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On the principle of local reflexivity
by

EHRHARD BEHRENDS (Berlin)

Abstract. We prove a version of the local reflexivity theorem which is, in a sense, the
most general one: our main theorem characterizes the conditions which can be imposed
additionally on the usual local reflexivity map provided that these conditions are of a
certain general type. It is then shown how known and new local reflexivity theorems can
be derived. In particular, the compatibility of the local reflexivity map with subspaces
and operators is investigated.

1. Introduction. The by now classical version of the local reflexivity
theorem reads as follows:

1.1. THEOREM [11, 13]. Let X be a Banach space, E C X" and F C X'
finite-dimensional subspaces, and ¢ > 0. Then there is an isomorphism
T:E— X such that

@ TN, 1T < 1+,
(i) '(Tz") = &"(z") for 2" € E and 2’ € F,
(iii) Tz" = 2" fora”" € ENn X.

New proofs have been given in [6] and [14], variants where it is shown
that T may be assumed to satisfy certain additional conditions are studied
in [2,4, 5,7, 8,9, 12]. The applications of the local reflexivity theorem are
abundant, and it is undoubtedly one of the most fundamental theorems in
Banach space theory.

The aim of this paper is to state and prove a local reflexivity theorem
which is in a sense the most far-reaching one (this will be made precise
shortly).

At Jeast formally all known local reflexivity results are covered by our
main theorem, and we will indicate how some of them can be derived easily
as corollaries, A systematic investigation of how to apply the new local
reflexivity technics to situations where variants of the classical thecrem have
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110 E. Behrends

already been used successfully is not intended here. We preferred to provide
some new results and to indicate some new applications.

In order to find generalizations of Theorem. 1.1 one surely has to ask
first: What are the properties the local reflexivity operator should always
have and what kind of additional conditions can reasonably be expected?
We will regard the properties 1.1(i) and (ii) as fundamental; 1.1(iii} will
play a different role, and the reader is warned to check carefully the results
to follow (is 1.1(iii) satisfied or not?) before they are applied to concrete
situations.

As to the further conditions, we start with the observation that there
are two types which cover all generalizations of Theorem 1.1 considered up
to now, namely:

1. Ezact conditions (T has to satisfy certain equations, e.g. 1.1(iii)).
2. Conditions which have to be satisfied approximately up to a prescribed
but fixed accuracy.

Further, these generalizations show that:

-— The conditions occurring in “1” are usually linear: they can be ex-
pressed by certain operator conditions as will be made precise in Defini-
tion 1.2 below. The only exception known to the author is Bernau’s local
reflexivity theorem for Banach lattices. Such situations seem to demand a
different approach.

— Conditions of type “2” can be rephrased by demanding that T or
a suitable operator image of T can be approximated arbitrarily well by
elements of a certain convex set.

These observations give rise to the

1.2. DEFINITION. Let X be a Banach space and F C X’ a finite-
dimensional subspace.

(i) Let F C X' be finite-dimensional and € > 0. An isomorphism T :
E — X satisfying 1.1(i} and (ii} will be called an e-isomorphism along F.

(i) Let A; : L(E,X) — Y; and B; : L(E,X) — Z; be linear and
continuous operators for i = 1,...,n and 7 = 1,...,m. Further, let y; € ¥;
and C; C Z; be given such that the C'; are convex. E is said to satisfy

— the exact conditions (A;, ), i =1,...,n, and

— the approzimate conditions (B;,C;),j = 1,...,m,
if for finite-dimensional ¥ C X' and ¢ > 0 there always exists an e-
isomorphism T : E — X along F such that A;(T) = y; and B;(T) € (C;)e
(:= {2z | dist(z,C;) < €}) for all 4, j. '

EXAMPLE. As an illustration consider Theorem 1.1. Its assertion can
be rephrased by saying that, for arbitrary finite-dimensional £ C X", E
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satisfies the exact condition (4,y0) with A : L(E,X) — L(E N X, X) the
restriction operator and g, = the identity from EN X to X.

Conditions which can be exactly or approximately fulfilled will be char-
acterized in the following section. This characterization will then be applied
to derive known and new local reflexivity theorems concerned with certain
subspace and operator compatibility conditions (see Sections 3 and 5).

It should be noted that the methods which lead to our general results can
also be used to give a new elementary proof of the “classical” Theorem 1.1.
This is sketched in Remark 2 following Theorem 2.3 (see also [3]).

2. The characterization theorem. First we will concentrate on
the simplest case, namely to characterize the property introduced in 1.2(ii)
when E is one-dimensional. We will see that the case of arbitrary finite-
dimensional E can be reduced to this situation by using a theorem of Dean's.

Also, to simplify notation, we will assume that there is only one exact and
only one approximate condition under consideration. The case of arbitrary
n and m in 1.2(ji) can always be rewritten in this way by introducing new
operators '+ (Ay(T)) and T — (B;(T")) from L(E,X) to []Y; and [] Z;,
respectively.

Then 1.2(ii} is equivalent to (i) of the following theorem, which thus
provides the desired characterization:

2.1. THEOREM. Let X, Y, Z be Banach spaces, A: X =Y, B: X —» Z
linear and continuous operators, zf € X" with ||z{l| =1, €Y, C C Z
convez. Then the following assertions are equivalent:

(i) For every finite-dimensional subspace F' C X' and every € > 0 there
is an a9 € X such that

— (L+e)}7! < [lwal| < 1+,

— zf(x') = 2'(xo) for allz' € F,

— Azp = W,

- on € (C); .

(ii) =¥ is weak*-continuous on the weak*-closure of range A', A"zl = yp,
and B"zy lics in the weak*-closure of C' (where C' is considered as a subset
of Z").

Proof. (i)=>(ii). Let ¥’ € Y’ be arbitrary. An application of (i) with
F:=1lin{A'y'} leads to -

¥'(w0) = ¥'(Azo) = 25 (¥’ 0 A) = (A"2g)(¥),
i.e. yp = A"z{. Similarly it is shown that B”z{ cannot be separated from
the weak*-closure of C.

" In otder to prove that zJf is weak*-continuous on (range A')~°" choose
first any o with Azg = yo (= A"zg): We claim that zg and 2o coincide on
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the weak*-closure of range A'. Let z’ in this closure be given. If we apply
(i) with F' = lin{z'} we obtain an Z, such that A%, = y and z{(z') =
z'(%p). ¢ and Zp coincide on range A’ and thus at z’, and we conclude that
zg(z') = 2'(Zo) = z'(z0)-

(ii)=+(i). We will make use of the following elementary fact: If F c X'
is a weak*-closed subspace and z§ € X" is weak*-continuous on Fy, then the
same holds with Fg replaced by Fy + F for any finite-dimensional F C X',

First we will show: For ¢ > 0 and F C X' finite-dimensional there is

an 2o € X with [|zof| £ 1+ ¢ such that Azg = yo and 2'(z) = 2f(z') for
z' e F. _
_ Let such F, £ be given. We write the weak*-closed space (range A") =" +
F as the polar G° of a closed subspace G of X. Then, with wg = the
canonical map from X to X/, the weak*-continuity of 2 on G° just means
that wg(zg) lies in X/@, considered as a subspace of (X/G)". Choose any
zp such that wg(ze) = wi(2f) and Jlzo]] < 1 + ¢ (which is possible since
loth () < 1),

Now let F be a fixed finite-dimensional subspace of X' and ¢ > 0. We
define Cp C Z to be the set B(D(F,e)), where D(F,c) := {zo | Azmy =
A'zg, |lzo|| £ 1+¢, and 2'(zmp) = z§(2) for ' € F}. C, is obviously
convex, and by the first part of the proof it is nonempty.

We claim that Cy meets (C),. If this were not the case we could find a
2’ € Z! and numbers a, b such that Re 2'|c 2 a > b > Rez|c,. The firkt

part of the proof, this time applied to F := F + lin{B'z"}, guarantees the
existence of an o with Bzy € C and (B’z')(29) = i (B'z'). But this means
that z’ would strictly separate B”zf from C contrary to B" zf € C~".

It is now simple to prove (i). For given F, ¢ select z!, € X' with ||z|f = 1
and |z§(zL)| > (1+¢)~1. With F := F4lin{z.} we choose any z; in D(?,e)
with Bzg € (C),, which obviously has the claimed properties.

Remarks. 1) It is important to have weak*-continuity of z! on
(range A")~°" and not only on range A’. Admittedly this might be difficult
to check. However, if A has a closed range, then range A’ is weak*-closed
by the closed range theorem, and it only has to be shown that Azl =y
and A"z{ € range A.

2? As noted above the case of exact conditions (4;, ) and approximate
conditioris (Bj, Cj)fori=1,...,n,j= 1,...,m can be reduced to the case
n = m = 1. The characterization theorem when applied to the operators
describing this compound situation yields that zo with (1+¢)~1 < lzo|| <
1+&, Aigo = y;, Byzo € (Cj)e, '(20) = z}i(2}) for 2’ € F can be found for
arbitrary F, ¢ iff z{ is weak*-continuous on the weak*-closure of > range A,
and Afzf = y;, Blizf € CJ-“"- for all 4, 7. 1
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This reveals a remarkable difference between the exact and approximate
conditions. Approximate conditions can be put arbitrarily together: as
soon as B"zf € C~7" is established one may demand B(zo) € (C). addi-
tionally in every local reflexivity theorem. Exact conditions, on the other
hand, have to be investigated simultaneously: if 2 is weak*-continuous on
(range A})~?" for all i one may in general not conclude that zff is weak*-
continuous on (3 range A})~7". (As an example consider two subspaces
(1, G of X for which the norm closure of G§ + G§ is not weak*-closed
and a normalized z§ in G§° N G3° such that z{(z') # 0 for a suitable z’ in
(GP+GEH™")

We now turn to the general case. Crucial is the observation (due to
Dean [6]) that arbitrary local reflexivity theorems can be derived from one-
dimensional ones.

For the sake of a self-contained treatment we repeat (with some sim-
plifications) Dean’s argument. Let X and F be Banach spaces, E finite-
dimensional. Tor € € E and z' € X’ denote by e ® z' the functional
T + 2'(Te) on L(E, X).

2.2. THEOREM [6]. Define ¢ : L(E, X)" — L(E,X") by ¢ +> (e =
(z' > y"(e ® 2))). Then p is an isometric isomorphism onto L(E,X").

Proof. The assertion, which is a special case of well-known results on

tensor product duality, can be obtained in an elemantary way as follows (the
idea is similar to that of Jarchow’s proof; see [10], p. 388):

— prove that the assertion is true if E is an I[}-space and that conse-
quently ¢ is always a surjective isomorphism:

— for given € > 0, choose eq,...,e, in E such that the convex hull of
{e1,...,€m) lies between Bg := {e | ||e]l £ 1} and (1 +¢}BE and consider
wx : T — (Te;) from L(E,X) to X™ (the product of m copies of X,
provided with the supremum norm); then ¢ satisfies [|3"]| < [le% (¥ <
(1+ ¢)]|y"|| for all ¥ since the corresponding inequalities hold for ¢x, and
using (with a similarly defined px«) the identity wxv 0 p = {px)" it is
simple to show that ||y”|| < (1 + &)|le(¥")|; thus [|3"]] < [|e(y")|, and “=>”
is trivially satisfied. ' _ _

Of particular importance is the case when E C X". We will denote by I
that element of L( £, X)" which corresponds under ¢ to the identity from £
to X", i.e. I is that functional for which I{z" ®z') = z"(z") (forall z" € E,
' € X'). _

A combination of 2.1 with 2.2 leads to the following description of pos-
sible local reflexivity theorems:

2.3. THEOREM. Let E C X" be finite-dimensional, A; : L(E,X) = Y,
B; : L(E,X) — Z; linear and continuous operators, ¥;i € Y;, C; C Z;
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convez (i =1,...,n, 5 =1,...,m). Then the following are equivalent:

(i} E satisfies the exact conditions (A;,y;) and the approzimate condi-
tions (B;,C;) for all i, j.

(ii) I is weak*-continuous on the weak*-closure of ¥ range A, and
AY(T) = yi, BY(I) € C7°" for all, 5.

Proof. We will make use of Theorem 2.1 with X and =l replaced by
L(E, X) and I, respectively.

(i)=>(ii). This follows from 2.1(i}=>(ii) since every finite-dimensional
subspace of L(E, X)' is contained in a space of the form lin{z" ® «' | z" €
E, z' € F} with finite-dimensional F ¢ X',

(ii)=>(i). Let F C X' be finite-dimensional and ¢ > 0. We choose a finite-
dimensional subspace Fe C X’ such that for T € L(E,X) the conditions
z'(Ta") = 2" (2") (for all z” € E, 2’ € F,) imply that T is one-to-one with
IT-!]] £ 14 ¢ (simply choose an F, which is “nearly norming” for the
z" € F).

Now consider F :=lin{z" ® 2’ | " € E, &' € F+ F,} C L(E, X)". By
2.1(ii)=(i) we find a T with 4i(T) = g, B;(T) € (C;)., (1 +€)=1 < ||T|| <
1+¢, y(T) = I(y’) for y € F. But this just means that z'(Ta") = «"(z")
for £’ € F and 2’ € F + F. so that T has the properties which are asked
for in (i).

Remarks. 1) If the operator 7'+ (44(T)) from L(E, X) to []Y; has
a closed range then (ii) can be replaced by

There is a T € L(E,X) such that A;(T) = y; = AY(I) for all i, and
BY(I)€ C;7°" for all j.

2) As an illustration how to apply the preceding theorem we indicate
how some known results can easily be derived.

a) Theorem 1.1 follows immediately: one only has to note that the re-
striction operator A : L(E, X) — L(ENX, X)is onto and that A”(I)}—being
the identity from E N X to X—lies in L(EN X, X) and thus in range A;
therefore E satisfies the exact condition (A,1d), which, as has already been
noted, is just the assertion of Theorem 1.1 (cf. also [3]).

b) With the usual notation suppose that Ciyvov,Cyp are convex subsets
of X and that zfy, € ENCR°fork =1,...,n and i = 1,...,ng. Then, for
€ > 0, the local reflexivity operator T' can be chosen such that in addition to
the usual properties 1.1(i)~(iii) also Tz}}, € (Cy). for all i, k. (Apply The-
orem 2.3 with the exact condition as in a) and the approximate conditions
given by the By : L(E, X) — X, T v Tz!,, and the Ck.)

This is just—for the case of Banach spaces—the local reflexivity theorem
of Geiler and Chuchaev ([9], Th. 1.2).
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c) Let K be a cone in X. Then one can find 7 in Theorem 1.1 such that
d(Tz", K} < d(z", K°°) + ¢||z"|| for all 2" € E. The reader is invited to
find suitable z{ in E and convex sets C; in X such that this result (which is
just Theorem 1 in [12]) follows from 2.3 using B; : L(E,X)— X,T — Tz,
and (A, yo) as in a).

d) Let @ C X be a closed subspace. Consider A : L(E,X) - L(En
G*, X[G), T = wg o T|gnges, yo = 0.

Then it is easy to see that 2.3(ii) is satisfied for (4, %), i-e. 2.3 provides
a T with 1.1(i), (ii) and A(T) = 0, ie. T(EN G°°) C G.

This is a special case of Bellenot’s main result ([4]); we will discuss this
kind of problem in detail in Section 3.

8) Let B; : L(E,X) ~ Z; be any operators and C; the closed ball
in Z; with radius || BY(J}|| (j = 1,...,m). Then surely BY(]) € Cj‘" and
Theorem 2.3 implies that for any F satisfying certain exact and approximate
conditions one may additionally demand that the local reflexivity operator
T satisfies ||B;(T)|| < |[BY(D| +e. ||B;(T)|| > | BY(I)|| — & can also be
achieved by prescribing T' on suitable z} o B;.

3. Best possible functional conditions and subspace restric-
tions, Let £ C X" be finite-dimensional. Up to now we have investi-
gated the problem whether there are e-isomorphisms T from £ to X along
F (which possibly satisfy certain other conditions) for ¢ > 0 and finite-
dimensional F. Is it possible to have results for larger spaces F'? More
precisely:

(*) Let Fy C X’ be a (not necessarily finite-dimensional) subspace of
X' and zf € E. Does there exist, for ¢ > 0 and F ¢ X' finite-
dimensional, an e-isomorphism T along F such that, in addition,
z'(Tzf) = zf(z') for all z' € Fp?

Suppose that 2§ and a space Fy have this property. Then it is easy to see
(by a similar argument to the one in the proof of Theorem 2.1) that z{ is
weak”-continuous on the weak*-closure of Fy and that z'(Tzf) = z{(z’) for
all z' € Fy?". Thus we may assume without loss of generality that Fp is
the polar G° of a subspace G of X.

It will be convenient to introduce a notation for the collection of all
z" € X" which are weak*-continuous on G°; this collection will be denoted
by G* here. We note in passing that G* is just the space G°° + X and
that G can be written as wfi!(X/G), which implies that it is norm-closed
(we : X — X/@G means as before the canonical map).

Using this notation we arrive at the following problem, which in view of
the preceding discussion can be thought of as a natural generalization of {*):
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PROBLEM A. Let G be a finite family of closed subspaces of X. Does
there exist, for £ > 0 and F C X' finite-dimensional, an g-isomorphism T
from E to X along F such that, in addition, T satisfies the best possible
functional relations with respect to the G°, i.e. 2’'(Tz") = «"(2') for G € G,
' eG, "€ ENGM

There seem to be no systematic investigations of this problem in the
literature.

We now turn to another problem which looks to be completely different
from Problem A. Let G C X be a closed subspace and 2z € F C X". Can
the local reflexivity map T' be chosen such that Tz{ € G? A moment’s
reflection shows that this is possible only if z5 € E N G°°, i.e. the problem
is whether or not T(E N G°°) C G can be achieved. In the case of several
subspaces this leads to

PrROBLEM B. Let G be a finite family of closed subspaces of X. Does
there exist for ¢ > 0 and F ¢ X' finite-dimensional an e-isomorphism T
from E to X along F such that T(ENG*®°) C G for all G € G?

This has first been studied by Bellenot in [4] who not only provided some
sufficient conditions but also pointed out that the property T|gax = Id (i.e.
1.1(iii)) of the local reflexivity map can be regarded as a special case of
Problem B (if one puts G = EN X, then T(E N G°°) C G implies that
T|gnx = Id provided that one knows—which by a suitable enlarging can
always be achieved—that F separates the points of EN X).

It is now a fundamental but completely elementary observation that a
family G for which Problem A has a positive solution is also appropriate for
Problem B (this follows from G°° C G* and the bipolar theorem). Therefore
we may and will concentrate mainly on Problem A.

Let G be a fixed finite family of closed subspaces of X. Depending on
E our problems will have positive solutions or not, and it is not hard to
rephrase them as exact conditions and also to derive from Theorem 2.3 a
characterization in terms of the weak*-continuity of I on a certain subspace
of L(E,XY. This characterization, however, is of little use in most concrete
situations, and hence we will restrict ourselves to the investigation of certain
sufficient conditions which can be easily checked in many cases.

3.1. DEFINITION. (i) Let M = (aj;) be an m X n-matrix with scalar
entries a¢;;. M induces an operator (z;) (3, aziz;) from X™ to XM
which will be denoted by Ay (or AF if X is not clear from the context).

(i) A finite family G of closed subspaces of X will be called matriz-closed
if AM(J]G:) is closed in X™ for every family Gy, ..., G, of (not necessarily
distinct) members of G and every m X n-matrix M.

Properties of matrix-closed families and ezamples will be discussed in
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Section 4. Here we will use these results to prove our main theorem: For
such families Problems A and B have an affirmative answer, and the local
reflexivity map can be chosen such that it fixes the z € En X:

3.2. THEOREM. Let G be a matriz-closed family (for examples cf.
Prop. 4.4 below). Then for finite-dimensional subspaces E C X" and
F C X' and ¢ > 0 there ezists an e-isomorphism T : E — X along F
such that T|pnx =1d, T(ENG*°) C @ for all G in G, (Tz")(2') = 2" (2")
JorGegG,z" e ENGA, o' € G°.

Proof. The family (Glsaturated :={G1N...N G, |G; € GU{ENX}}
is also matrix-closed by Prop. 4.4(ii), (iii), and therefore we may without
loss of generality assume that G = (G)saturated- Thus—as the discussion
following Problem B showed—it suffices to find an c-isomorphism 7T along
F such that

(+) (Tz")(z") = 2"(2') for Ge G,z" € ENG, 2’ € G°.

Now fix a finite-dimensional subspace E of X”. As a preparation for the
proof we rewrite (#) as a suitable exact condition.

We noted already that G = w™(X/G) so that wl, maps EN G into
X/G. Let Ig € L(ENG", X/G) be the restriction of wf to ENGA, Further,
define Ag : L(E,X) — L{(ENG* X/G) by T = (wg o T)|eng»- It is then
easy to check that (#) is equivalent to

Ac(T)=1Ig (for G € G),

i.e. we will have to show that E satisfies the exact condition (Ag, Ig), where
Ag 1 L(E,X) = [lg L(En G* X/GY) is defined by T — (Ag(T)), and
Ig = (IG)

By the remark following Theorem 2.3 it suffices to prove that

1° (Ag)"(1) = Ig.

2° Jg lies in the range of Ag.

32 Ag has a closed range.

The easy and canonical proof of 1° is omitted here, Before we are going to
treat 2° and 3° we choose vectors z{,...,2! € F and an m x n-matrix M
such that the following holds:

a) {z! | =¥ € EnG*} spans EN G for all G,

b) Ax (=10, 20) = 0, |

c¢) whenever zy,...,%, € X are given such that Ay (z1,...,2,) = 0
thereis a T € L(E, X) with T2f =z; fori=1,...,n.

(Such z! and M always exist: Choose arbitrary «{,..., 2} in E which
satisfy a) and assume that, without loss of generality, z{,...,z7 is a basis

forlin{zY,..., 2z}, Write, for j = r+1,...,n, 2] = bna{ +...+b;mz] and
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define the (n—r) X n-matrix M = (aj) by aj; :=bjp,iifi <1y 5045 = —1,
and all other aj; = 0.)

Proof of 2° It has to be shown that thereis a T € L(¥, X) for which
(*) is satisfied.

Define, fori=1,...,n,

Gi:=( G|} € G"}.

Since G coincides with (G)saturated We have G; € G, and 4.1(jii) implies that
z! € GP. Thus there are z; € X with z¥(a") = 2/(x;) for ' € G?.

We claim that Aps(1,...,2,) lies in the closure of Ap([] G:). Suppose
that this were not the case. We could then find, by the separation theorem,
functionals z},...,2}, € X' such that (z,...,2},) annihilates Ap (][] G;)
but not Ap(zy,...,2,). It follows that 37, a52%(gi) = 0 for arbitrary
9i € Giso that 3, a0} liesin Gf for i = 1, ey T

Therefore (3~ ajz})(z:) = «f(3 ajc;) and hence Y ajzl(z) =
Y ajizi(z}). The left hand side is different from zero (it is just the value
of (f,c'i”m:n) at Ap(Z1,...,%,)), but the right hand side, which is just
A%y (=%, . .., ")z}, .., 2}, ), vanishes. This contradiction proves our claim.

Since G is matrix-closed we find gy,. .., g, in [] G; with Ape(x,,.. Sy Ty)
= Am(g1,...,0n). But then Apr(z1 ~ g1,-..,%5 — gn) = 0, and by ¢) there
is an operator T € L(E,X) with Tz! = z; — g;. We have to show that T
satisfies (*).

Let G € G and 2’ € G° be given and consider any i such that z/ € GA.
Then G; C G by definition, and this yields z' € G? and thus 2/ (T'z¥) =
z{(z"), Consequently {c" | " € ENG", z"(z') = &'(T") for all &' € G°}
contains all z{ with 2 € En GA. By a) this space is all of £ N G*, which
is just what has been claimed for T,

Proof of 3°. We will need the following

LEMMA. Denote, for G, G € G with G C @, by weg 1 X/G - X/G ihe
cangm'cal map (so that w x owg = wz). Then for (Sg) € (range Ag)~ and
G,G € G with G C G, one has

wGE a SG = SE|EnGA .

Proof of the lemma. Let 2" € ENG* and £ > 0. By assumption
there is a T € L(E, X) such that |lwegT'z" —~ Sgz", lwzTaz" — Szz"l| <
£l|lz"]. Since w zweT = wxT it follows that lwggSaa” ~Sza"|| < c%a”:z:"’“.
Hence wGa-SG:c" = Saz”.

Now let (55) € (range Ag)~ be given. We will show that there is a
Te L(E, X) such that (S(,') = Ag(T) :

With G; as in the proof of 2° we choose z; € X with wg, () = Sg,(a").
We claim that Ap(z1,...,2,) € [AM(JTIG)). Let £ > 0 be giVel{. By
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assumption thereis a T, € L(E, X) such that ||wgoT:|gngr —Sq|| £ € forall
G, and in particular ljwg, Te2! — wg, (z;)|| € Ke (K := max{|z¥||). Choose
gi € G such that ||Tez! — z; + || < 2Ke. We have A (2f,...,z") = 0,
hence Ap(Tezf,...,Tex)) = 0, and this implies that ||Apr(Z1,...,%n) —
AM(gl’ see rgn)“ < 2K'”AM”E‘

Since G is matrix-closed we may write Aps(zy1,...,2,) as Apr{(g1, -5 9n)

- for suitable g; € Gy. By c) weget a T € L(E, X) with Tz = 2; — ¢;, and

it remains to show that Aq(T) = Sg for every G.
Let G € G be arbitrary and z¥ such that =/ € GA. Then G; C G by
definition, and the lemma yields

n
Sqz! = wg,cS5¢,2! = wg,cwa, Tx! = (wg o T)(z¥).

Hence S¢ and wgT coincide on {z! | z{ € E N G"} so that, by a), Sg =
wg |Enga. This proves that Ag(T) = (S¢).

Remarks. 1) The proof shows that in order to have

2'(Tz") = 2"(z") (G€g,z"e ENGMz2' € G°)

for any not necessarily matrix-closed family G and any particular finite-
dimensional £ C X" one only has to know that {ENG" | G € G} is closed
with respect to intersections and that there exist suitable 2¥,...,z0 and
a matrix M such that a)-c) are satisfied and Aa(J] G:) is closed for this
particular M. In some cases one can choose M = 0 for arbitrary F; this is
the idea which is behind Bellenot’s “friendly collections” [4] (there, however,
only the G°° and not the G* are treated).

As a special case consider two subspaces Gy, Gy such that
(" (G G)* = 6En G,
(This is true, e.g., if G4 + G; is closed.) Then, for arbitrary E, we may
always find a basis @{,...,z of E such that the z{ satisfy a) for G =
{G1,G2,G1 N G3}. We may choose M = 0 in the preceding proof, and
we arrive at a local reflexivity theorem which asserts the existence of &-
isomorphisms T : E — X along F with 2/(Tz") = z"(z") for 2" € EN G},
z' € GN, i=1,2(E, F finite-dimensional, ¢ > 0). Similarly, if G1, G satisfy
() (GiNG)® =66y
we can, by a similar argument, guarantee the existence of a local reflexivity
map T (an e-isomorphism along F) with T(ENG#?) C G; for i = 1,2,

Note, however, that in both cases we do not claim that 7' can be chosen
such that T|gny = Id (cf. the following discussion).

2) The preceding theorem provides conditions under which the =" €
E N G°° are mapped by T ezactly into . It should be noted that it is
always possible to map these z” arbitrary close to G. It suffices to define
Bg from L(E,X) to LENG**, X/G)by T weT|engee and to observe
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that Bg(J) = 0. Hence, by the remark at the end of the preceding section
we find the local reflexivity map 7' such that | Bo(T)|| < €, which just means
that the 2" € E N G°° are mapped to points which are “close” to (; this
can be achieved simultaneously for finitely many closed subspaces G and in
addition to other admissible exact and approximate conditions. Note that
this also follows from ([9], Th. 1.20) or ({12], Th. 1); cf. the notes following
Theorem 2.3.

3) Let G be a closed subspace of X such that G° has a complementary
subspace Y with [z’ + ¥'|| = [[#'|| + ||¥']| for ' € G°, ¥’ € Y. Then, as can
easily be verified, G°°+¥° = X" with |2 + || = max{]|z"||, ||s"{|} (2" €
G,y € Yo)'

Now let z1,...,2, € X and ry,...,r, > 0 be given such that there
are z € X, g; € G with ||2 — zj{|,[lg; — z;]| < r; for all j. From the
above norm condition it follows immediately that there is an 2" € G°° with
ll2" — 2;|| < r;, and Th. 3.2 provides a g € G with |jg — ;| < r;.

This seems to be the by far shortest proof of one of the fandamental
results in M-structure theory (see [1], Th. 2.17, a=pc).

We are now going to discuss a little bit more carefully the role of the con-
dition T|gnx = Id. This is an exact condition, and Theorem 2.3 indicates
that one should not investigate it separately from other exact conditions.
However, it is not clear up to now whether or not caution is really necessary
for this particular exact condition. To state it otherwise; Can there be a
general theorem agsserting that E satisfies the exact conditions (Ai, 1) to-
gether with T|gnx = Id once it satisfies the (Ai, 3:)? We will show that the
answer is in the negative, and this fact makes it clear why we preferred to
regard the property T|gnx = Id (i.e. 1.1(iii)) as less fundamental than L.1(i)
and (ii) for general local reflexivity theorems.

We will concentrate our discussion on exact conditions arising from Prob-

~lem B which are easier to handle than those coming from Problem A, It is
convenient to introduce :

3.3. DEFINITION, Let G be a finite family of closed subspaces of X. We
will say that G is admissible for the local reflexivity theorem if for E C X",
F C X' finite-dimensional and ¢ > 0 there is an e-isomorphism T : B~ X
along F such that T(E N G°°) C G for all G € 6.

G will be called strongly admissible if the operator T' can be chosen such
that in addition T|Enx = Id.

By the preceding results it is clear that § is strongly admissible iff
GU{EnN X} is admissible, Theorem 3.2 implies that matrix-closed families
are strongly admissible and by the remark following this theorem families
{G1, G2} are admissible provided that (G N G2)*® = G$° N GL°. This js a
necessary condition as the following lemma shows: :
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3.4. LEMMA. (i) Let G be admissible. Then (GyN...NG,)*° = G{° N
NG for Ge,.. ., Gl EG.

(ii) Let G be strongly admissible and M any m X n-mairiz. Then
AX (JI6)nX™ ¢ Am(T] Gi) Jor Gu,...,G, € G, i.e. the G°° “mimic”
the G € G when systems of linear equations with the right hand side in X
are concerned. '

Proof. (i) Let Gy,...,G, € G be given. Suppose that the norm closure
of G} +...+ Gy, were a proper subset of (G1N...NG,)°. Then it is possible
to choose 2’ € (G1N...NGL)° and 2" € (G +...+G2)° C G§°N...NG°
with z"(2’) = 1, and our assumption would provide an z (= Tz") with
z € G1N...N Gy, z'(z) = 1. This contradicts z' € (G1N...NG,)°, and
consequently we have shown that (G +...4+G%)™ = (G1N...NG,)°. From
this one sees at once that G{°N...N G2 C (G1N...NG,)°% and “C” is
always valid.

(i) Let M = (az) be any m X n-matrix, Gy,...,G, € G, and z!f € G?°
such that z; 1= Y} ajz¥ € X for all j. Define E to be the span of
T1yeeeyTm,y,. ..,z and choose T according to the assumption. Then
z; = Tz; = 3 a;Te!, ie. with g; 1= Tz we have (z1,...,2m) =
AM(gl:"-,gn)- ' :

We are now going to present an example of a family G which is admissible
but not strongly admissible. This example contains only two subspaces and
thus represents the simplest case where counterexamples are possible (note
that families G = {G} are matrix-closed and thus strongly admissible).

~ 3.5. ProrosiTioN. Let X = ¢, G1 = {(2;) I.:u,- = iy fori =
1,3,5,...}, Gy := {(ml') | 21 = 0, z; = zy4y for i =_'2’4a61“'}1 g =
{G1,Ga}. Then G is admissible but not strongly admissible.

, Proof. Wehave G1 NGy = 0 and GY° = {(;) | (t:) € I*°, t =
tigqy for ¢ = 1,3,5,...}, Gio = {(t,‘) | (t‘*) €l™, t, =0, t-,' = ti-l-.l ':for T =
2,4,6,...} so that (G1 N G3)* = G§° N G§°. Thus G is admissible by
Remark 1 following Theorem 3.2. However, with e; = (f1;) € ¢ we have
e; € GY° 4 G3°, but ey ¢ Gy + G3, and consequently our family cannot be
strongly admissible by Lemma 3.4(ii). '

4. Matrix-closed families. These families have been introduced in
Definition 3.1. In the present section we study their properties (some of
which have been of importance in Section 3) and describe classes of examples
in order to be able to apply Theorem 3.2.

Properties
4.1. PROPOSITION. Let G be a matriz-closed family and Gy,...,Gr € G.
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A (GiN...NG)° =Gi+...+ G},
(i) (G10...N Ga)® = G*°N...N G2,

(i) (G1n...nG Y =G8N...NG}.

Proof. (i) Consider the operator § : X — [[ X/G;, = — (wg,(z)).
We will show that § has a closed range; then, by the closed range theorem,
range §' = G{ + ...+ G2 will be the annihilator of ker § = Gy N...NG,,.

Let (we, (:n:,)) E (range S)~ be given. For £ > 0 we choose z E X and

€ G; with ||z — z; + || £ & Then [[(z1 ~ zi) ~ (51 — gi)l| £ 2¢ for
1’ = 2, ..., n. We thus have shown that, with M = (a;;) defined by
all other a;; = 0

(G=1,...

Ap(Tyy...,2y) lies in the closure of Ap(J] Gi). Since & is matrix-closed
there are ¢1,...,9s in Gy,...,Gy, Tespectively, with Ax(21,...,2,) =
Am(gry. s 9n) It follows that 2 i= 2y —gn =23~ g2 = ... = Ty — gn 50O
that (wg,(x;)) = Sz lies in range §.

(ii) This is an immediate consequence of (i). :

(iii) Let 2" € GP N...N GA. By assumption there are 21,...,2, € X
such that z" coincides with z; on G? for i = 1,...,n. We claim that
Ap(z1,...,2y) lies in the closure of Ap(J] Gi) (where M is as in the proof
of (i)). Suppose that this were not the case. Then we find z{,...,2}_; in X
such that (zf,...,z0_{)(Am(zy,...,2a0)) = 1, but (=},...,2h 1 (Am(g,
.-+19n)} = 0 whenever g; € G;. This just means that

ei1=1, ajjp=-1,
=1, i=1,...,n),

zi(zi—z)+ .z (z—2a) = 1,
i —@)+.. + 2 (1 —gn)=0

Hence z§ +...+z},_; € G}, 2} € G}, forj =1,...,n~1,and we conclude

that (21 + ... + 250 )(21) = 22y + ...+ 24y), 23(z5) = 2"(z]) for
i=1,. ,n-—l But this leads tO:L‘l(ﬂ:]—.Tg)-‘I'- +-"’n l(xlwmn)mo a
contra.dmtmn

for g; € G;.

Since our family is matrix-closed we may choose g,...,g, with
Am(z1,. -, %0) = Aplg1, .-, 9n). Then z 1= 2y — g1 = 2 -'yz = 0=
Ty = gn satisfies 2"(¢’) = &’(z} for 2’ € G + ...+ G5 (= Gy n...N G’n)"
by (i)), and this proves that z" € (Gy n...N G ) .

The inclusion “C” is trivially satisfied.

ExaMPLES. Let Gy,..., Gy, be closed subspaces of X and M an m X n-
matrix. We have to investigate whether Aar([]G;) is closed in X™. The
following elementary observation will be useful:

4.2. LEMMA. Let Ay : X" — X™ and A3 : X™ — X™ be surjeclive

isomorphisms such that Ay and A7 leave [[ G; invariant. Then Ap(J] G:)
is closed provided that (A; Ay A1 YT Gi) is closed.
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4.3. LEMMA. Lelt Gh,...,Gy_y be such that AM(H"_I Gi) is closed for
every m X (n — 1)-matriz M Suppose that G, is another closed subspace

such that G; C G, fori=1,...,n— 1. Then Ap([]G;) is closed for all
m X n-matrices M,

Proof. Let M = (a;) be an m X n-matrix. If all a;,, vanish nothing has
to be shown. So suppose that, without loss of generality, a,,, = 1. Consider

-~ the m X n-matrix M = (b;}, where b;; = 1 fori = 1,...
fori=1,...,n—1, all other bj; = 0;
— the mXn-matrix My = (dj;}, where d;; = 1forj = 1,...,m, djm = —Cjn
for 7 =1,,..,m~1, all other d;; = 0 (here c;; are the entries of M M;).
Then MyM M, = (ei;) is an m X n-matrix for which ey = 1 and en; =
ejn = 0fori=1,...,n-1,j = 1,...,m— 1, Hence AM;MM,(HG)
is closed as the du'ect product of AM(HH_I G;) with G, where M =
(€;i)j=1,....m—1,i=1,...n=1.- M1 and M are matrices which differ from the
identity matrix only (possibly) in the mth row. Hence, since (3, contains all

Gi, the associated operators Apr, and (Aps,)~! leave [] G; invariant, and
by 4.2 it follows that Ap(]] G;) is closed.

4.4. PROPOSITION. (i) Let Hy,..., H, be closed subspaces such that Hy C
..C H,. Then {Hi,...,H,} is matriz-closed.

(ii) Let G be matriz-closed end G a finite-dimensional subspace of X.
Then G U {G} is also matriz-closed.

(iii) If G is matriz-closed then so is

{Gin...nG, |n€EN, G1,...,G5 € G}.

(iv) Let Hy,..., H, be closed subspaces such that the sum H, + ...+ H,
is a direct sum. Further, letG, (o= 1,...,r) be matriz-closed families with
G, CH, for G, € G,. Then|JG, is matriz-closed.

(v) With G also {G1+ ...+ Gn | n €N, Gy,...,Gy € G} is matriz-
closed.

(vi) Let Hy,... ,T}} is
matriz-closed.

(vii} A family G is matriz-closed iff {G"u | G € G} is matriz-closed.

(viii) Every finite family of M-ideals is matriz-closed (for definitions see
[1]; here we only note that two-sided closed ideals in C*-algebras are M-
ideals).

Proof. (i) This follows at once from the preceding lemma.

(ii} Let Gy,...,Gn bein GU{G}, where G1 = G2 = ...= G, = G and
GrplyeoyGn € g We write [] G as the direct sum of H1 = [[i=1 Gi and
Hy = 1'[,“,,4_1 G;. Then, for an m x n-matrix M, Ap([] G;) has the form
Apr, (H1)+ Ape, (Hy) for suitable mxr- and mx (n—r)-matrices M, and M.

' Ry bai = ~amy

,Hy be as in (iv). Then {25, Hi |l AC{L,...
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But A, (Hz) is closed by assumption, and Apy, (H;) is finite-dimensional.
This proves that Ap(] G) is closed.

(ili) We indicate the idea by showing that Ap(]] G:) is always closed for
Gi,.+.,Gn-1 € G, Gy = G1NGy. Let any m X n-matrix M = (a;;) be given,
We define the spaces Hy,..., Hp41 to be just the Gy, ...,Gr1, G, Gy and
an (m+ 1) X (n+ 1)-matrix M = (b;;) by

b_,-;:a,-.- forj:l,.._.,m,i:l,...,n,
bm+1,n =1, E’m+1,m}-l = ~1,
bm+1'.‘= _,'."+1ﬂ0 fori:l,...,n-—l,j:l,...,m.
Then Ap(J] H:) is closed in X™+! by assumption. Hence Ap([] H:) N
(X™ x {0}) is also closed, and this space can be identified with Ap(T] G;).

(iv) and (v) are easily verified, and (vi) is an immediate consequence of
these assertions.

(vii) follows from the closed range theorem and the fact that the bidual
of [ Gi can be identified with [] G¢°.

(vii) For M-ideals Ji,...,Jn in X the bipolars J{°,...,J3° are M-
summands in X"”. Thus, since the M-summands form a Boolean algebra,
we find M-summands Hy,...,H, in X" such that {Jf° | i = 1,...,n} C
{YicaH:| Ac{l,...,r}}. Hence it suffices to combine (vi) and (vii) to
finish the proof.

A counterezample. In view of the importance of matrix-closed families in
the present context it would be desirable to have a simple criterion at hand.
Surely, if ¢ is matrix-closed then G + ...+ Gy is closed for Gy,...,G, €
G, and one might ask whether the converse is also true. The following
counterexample shows that this is not the case.

4.5. ProrosIiTiON, There are ¢ Banach space X and closed subspaces
Hy,...,Hy such that

(i) H;+ H; =X, Hin Hj = {0} fori # j; thus G1 + ...+ Gy, is closed
forGl,...,G’nEQ:z{Hl,...,H.g}, i

(ii) there is @ 2 X 4-matric M such that Ap([] H;) is not closed.

Proof. Let X := K2, provided with any norm, Uf :=1in{(1, 1)}, Uf :=
lin{(~1,141/k)}, Uf :=1in{(1,0)}, Uf := lin{(0, 1)} for K € N. We define
X 1= eo(Xo) (= {(2k) | zx € Xo, zx — 0}), Hi:= {(2x) | 2 € UF for all k}
for i = 1,...,4. Then obviously (i) holds.

For the proof of (ii) let M be the matrix

-1 0 1 1
0 -1 -1 1/°

We claim that A (][] H;) is not closed.
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Let z = ((ax, Bc})x € X be arbitrary and su i
) ppose that, for snitable
hi € H;, AM(hlth:h(hhi) = (0: z)s ie.

hy=hs+hyy, hy+2=—hs+hy.

Writing kv = ((ax, )k, ha = ((~br, b1+ 1/k))g, ks = ((ex:0))k, By =
((0,dy))x we conclude that a; = ¢), = di and (=bg + ap, be(L+1/k)+ Bi) =
(—ak,ax). 'There.fore —ax = kB + (k + 1)ay, and consequently (0,z) €
AM(.H H;) is equivalent to kg + (k+1)ay — 0; in particular, there are z €
X with (0, z) ¢ Ap(T] H). But all (0, z) lie in [Ap ([T H:)]™: since for ar-
bitrary (e, ) € Xp and k € N there are u¥ € U¥ with Apr(uf, uk, ub ul) =
(0, (e, B)} it follows that Ap(I] H;) contains all (0,z) with z € X a finite
sequence, and these (0, %) are dense in {0} x X.

5. Operator restrictions in the local reflexivity theorem. Let R :
_X — X be an operator. Can the local reflexivity map T be chosen such that
it respects R? There are several approaches which make this demand precise
Euid[ni;,ke it possible to prove a corresponding local reflexivity theorem ([2],
4], [Th.
We will present a result which contains the previous ones,
' 5.1..LEMMA. Let Ry,...,R. : X — Y be operators, E C X" finite-
dimensional, and 1 > £ > 0. There are operators B, : L(E,X)— Y, conver
sets C; CY (i = 1,...,n) and a finite-dimensional space F, C X' such that

(i) B"(I) € C;°, i.e. E salisfies the approzimate conditions (Bi, Cs)
Jor ali i, :

(ii) whenever T & L(E,X) is an g-isomorphism along F. such that
Bi(T) € (Ci)esa for all i, then

O[S ras o <| S reora] < | 3R
e=1 e=1 e=1

coay € B with ||z)'] < 1.

Proof. We will make use of the approximate conditions described in
Remark 3 at the end of Section 2. For fixed e = (zf,...,2)) € E" we
consider B, : L(E,X) — Y defined by T + 3 R, 0 Tz} and C, := the

closed ball in ¥ with radius || RYz/||. Since, as can easily be checked,

BY(I)= 3 Rizy, we have BI(I) € (C.)™7.

Now let 6 > 0 be arbitrary. We choose a é-net (&;)i=1,..n in {(=¥,...
cooaxf) | z) € B, {|27]] £ 1} € E and define B; := B,,, C; := C,,.

Choose a finite-dimensional F C Y’ such that [g"||(1 + £)~! <
sup{ly"(s)| | ¥’ € F, | = 1} for all " in {5 Rz | z! € E, |l22]] < 1}.
It is then clear that every e-isomorphism T along F := lin{RLy" | ¢' €
F, ¢=1,...,7} satisfies the first inequality in (*). ' :

+e

for all 2¥,,
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If Bi(T) € (Ci)ese for all i, then || 3= R, T'zy|| < || 30 RY=;|| + £/2 for all
(z!,...,2) in {e; | i =1,...,n}, and consequently
Il E ReTa:;'n < ” E Rz} | +€/2 + rémax || Rs]

Hence (*) will be satisfied provided that § has been chosen sufficiently small.

if ||lgll < 1.

Note. There are operators R which are one-to-one but for which there
exist 2" with ||z = 1, R"z" = 0. Consequently, it is not to be expected
that the right side of (*) can be replaced by ||'¥; Rjz}||(1 + ).

5.2. THEOREM. Let Rye @ X — Y, be operators (0 = 1,...,s, ¢ =
1,...,70), £ C X" finite-dimensional. Then for every finite-dimensional
F C X' and every € > 0 there ezists an e-isomorphism T along F such that

(1) T|enx =14, L

(@) | 3, R (1+e)7 S 1, Reo T3]l < N2, Reo || + £ Jor all
ocandalzf,...,2¥ € E with ||z]|| < 1.

L
More generally, (i) can be replaced by any exact and approzimate con-
ditions satisfied by E, e.g. by T(E N G°°) C G for G in a malriz-closed
family. :
Proof. By Lemma 5.1(ii) the assertion in (ii} can be deduced from
certain approximate conditions, and by 5.1(i), F satisfies these conditions.
Thus the result follows from Theorem 2.3,

Note, The case when all r, = 1 together with subspace restrictions for
a “friendly collection” has been treated in [4].

We are now going to state some consequences of the theorem as corol-
laries for the sake of easy reference:

5.3. COROLLARY [2]. Let Ry,..., R, : X — X be operators, E C X" and
F ¢ X' finite-dimensional, and £ > 0.

(i) Suppose that
(+) dim E = (r + 1)dim E, where E:=E + ZR’Q'E.
Then there s an e-isomorphism T E ~ X along F such that
(1) ?:lEnx = Ida ~
(2)ToR)|g=RyoT|g fore=1,...,r.
(i) Without the assumption (x) the conclusion of (i) is true with (2)
replaced by
@) (T o Ry~ ReeD)lell S e fore=1,...,r. :
Proof. Fixany é > 0. By Theorem 5.2 (applied to Id, Ry, ..., R,) there
is a f-isomorphism T': E — X along F + Ry +...+ R.F with T|gnx = 1d
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and
|l=g + BY=y + ...+ RI2f|| - || Tzl + RiT=Y + ...+ R, Txl'|}| <6
for z{,...,2i € E, |2"|| £ 1.

Define T': E — X by z§ + R{z{ + ...+ Rz v Talf + RyT2! + ...+
R,.I"zif . T is well defined by (), T maps along F, and (1) and (2) are
obviously satisfied. In order to show that T is an e-isomorphism we first
note that there is a constant # such that ||z/']| < # for all o provided that
26 + Rz + ...+ Riz!|| < 1 (since the map (2,...,2") > zff + Rzl +
...+ Rz is an isomorphism from E™+* to E by (+)). But this implies that

1— 60 < |\T(af + RYz{ + ...+ R" =M < 1+ 69
for normalized zf 4 ...+ Rz, and consequently T is an ¢-isomorphism for
small §. :

(ii) follows from (i) by an easy perturbation argument. One only has to
apply (i) to operators R, which are close to R, and satisfy () as well as
(Rg:i”)(z') = (Ryz")(z") for all " € E, z' € F, and then (i)(2) applied for
the R, yields (2') for the R,. For details see [2].

54. CoroLLARY: Let R,: X - Y, (p=1,...,r) be operators, E C X"
and F C X', F, CY, finite-dimensional, and € > 0. Suppose that

(a) ker Ry = (ker R,)°° for all p,

(b) the family {ker R, | ¢ = 1,...,r} is mairiz-closed.

(¢) R(ENX)= RY(E)NY, forallp.
Then there are c-isomorphisms T : E — X along F, Ty : R} E — Y, along
F,{e=1,...,r) such that

(1) Tenx =4, Tlauz)ny, = 14,
¢
(2) RpoT =Tyo Ryj|p foro=1,...,r.

Proof. Theorem 3.2 yields, for arbitrary § > 0, the existence of a -
isomorphism T' : E — X along F+ R\ F1 +...+ RLF; such that T|gnx = Id,
T(EnkerRY) C R,. Define T, : Ry E — Y, by T,R}jz" := R, Tz". The
T, are well defined, and (1) and (2) are obviously valid. That the T, are e-
isomorphisms provided that & is small follows as in the proof of the preceding
corollary.

Note. Domaiiski has treated in [7] the case R, = §,0...05; for a
family of operators S, : X1 — X,. His result follow from 5.4 since in this
case the ker R, are increasing, which implies that (b) is satisfied by 4.4(i).

In [8) he has presented a more elaborate version of this idea (the T, can
be defined not only on R";E but on larger finite-dimensional subspaces).
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There seems to be no simple way to obtain this as a direct consequence of
Theorem 5.2.

Acknowledgement. The author would like to express his gratitude to
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Almost everywhere summability of Laguerre series
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KRZYSZTOF STEMPAK (Wrocaw)

Abstract. We apply a construction of generalized twisted convolution to investigate
almost everywhere summability of expansions with respect to the orthonormal system
of functions £3 (2} = (n!/I(n +a 4+ 1))Y2e2/2[3(2), n = 0,1,2, ..., in L2(Ry, z° dz),
a > 0. We prove that the Cesiro means of order § > a+2/3 of any function f € L?(z? dx),
1 < p £ oo, converge to f a.e. The main tool we use.is a Hardy-Littlewood type maximal
operator associated with a generalized Euclidean convolution.

1. Introduction. The problem of mean convergence of Laguerre expan-
sions has attracted considerable attention in the last thirty years or so. The
articles by Askey and Wainger [2] and Muckenhoupt [12, 13] are fundamen-
tal in the subject but also papers by Freud and Knapowski [6], Poiani [15]
and Dlugosz [5] brought interesting results. A new impulse was given to the
field in the ’80s by Gorlich and Markett in a series of papers [7-11]. Their
method of investigation of the mean convergence problem was based on a
convolution structure for Laguerre polynomials defined first by McCully and
extended by Askey. An underlying device there is Watson’s product formula
for Laguerre polynomials.

In contrast with mean convergence surprisingly little is known for alimost
everywhere convergence of Laguerre series. The first result in this direction
was obtained by Muckenhoupt for expansions with respect to the Laguerre
polynomials. '

Let

_ Li(z) = (1) e*2™(d/dz)"(e""z™1?) _
denote the nth Laguerre polynomial of order @ > —1. Then the normalized
polynomials

(1.1)  I%(z)=(aY/T(n+a+ ))2L5%z), n=0,1,2,...,
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