 :
F is closed in 2} as an approximating paving. Then Theorem I11.5.12 of [8]
is contained in Corollary 4.3.

(d) In our terminology, Theorem 2.3.4 of [5] can be stated as follows: Let
L be a Boolean subalgebra of 27, let K be a compact subclass of L and let
AL - [0,400[ be an additive set function such that A(A) = sup{MC):
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CeKand C C A} forall A € L. Then Ais o-additive. It is obvious that
this theorem is contained in Corollary 4.3.

(e) Following Aleksandrov [2, pp. 567-568] a charge on a space (£2, F) is
an additive bounded real-valued set function A on I = A(F) satisfying the
following regularity condition: For every A € L and every ¢ > 0, there exists
F € F such that F' C A and |A(4) — A(F)| < . The classical Aleksandrov
Theorem [2, Theorem 1, p. 590] can be stated as follows: Let (2, F) be a
F-compact space. Then every charge on ({2, F)is o-additive. It is clear that
this theorem is an immediate consequence of Corollary 4.3 and Example 4
above taking into account Theorem 2 of [2, p. 571].

(f) The following interesting result appears implicitly in Glicksberg’s
paper [13, pp. 2566-258]: Let 12 be a pseudo-compact topological space, let
Z({2) be the set of all zero-sets in £2,let [ = A(Z(f2)) and let A: L — R
be an additive bounded set function such that AMA) = sup{A(Z) : Z €
Z(12) and Z C A} for all A € L. Then ) is o-additive. First we note that
Z(£2) is a &-paving in 27 (see [11, pp. 14-16]). Then, by Examples 3 and
4 above, (£2,2(2)) is a Z(2)-compact space. To deduce the Glicksberg
Theorem from the Aleksandrov Theorem, it suffices to observe that the
regularity of A implies that A is a charge on (12, Z(12)).

CoROLLARY 4.5. Let R be a ring in 12, let K be a compact class in {2,
let 5 be @ Hausdorff uniform semigroup and let A : R — 5§ be an additive
set function satisfying the following regularity condition: For every A € R
and every U € U, there ezist B ¢ R and C € K such that BC C C A and
A(D) € U[0] whenever D € R and D C A\ B. Then A is o-additive.

Proof. Let {F;)ic. be a disjoint sequence in R such that {20 = |J;2, E:
belongs to R. Let L = {ANfp:AecR}and H={Ce K :C C }.
Then L is a Boolean subalgebra of 2% contained in R and H is a compact
class in f2y. Let g = A|L. Then it is easy to verify that p : L — 5 is an
additive monocompact set function. By Corollary 4.3, u is o-additive. So
M) = {20) = lipoeo 3o MEi) = iMoo 35 A(E;). Thus X is
o-additive.

Remarks 4.6. (a) A paving Q in 27 is said to be a quasi-ring in £ if
the difference and intersection of two elements of € can be writien as finite
disjoint unjons of sets of Q. Clearly every semiring in 2 (called half-ring by
von Neumann [22]) is a quasi-ring in {2.

The following recent result of Kluvanek appears in [17, Proposition 1.12]:
Let @ be a quasi-ring in 2, let C be a compact class in 2 and let p @
Q — [0, +oc[ be an additive set function satisfying the following regularity
condition: For every A € Q and every ¢ > 0, there exist B € Qand C € C
such that B C € C A and u(A) — pu(B) < &. Then g is o-additive.

Let R be the ring in {2 generated by Q. Then it is easy to verify that R
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is the set of all finite unions of elements of Q. Let X be the usual additive
extension of i to R. We can consider A as a function from R into S..
Let K = {UloCi : Ci € C, n € w}. Then K is a compact class in £
(see [19, 2(iii)]). Moreover, it is easy to show that X satisfies the regularity
condition of Corollary 4.5. Thus the Kluvéinek Theorem is an immediate
consequence of Corollary 4.5.

(b} The following result of von Neumann appears in [22, Theo-
rem 10.1.20]: Let (£2,C) be a space, let Q be a semiring in {7 and let
gt Q@ — [0,+00[ be an additive set function satisfying the following regu-
larity condition: For every A € Q and every & > 0, there exist B, De @, a
C-compact subset C of 12 and a C-closed subset F' of £2 such that BC C C
ACF°C D, u(B) > u(A) — e and p(D) < p(A)+e. Then pis o-additive.

Let R be the ring in 2 generated by @, and let A be the usual additive
extension of 1 to R. We can consider A as a function from R to 5. By
Example 5 above, the set of all C-compact subsets of §2is a compact class
in £2. Thus the von Neumann Theorem is an immediate consequence of
Corollary 4.5.

(c) Now let 12 be a Hausdorff topological space, let Q be a semiring in {2,
let R be the ring in {2 generated by Q. Let § be a Hausdor{l commutative
topological group and let i : @ — S be a set function such that u(@) = 0.
For every p € P, we define the set functions (&), (#0)p : 27 — Soo by the
formulas: (g)p(B) = sup{p(u(A),0): A € Q and A C B} and (pp),(B) =
sup{p(T g (AN, 0): Ai € Q, AinAj = 0if i# j, Uiy Ai C B,n € w}.

Tt is easy to verify that (ug)p(d) = 0 and (pg),(-) dominates p{u(-),0)
on Q. Suppose that y is additive, and let A be the usual additive extension
of u to R. Then it can be shown that (up),|R is increasing and subadditive
and (AR)sIR = (1p)uiR-

We say that u is up-regular if, for every A € Q, every p € P and
every U € Uy there exist B,D € Q, a closed countably compact subset
C of 2 and an open subset G of 2 such that BC C C AC G C D and
(1p)o(D\ B) € U0].

The following interesting result of Huneycutt appears in {14, Theo-
rem 2.1]: Let §2 be a Hausdorff topological space, let @ be a semiring in (2
and let § be a Hausdorff commutative topological group. If p: @ — 5 is
additive and pp-regular, then p is o-additive.

Tet A be the usual additive extension of x to R. Since the set C =
{C C 2:Cis a closed countably compact subset of 2} is a compact class
in 2 (see [9, Theorem 3.10.2, p. 258]), it follows that K = {{Ji=,Ci :
C; € C and n € w} is also a compact class in £2. To see that the Huneycutt
Theorem is contained in Corollaty 4.5 it remains to show the regularity of A.

Let U be the two-sided nniformity on 5. Let A € R and let U € Y. We
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may suppose that

U={{{z,9)€ 8 x5:pi(z,y) <&}

jm()
where p; € P and ¢ > 0. Yor every k € w, let

_ g
Uy = {(u,’u)e So0 X S0 1 Poo(,¥) < m}

Then Uy € Uy for all 5 € w. Write 4 = Uj=o 4; where 4; € Q and
ApNA; =9 k# 7 Fixie€{0,1,...,n}. Since p is up-regular, for every
7=0,1,...,m there exist B; € @ and C; € C such that B; C C; C A; and
(1£0)p:(A; \ B;) € U5[0]. Let B = |Jjry B; and C = U;=o Cj- Then B € R,
CeKand BLCCA. Let E€ R besuch that EC A\ B. Then

Pi(A(E),0) < (AR)pi(B) = (0)pi (E) < (1D )pi(4\ B)

= (o (45 B) <3 (w45 \ B9)

j=0 j=0

m
&
<ZD“2'm<E.
3'__

So pi(A(E),0) < ¢ for all ¢ € {0,1,...,n}, and therefore A(E) € U[0].

5. Regular submeasures. Let L = (L, <,’,0,1) be an orthomodular

poset. A paving K in L is called regular if the following conditions are
satisfied:

(i) Every countable subset of K has an infimum in L.

(ii) For every b € K and every sequence {b;)ie., such that A, b; L b,
there exists n € w such that AL, b; L b.

For example, if F is a compact class in 12, then {();2, Fi : F; € F} is a
regular paving in 22,

Let § be a Hausdorff uniform semigroup and let A : L — § be a function
such that A(0) = 0. We say that X is regular if there exists a regular paving
K in L such that A(K) = {(b,b}: b € K} is an approximating paving for
A. Sometimes we say that A is K-regular.

We are in a position to state the second of the main results of this paper:

THEOREM 5.1. Let L be an orthomodular poset. Then every regular
submeasure on I is o-subadditive.

Proof. Let A : L — §o be a submeasure and let K be a regular paving
in I such that A(K) = {(b,5):b € K} is an approximating paving for A.
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Let (;)icw be 2 sequence in L such that Ve @i exists and let ¢ > 0.
Write a = V¢, @i,

v= {(u, v) € [0, +00[ X[0, +00( : Poo(t, v) < l—j_-—s} .

£ )
U= {(u,v) € [0, +o00[ X[0, +00[ : poo{, v) < W} foralli€w.

By the regularity of A there exists b € K such that b < ¢ and A(e A'b’) €
U[0). Also, for every i € w, there exists b; € K such that b; < a} and
Aal A B}) € Ui[0)- _ B

Thus Ajew b € Aiew 8 = @ SV, and therefore A;e, bi L b Emce K 1:3
regular, there exists n € w such that Ao bi L b, and therefore Ai_q bi _<__61.
Since a = bV (aAb), b = a; V (al Ab)), MaAb) < € and MalAabl) < /2
for all 7 € w, we have

/\(a)sx(bmsx({/b;) +5g§;,\(b;)+s

1=0 i=0

00 [ooe]
<A +e <Y Ma) + 2.
=0 i=0
Since £ > 0 is arbitrary, we get A(a) < 3 i Alai}-
The following corollary improves [3, Theorem, p. 134}:

COROLLARY 5.2. Let I be an orthomodular poset and let K be a regular
paving in L. If A : L — S is an additive K -regular function such that
AaV ) < Ma)+ A(d) forall a,be K' ={c:c'€ K}, then A is o-additive.

Proof. Since ) is increasing, it suffices to show that A is subadditive
and to apply Theorem 5.1.

We note first that, by induction, it is easy to show that MV pa) <
T, Me;) for every finite sequence (¢:)ogign, » € w, in K'.

Let (ai)ocicn, ® € w, be a finite sequence in L such that \/7_, a; exists
and let £ > 0. Write a = \/1, @i, and define U and U; for 2 =0,1,...,m as
in the previous proof. By the regularity of A there exists b £ K such that
b < a and A(aAb) € U0]. Also, for every i = 0,1,...,n, there exists be K
such that b; < af and A(a} A ;) € U{0]. Thus

Aa) _<“)\(b)+sg)~(\n/b§) +e§i,\(b§)+e

i=0 i=0
m . ¢ n
< E{)\(ﬂ,)ﬁ' W} +€ _<_ ZO)\(CL:)'*‘ 2e.
i=0 i=

Since ¢ > 0 is arbitrary, we get AMa) < 55 g Aes).
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I@MMA 5.3. Let L be an orthomodular poset and let ) : I — S, be an
additive function. If a,b € L and aCb, then AM(a V b) < Ma) + A(B).

Proof. By [4, Theorems VIIL.2.8, VII1.2.10 and VIIL.2.11], o’ A b exists
and aVb=1aV (o' Ab). S0 AMaVb)=A(a)+ Ma' Ab) < Aa) + A(b).
COROLLARY 5.4. Let L be an orthomodular poset and let K be a regular

paving in L such that K C C(K). Then every additive K -regular function
A L §o, 15 o-additive.

Proof. This a trivial consequence of Corollary 5.2 and Lemma 5.3
noting that aCb implies o'CY,

COROLLARY 5.5. If L is an s-class in 12 and A : L — Soo is an additive
regular function, then X is o-additive,

Proof. Let K be a regular paving in L such that A is K-regular. Since

C(K)={ACRN:ANB¢€ K forall B € K}, the conclusion follows from
Corollary 5.4,
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A strong mixing condition for second-order
stationary random fields

by

RAYMOND CHENG (Louisville, KY)

Abestract.. Let {Xmn} be a second-order stationary random field on Z2. Let M(L)
be the linear span of {Xpmn : m <0, n € I}, and M(Rp) the linear span of {Xmn :
m > N, n €Z}. Spectral criteria, are given for the condition Bmpy., oo ey =0, where ep
is the cosine of the angle between M(L) and M(Ry).

L. Introduction. Suppose that {X,}52__ is a stationary process
on the probabilily space (£2,B,v). A classical (linear) prediction problem
is to estimate X, n > 1, based on the past of the process; that is, to
find X in the linear span P of {...,X_2,X_1,Xp} for which the mean
error (f|X — X,|? dv)'/? is a minimum (see [4], [5], [17]). A variation on
this idea is to replace X, by the span F, of {X,,, Xp41, Xnt2,- .-}, and to
investigate the linear dependence between the subspaces P and F,. This
class of problems is addressed in, for instance, [6], [8]-[11], [16], [18], [20].
These concerns, in turn, admit a multitude of generalizations.

In this article, we consider prediction problems in which the process is
replaced by a random field, {X,n}z2. For any subset S of Z2, we define
M(5) to be the linear span of { Xy, : (m,n) € §7; such spaces play roles
analogous to P and F,. Now the issue is to understand the dependence
between AM(S) and M(S5;). In particular, we seek descriptions of those
fields for which the dependence tends to zero as the distance between the
generating sels 5y and 57 increases to infinity in some way—a sort of “strong
mixing” condition. As in tle case of processes on Z, we pass to the spectral
domain and apply techniques from function theory. This yields spectral
criteria Tor strong mixing to occur.
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