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Spaces of sequences, sampling theorem, and
functions of exponential type

by
RODOLFQ . TORRES (New York, N.Y)

Abstract, We introduce certain spaces of sequences which can be used Lo characterize spaces of
functions of uxponential type. We present a generulized version of the sampling theorem and
a “nonorthogonal wavelst decomposition” for the clements of these spaces of sequences, In
particular, we oblain a diserete version of the so-called o-transform studied in [6]-[8]. We also
show how these new spaces and the corresponding decompositions can be used to study multiplier
operators on Besov spaces.

§ 0. Introduction. It is a well known fact that if a function is in LF(R) and its
Fourier transform has compact support on, say, the interval (—nr, =), then its
LP(R)-norm is comparable to the L/(Z)}norm of its samples on the integer
numbers (see a.g [2], p. 101). It is then natural to ask whether it is possible to
tell, by just looking at the samples, if the function is also in some other space of
distributions. We show in this paper that the answer to this question is, in
general, yes.

Which spaces of functions other than LP{R} should we consider? Suppose
that we want to deduce smoothness properties of a function from its samples,
Then, from an heuristic point of view, we may think that we should have to
measure how “smooth” the collection of samples is when considered as
a function over the integers. This is apparently in conflict with the lack of
a nontrivial differentiable structure on the set of integers. On the other hand,
band limited functions, i.e. functions whose Fourier transforms are compactly
supported, are antomatically C* {and in fact, analytic). Thus, it is only
meaningful to consider smoothness properties of functions in connection with
gome other properties such as “size”, “growth”, and “oscillation”. We are then
led to look at Besov-type spaces of functions on R and their possible
counterparts on the integers. We still have to address the problem of finding
a device to intrinsically define smooth functions en & nonsmooth and discrete
object. It is not surprising that this device is given by a version of the so-called
Littlewood- Paley theory.

Once these spaces of distributions on the integers are defined, it is then
natural to study their properties such as duality, interpolation, boundedness
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of operators, etc. As is well known, for spaces of functions in R {or R"), the
p-transform theory (see [6], [8] and [23]) is a very useful tool to study that
kind of properties. The basic idea is to decompose the ¢lements of the spaces
under study into some “building blocks” which greatly facilitate many
computations. We develop a discrete version of the @-transform which serves
for the same purpose but in the context of distribution spaces on the integers.

Although we will not carry out the details here, we also want to mention
that it is possible to develop a “dual” theory, and study spaces of distributions
on R/2nZ, using a periodic version of the g-transform {details will appear in
[10]). A similar approach has been taken in [12} and [15], where some
distribution spaces on R/2nZ are studied from the “orthonormal-wavelet”
point of view. Of course, as the reader familiar with the subject knows, in terms
of decomposition of function spaces in R", the g-transform and wavelet
theories mainly differ in the greater flexibility but lack of orthogonality in the
decompositions obtained with the first one compared to the decompositions
obtained with the second (for details and references about the wavelet theory,
see the book by Meyer [16]). These decompositions can be viewed as discrete
versions of the so-called Calderén reproducing formula, or more generally, as
an example of the more recently developed Feichtinger~Gréchenig theory of
decompositions of Banach spaces through group representations [5] (see also
[11] for a self-contained description of the relationship between these theories),
Nevertheless, the decomposition of the sequence spaces introduced in this
paper does not fit into the gemeral framework of [5], What we want fo
emphasize is the “sampling theorem” point of view., We believe that the
@-transform decompositions on R, Z, and R/2nZ could be three applications of
a possibly more general sampling theorem in an abstract group-theoretic
setting. Perhaps, it should be worthy to pursue this idea further in order to
achieve a more elegant and unified theory. Seme related work in this direction
has recently been done in [17].

This paper is organized as follows. In the first section, we recall certain facts
about periodic distributions on R and we give a generalized version of the
sampling theorem which allows us to sample arbitrary distributions with
compactly supported Foutier transforms. In §2, we define the (homogeneous)
Besov spaces B”“‘(Z) by mimicking the Littlewood-Paley definition of the
Besov spaces B‘”‘(R) as is presented, for example, in [18]. Using the
Plancherel-Polya inequality and our version of the sampling theorem, we show
that for p > 1 the space B%%(Z) can be identified with the space of distributions
in B4%(R) whose Fourier lransforrns are supported on [ ~mn, . In contrast, [or
0 <p <1, the latter space is strictly “smaller” than the former. Finally, in §3
we present the g-transform decomposition of the spaces B%4(Z). For L*(Z)
a similar decomposition, but more related to orthonormal bases and .quad-
rature mirror filters, have already been studied in [3] and [14]. In this section,
we also give an application of our decomposition to the study of Fourier

icm

Sampling theorem . 53

multipliers, and we discuss further extensions and generalizations of these
results.

The decomposition results of § 3 depend heavily on the work of M. Frazier
and B. Jawerth about decomposition of function spaces. In particular, some of
the arguments used are borrowed from [6]. In addition, as was pointed out in
that work, the importance and the usefulness of the Plancherel-Polya
inequality in connection with the study of Besov spaces is already described in
the book of J. Peetre [18]. The author gladly acknowledges that the discussion
at the beginning of §11 of that book and a lecture given by M. Frazier
motivated some of the results presented here. He wants to thank B. Jawerth,
R. Rochberg, and G. Welland for some conversations and comments, He also
wants to thank I, Feichtinger for pointing out a reference.

§ 1. Periodic distributions and sampling theorem. We sfart by introduvcing
some notation and by recalling some facts about periodic distributions on R.
The reader is referred to [20], §2.11, for further details.

As usual, let 2(R) and & (R} be, respectively, the subspaces of C*(R) of
compactly supported functions and of Schwartz rapidly decreasing functions.
Their topological duals are the spaces of distributions 2'(R) and &'(R)
(tempered distributions), while & (R) (compactly supported distributions) is the
dual of C*(R). The pairing between distributions and test functions is denoted
by <+, '), which is assumed to be linear in both entries. For a function g, its
translate by heR is the function 'c,,g(x) g{x—h), and §(x} = g(~—x). These
operations extend to distributions in the usual manner. The Fourier transform
of a tempered distribution f is denoted by f, which is defined, in case f is an
integrable function, by f (&) = | f (x)e~** dx. The inverse Fourier transform of
f is denoted by f. For A% R, y, is the characteristic function of the set A.

A distribution fe 57 (R) is said to be 2n-periodic if tom f= f for all ne Z.
Let fe 5 (R) and assume that f is 2n-periodic. Then it can be shown that there
exists a sequence of numbers, {a,},.z, such that

fm Z allr""‘ﬂé’
Hok
where & is the Dirac mass at the origin, and where the convergence of the sum
is weak* in &'(R). It follows that
f=3 ae
el

Moreover, given a sequence of numbers {a,},z, the series 3 ,.za,7T-,0
converges weak* to a distribution fe%(R) if and only if there exist two

~ nonnegative constants C and N such that

la) < C(1+ ).

In such a case f is a 2n-periodic distribution. In addition, if /' is a locally
integrable function, then

= 2m) ™ [J )1 -na(E)e™ dE.
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It is well known that the space of 2z-periodic distributions on R can be
identified with the space of distributions on the unit circle, or, more precisely,
distributions on the group R/2nZ (see [13], p. 43). In fact, this identification is
usually done by letting a 2n-periodic distribution

g= 3, ae” "

ned

(originally defined on & (R)) act on 2n-periodic C*-functions by the formula

(g, 0> = Y., [ 0O 2r-nm(&)e ™ dE = T, a,p-nme ™, @),
nelk nel;

The convergence of the above sum is guaranteed by the (at most) polynornial
growth of the sequence {«,} and the rapid decay of the “Fourier coefficicnts™ of
Xi-ra®. Notice that there is no ambiguity with this extension of ¢ because
a function in & (R) is 2x-periodic if and only if it is identically zero. In addition,
we obviously have ¢, = (2r) "1 {g, ¢"). In the particular case that g is a locally
integrable function, it is not hard to see that

a, == (2ﬁ)_ ! ,fg(é)X[—n,u](é) et dé&.

We want ncw to relate periedic distributions with compactly supported
distributions. The first thing to recall is that, by the Paley-Wiener theorem,
a distribution with compactly supported Fourier transform is actually the
restriction to the reals of an analytic function of exponential type. [t does make
sense then to talk about its value at a point. Moreover, if supp f & [~t, (],
then there exist two positive constants, C and N, such that

| f @) < CL+|z)f¥e
for all z = x+iyeC.

For t > 0, let E,(R) denote the space of distributions of exponential type t,

ie, the subspace of %'(R) consisting of all tempered distributions . whose
Fourier transforms are supported on the interval [—t, t]. Suppose that
e (R)NE,(R). Then, of course, its periodic extension

F@ =Y @n [/ x)e™dxe™ ™ = T f(n)e

neZ nedl
is a 2n-periodic distribution, which is still a locally integrable function, and
whose restriction to { —n, %] is /. Notice also that y(.p» /' OF xp<nx f give rise,
in the above way, to the same periodic distribution. In addition, by Plancherel’s

theorem,
) |f.("")|2 = || [ fam)-

ned

Conversely, suppose the sequence {a,}nzeI*(Z) is given. Then

ﬁ(f) = Z ane'"i"f

neZ
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is a periodic distribution which is a locally integrable function, and such that
f=Cp-nmB)Y is in L*(R) with :
I fn%l(n) = z !an|2-

e
The above correspondence is one-to-one. If we mow consider an arbitrary
distribution f'€ E_(R), then the situation is a bit different. Not only f, ¥-rm /o
and ¥j-nm f (whenever it makes sense) conld be different objects, but also, two
different distributions could give rise to the same periodic extension. In fact, we
have the following simple result,
LimMa 1. Let feE (R). Then the periodic extension of f,

“1) ﬁ = Z TZmn.fz Zf(n)e"""”‘f

nedy neZ
(weak* convergence in F'(R)), is a 2m-periodic distribution. Moreover, given
f, g E_(R), then F and G, the periodic extensions of f and §, agree as distributions
if and only if for some M 20 and complex numbers ¢, k=0,..., M,

M
(1.2) g=f+ 73 exFsinmx.
k=0 .

Proof Let pe#(R) and let L > 0. Then

< Z TZrmfa (P> = <ﬁ Z T—Zml‘p>'

n| % L (n|EL
Since fed’(R), and for any ¢& L (R), Y ez 2@ converges in C*(R),

m { Y vk 0 ={/ ¥ 1o2me).

Lo pisL ned,
The rest of (1.2) follows from the Poisson summation formula for & function
in &.

Assume now that f, g&.%'(R) have Fourier transforms supported on the
interval [ —m, ©]. I F = G, we must have f(n) = g(n) for all ne Z. Then, for any
peP(R) with supp ¢ & (—n, m),

<f: (P> s <f: z T‘—2nra‘;0> = <Fa (P> = <(‘}a (P> = <g: Ez '5~2nncp>-= <ﬁn §9>
el na.
Thus, sopp(f ~g) & {~=, n}. That is, for some M 2 0 and complex numbers
ak,bk,kmo,..',M, o
= S (4,845 by 5.

k=0

The condition f(n) = g(n) easily implies that a, = —b,. Hence,
M M

frg= Y @@~ =@~ Y glix)tEe ™~

k=0 ke
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and (1.2} follows. Conversely, if f and g satisfy (1.2), the same computations
show that f(n)=g{() for all n and F =G. m

We now want to associate to a sequence of numbery with al most
polynomial growth a tempered distribution in E,(R). First, we nexd to
introduce some additional notation. Given a sequence of complex numbers
§ = {S,}lnez. We define the order of 5 to be the (exiended) real number

ord(s) = inf{te R: |3,/ < C,(1+nl}f},

with the convention that ord(s) = — oo if |s,| £ C,(1+|nl) for every negative f,
and ord(s) = oo if the set {reR: |s,| < C,(1+|nl}} is empty.

Let sinc x denote the function (rx)™ *sinzx. We have the following version
of the sampling theorem (cf [2], p. 107).

THEOREM 1 (Generalized sampling theorem). Suppose that s = {8, }wz is
a sequence of complex numbers with ord(s) < co. Let N =min{MeZ,
M 20 {1+l Ms,} e IP(Z) for some 1 <p <}, Then
(1.3) E(s) = x¥( Y n™Ns,sinc{x—n))+ sysinc x
n# ¢
converges weak® in &'(R). Moreover, the distribution E(s} so defined satisfies
suppE(©)" = [—n, =] and E(s)(n}) = s, for all neZ.

Preoof. For any pe&(R) and L> 0,

L L
<l [ Izl n s sinc(x~n)", @p = Y (=) Vs, ¥eame " @)
"= In]=1 ’

L
= <| Iz: (in)‘NSnx["n,n]ewmas aN(P>
LIECRY

"

= )Ij (i™s, | e"" " p(g)dE.

jj=1 -

Now, since 8V is a function of bounded variation on [, x], we have

| § e ¥ p(&)de] < Cinl ™.

-7

Then

L A
K(x"”z n"Vs, sinc(x—n)", )| < C Y In|"V s,
=1 t

nl=1
and using Halder’s inequalily we obtain

L
|G 3. n7¥s,sinc(e—n))", @3] < CI{L+1m)"Vs,} | ocz-

| =1
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It follows that the expression in (1.3) defines a tempered distribution. Since the
Fourier trunsform of each partial sum in (1.3) is supported in [ —n, ©], so is
E{s)"*. In particular, both F{s)* and the Fourier transform of each partial sum
are distributions in #’(R), and we ci#n compute

E(s)(k) = (2m) " CE(s)", %

= (27” l( Z ("T) N""u<X[‘~'n.n]e ‘{I"‘:n (‘}Ne"“g> +S(J <X{-~n.n]1 elkr‘,f>) = Sk' =
nd(h
We want to remark for later use that, if ¢ € #(R) and o (~x) = *p(n) for
all &< N, then a simple integration by parts shows that the distribution
defined in the above theorem satislies
CEE), 0 = 3 8, ™™, 9.

ned

Notice also that if fe E, (R), then, in general,

M
F=x53 n¥ f{nsinc(x—n)+f O)sincx+ 3 ¢,x*sinnx,
Al k=0
where N is the number defined in the statement of Theorem 1. Thus, it is not
always possible to reconstruct a distribution in £,(R) from its samples on the
integers. This is a well known fact, Nevertheless, if supp f & (—m, m), then, for
any ¢eZ(R) satisfying suppy & (—~n, n), and =1 on supp.f,

S=1vo

M
= XN a7V f(m)sine(x— )+ 0)sine x+ 3 ¢ xtsinmx} ¢

n¥Q k=0

= {x¥( Y n~¥ f(m)sinc(x —n))+f (O)sinc x} * @,

n# ()
and we can recover f from ils samples. In this particular case there is another
simpler way to reconstruct f from its samples, which essentially consists in
replacing the functions sine(x--n) by functions with a “faster” decay at infinity
(¢f. Lemma 7 balow). The advantage of formula (1.3) is that we can use it even
for distributions with the suppert of their Fourier transforms equal to the
interval [-x, n}. Given f ¢ E,(R), we will call the distribution

S(f) = x¥( Y n ¥ f(msinc{x--n)+f (0)sine x

nul)

(for lack of & better name) the sampled part of f, and, when [ agrees with its
sampled part, we will say that [ is in sampled form. Notice that, in general, we
always have ‘

M
SN~ = Y, (@46 —2*6,).
kw0
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As we have already mentioned in the introduction, if we assume that fis in
E_(R), then, for any 0 < p < 0,

(1.4) Z Lf )P < Cp Hfﬂipcn)-

nelk
On the other hand, if fe E,-,(R) for some ¢> 0, then
(1.5) Hf”Lr'(R) Cpe Z [f (I

(see [2], p. 197). Notice that for & =0, (1.5) may fail to be true. Obvious
examples are provided by the function sincx if 0 <p < 1, or the function
sinc x+sin7x if 1 < p < o0. The next lemma says that, at least for 1 < p < oo,
(1.5) holds with ¢ =0 for the sampled part of f. More precisely, we have

LEMMA 2. Let 1 <p < oo, and assume that feE_(R). Then

(1.6) ISUHEem = 3 1f (),

neZ
and if feIPR)NE,(R), then = S(f).

Proof. Notice that since S(f}(n) = f (n) for all ne Z, we only need to check
that for 3 ,..zlf{(m¥ < o,

IS em < c, Z HGS

Moreover, it is enough to check that for every ¢pe & (R),

IKS(/), @)1 < C(T AL I ol o,

neZ
where 1/p'+1/p = 1. But

IKS(f), @] = CIKS()", ¢l = CIZfﬂ)(x[ raye”
< C(T I f( n)|P)‘“’(z G -rmg ) (P

neZ

If we recall that y_, , is a Fourier multiplier for every I#(R), 1 < p < o0 (seo
[22], p. 100), then

[t ~2m @) ooy < € HCP”Ln'(n)
In particular, (¥;-.q®)" €L’ (R), and by (1.4) we finally obtain

KS( @3 < AT N1 O [(t=nm®)” lorm < Co( TS @l zovy

nelZ neZ

Clearly, 'if feI’(R)n E_{R), 0< p < w0, then by another well known fact
aboqt functions of exponential type, feI#(R) for every g = p. It follows then
thatif fe IP(R)NE.(R), 0 < p < 1, we must also have f = S(f). That is, S(f) is
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the only function of exponential type giving rise to the same periodic
distribution as /' that can be in LP(R) for some 0 < p < o0, Notice also that, by
(1.5), it f is in E, (R} and S(f) is in IF(R), then again S(f) =/

§ 2. Function spaces on the integers. We need Lo recall the definition of
Besov spaces on R, Among all the equivalent different characterizations of
these spaces, we find it most convenient to employ the following one. Let
¢ & (R) satisly supp ¢ <= {£: n/d < {{] < n}, and for some C, & > 0, |¢(5) > C
on {¢& Ao < |l < A-a} For veZ, let ¢,(x) = 2'p{2"x). For «eR and
0 < p, ¢ < o, the (homogeneous) Besoy space B%#(R) is the collection of all
Jey"[#(R) (lempered distributions modulo polynomials on R) such that

”-f”fr?-"'m) e (L (2" f % ‘P\:HLI'(R))q)Uq < 00,

el

These spaces are Banach spaces if 1 < p,g < o0, and quasi-Banach spaces
otherwise; Lheir definition is independent of the choice of ¢. For appropriate
choices of the parameters «, p and g, these spaces can be identified with other
more classical spaces. For example, B42(R) = L2(R) (the homogeneous Sobolev
spaces of order ). We refer to [18] and [24] for details and further properties.

We will now define the analogs of these spaces on the integers. Let &/ (Z) be
the collection of all sequences of finite order and let & (Z) be the collection of
all sequences of order —oo. As we have already mentioned, &'(Z) can be
identified with the space of distributions on R/21Z. On the other hand, we can
also identily #(Z) with the space of C*-functions on R/2rZ, namely, the
sequence r == {¥,},.z Is identified with the periodic function Y wezipe” M. With
these identifications, we can view & (Z) as the dual of &(Z). Alternatively (see
[12]), the duality between (Z) and #'(Z) can be obtained directly by
considering in &(Z) the topology of a Fréchet space induced by the family of
seminorms

> suplw'r), N=0.1,..
0% JEN nul

[#[] e ==
For se & (Z) and re & (2), it is convenient for us to define the action of

s on r by
8y 1) = 2« Syfy o <}.4 S € “'E Z Pt m:‘,‘>

)
et Hel R/2nZ

where, in order to be consistent with our notation, we assume that the pairing
¢+, +)in R/2nZ is linear in both entries, and, in the case that the digtribution is
a lm:ally integrable function, its action on a fanction is given by the integral of
their product with respect to Haar measure. More precisely, if P(s)e &'(R) is
the distribution

P(s) = T, 8,7

nel,
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r={r,} is the sequence given by
ry =m0 [ Mg (€ (£)e d¢

for some smooth 2n-periodic function i, and we extend the action of P(s)" to
smooth 27-periodic functions in the way described in the previous section, then

(ry = Y sry = 7Y 8, X YD = IR TN

neZ nedi Hed
= @)~ Y s, = @) P
nel

If for a continuous function f on R, we let R(f) be the sequence obtained by
the restriction of [ to the integers, then for pe ¥ R), R(p)& ¥ (£). We also have

(s, R@)Y = T s,00) = Cm) 7t Y 5,46, ) = Qm)7t Y s, (e (@)D

neZ neZ e

=2 (Y seT™, @) = (2n) TP (@)

nel

Finally, if feE,(R), €S R), and Y—gnP = X-nx V¥, Where  is a smooth
2n-periodic function, then

oy = Qo) AQ) D =278 @ =
= @m PR FD = o~ PR D = (R, 1,

where r = R{(¥{-am¥)¥) = R((Xg~rm®)") In particular, this shows that the
linear operator R: E, (R)—%"(Z) is continuous with respect to the weak*
topologies.

For se %'(Z), its (integer) translates, 7,5, and the distribution § are defined
-in the obvicus way. The convolution of se%'(Z) with re % (Z) is given by

(1), =<5, (1N D =Y Siluei

hsZ

Clearly s*res”(Z) and P{s*r)" = P(#)"* P(s)". It follows from the above
remarks that, if fe E_(R) and ¢ ¢ & (R) with 8¢(—mn) = &"H(n) for all y, then

Fro) =S @) > = @07, (o) = @) 1) e H )
= @n S, (@) ) > = CRU, R{((g-nme ™™ @) 7))
= CRU), R{{(tne™™6)*))> = (RO, R{(wullr0mmm® ) )
= RUNR G- ® D) = (RO * Rt ®)* D
We have thus proved
Levma 3, If fe E (R), and @ c & (R), with &' ¢(-m)
.1 R(f *g) = R(/)* R((t-m®)").

@m)~ SN D

=.8"¢(m) for all v, then
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After these remarks we can now define the spaces B%4(Z), Let pe &(R) be as
in the definition of the spaces B“ 4(R), and assume furlher that ¢ = 1 in a small
neighborhood of {—-mn/2, n/2} cmd that ¢ = ()" (this can always be done). For
v< 1, let ple(Z) be the sequence R((x -nm®)Y) = R{(t- @ "))
Also, let F/#(Z) be the space of distributions in &(Z) modulo
P(Z) = R(PR)) = IR{;") Je#R)}. For eeR and 0 < p, g < o0, the (homo-
geneous) Bmov space B%4(Z) is the collection of all s&.%//2*(Z) such that

sl i == (F, 215 % il me)?) ™ < 00,
DES |
That this definition is independent of the choice of ¢ will follow from the
decomposition resulls of the next section. For 1 < p < o, this also follows
from our next result, which shows the relation between B?,'“(Z) and B’}‘,’“(R).
Turorem 2. Let aeR, O < g < .

@) If feB“'q( ) E(R) then R(f)e BA4(Z), 0 < p < oo.
(b) If f&Ey..,(R) for some & > Q, thenfeB”(R) if and only if R(f) e B4Y(Z),
0<p=< e,

(¢) If s& B29(Z), 1 < p < o0, and [ = E(s)e E.(R) is the distribution defined
by the generalized sampling theorem, then there is a unique function g of the form

M
g =y epxtsinmx
k=0
such that f+ge B4 (R).
Proof, The proof of (a) is immediate. In fact, since /& B%4(R) we have, in
particular, f# ¢, = f % (Y @,)" € LP(R), for all v < 1. By Lemma 3 and (1.4),

”R f *(PvH.U'(Z) C“/*‘Pv“f“(ﬂ)a

and, hence,
IR M sgozy < CLA sz

Similarly, (b) follows [rom (a) and (1.5). To prove (c), we first observe that if
se BY(Z), f is the distribution defined by the generalized sampling theorem,
and y is any function of the fm'm

g = ): ¢pxtsin mx,
kw0

then for v < 0,
,f* (p\l = (,f‘+g)*(p\3'
On the other hand,

(f+ g, = (frp)+g.
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Now, since s = R(f)e B¥%(Z), R(fyxpielP(Z) for all v< 1. In addition, for

v< 0, supp f %@, = (—m, m), and therefore
W+ =ofeem = 0% @lem < CIR(f *pMiLe = CHR('/')*cp‘\f||,,,,(-,,,.

Thus, to finish the proof of the theorem we only need to show that for some
g of the above form, (f+g}*q,eLF(R). But, since 1< p< oy, WE Can use
Lemma 2 to obtan

IS(f * @) Legyy <

If we now choose g such that S(f« @) = (f+@)+y
get

CIR(S * @ oz = Clls* @il oy
= (f+g)eq,, we finally

NS+ D%, oy S Cls ot | oz
The remarks in the previous section show that g is unique. w

Part () of the above theorem is in general not true if 0 < p < 1. To show
this, we need to recall the definition and some properties of the inhomogeneous
Besov spaces. These spaces are essentially defined by replacing, in the definition
of the homogeneous Besov spaces, all the terms corresponding to the “low
frequencies” of f by a single one. More precisely, let ® e (R) satisly
supp® = (—=, n) and |6(&)] > C > 0 on (—~n-+e, 1—¢) for some C, &> 0. For
xeR and 0 <p,q<co, the inhomogeneous Besov space ByY(R) is the
collection of all fe %' (R} such that

IS ooy = 1S % @l ey +( 3 (27 o lea)"" < .
i -
There is nothing particular about where we “eut the lower frequencics of 1™,
and, in fact, if we let ®,(x) = 2*®(2*x), keZ, then it can be shown that
% Pl +( 2 (2va\|f*(Pv“Ln(m)q)w

v2k+1
defines an equivalent norm (see [87), From this it easily follows that
(2.2) BYR)NE (R) = P(R)NE,(R).
It is equally easy to see that if f vanishes in a neighborhood of zero, then
feBy4R) if and only if feB34R). We can now prove:

TrEOREM 3, For eachD < p £ 1 rhe;e oxisls 6 B“‘ (Z) such that no f€ E_(R),
with R(f) = s, belongs to B%4(R).

Proof. Let he 2(R) satisfy supp h & {—n, w) and h = 1 on a neighborhood
of [—m/2, n/2]. Let f = yjnm—h and let s = R(f). We have
HR(f)ﬂB gy S (HR(f)*fP0||Lﬂ(Z)+ ”R(f)*(ﬂ Hunu:)) < W,

Suppose now that there exists a function g of the form
M

g= 3 ¢xsinmx
k=0

< 0
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such th_at FEN geB’},"‘(R). We shall see that this leads to a contradiction. In fact,
since he S (R) and supph < (—=n, n),

CIR(A) 1oy <
vanishes in a neighborhood of zero, we would

1] ey
On the other hand, since (f+g)"
have
SHgeBy{R)NE (R) = IP(R)N E(R)

But f+y = sj11cxm!—h+g, and hence we would have sincx+ g e LF(R), which is
not possible because 0 < p £ 1, =

We observe that it is not really meaningful to consider the inhomogeneous
version of the Besov spaces over the integers. In fact, let @f = R(®,), k € 0, and
define the Besov space BR(Z) to be the collection of all s€%”(Z) such that

sl magy = s % P o+ 3.
Kh1Evel

1
(2WHS*(P$HLP{Z))Q) ! < 0,

or, equivalently,

(2.3) sl ggracey = [ls* P Z
: TITY

[[5% fﬂﬂ | Loz < 0.

We have the following result {cf. [24], p. 17).

Trrorem 4, For all oe® and 0 <p,g<co,
consistent with BRT(R)m EL(R) = IF(R) E (R)).

Proofl. Assume first that selP(Z) [ 0<p <1
2 I Z Sj(‘cn ;:)j‘p Z E Hﬂp‘('ﬂ (5 )jlp

BRU(Z) = IP(Z) (which is

fls i Loz =

ek jed ne# jeZ
< Tlsl Y e, Bl < €T ls P < o,
JeZ neZ Jek

since ¢ e & (Z). Similar estimates hoid for the other terms in (2.3). Thus,

(2.4) 88 goeey & € 1] Ly -

If1 < p < oo, (24) follows by applying Young’s inequality to each term of (2.3).
To prove the converse, we may require that ¢ and ¢ satisfy the additional
condition

B(%)+ 2_,1 PR e
Then the conclusion

Clsllarz < Isllugaez)

follows from :

s= {0+ 3 o)

kblgwdl

together with the triangle (or p-triangle) inequality. w
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Remarks(*). Assume 1 < p, ¢ < 00,0 <& < 1. A more classical definition
of the Besov(-Lipschitz) spaces on R is given by ”
By = {fes/#: ([(d /¢ +0)f () o) diflH) T < o0

R

BY(R) = B2 (R) N LP(R).

For o> 1, the expression f(- +f)—f (‘) in the above definitions has Lo be
replaced by higher order differences. See [22]. §5. Using these definitions and
following the comments in [217, p. 190, we can reinterpret (2.2) and Theorem
4 in the following way. Observe that if |fllLem < ov, then the integral
appearing in the above definition of Bx4(R) is clearly convergent for ¢ lurge.
Thus, for /e IP(R), it is only the behavior of f at “small scales™ (i -+0) what
determines whether the function is in B%4(R) or not. If in addition f'& E,, then
its behavior at small scales is a priori controlled by the fact that the function iy
analytic, and we obtain (2.2). On the other hand, in the discrete case there is no
scale smaller than one, and the condition seP(Z) becomes equivalent to the
condition seBYyY(Z) (Theorem 4).

The situation in the homogeneous case is different. When no a priori
[P-estimate on the function of exponential type is assumed, then its homo-
geneous Besov norm is not only determined by the growth at infinity, but also
by the oscillations at “large scales™ (t — o). By Theorem 2, the same situaticn
must hold in the discrete case. We want to illustrate this point with some
explicit examples. For simplicity in the computations that follow we will
consider the case p = ¢ = 2, and we will invoke some classical results about
trigonometric series. Additional examples for other specific values of p and ¢
can be constructed by adapting to the discrete case some of the resulls
discussed in [22], pp. 159-164.

Let 0 <y < 1,and let 5, = {s,(n)}nz be the sequence given by s,(n) = n"7 if
n>0, and 5,(n)=0if n<0 For 0 < f<l,let s,p= {sy(n)ef””},,ez, and for
0 < 6 < 2m, let s, 5= {5,5(n)e™},ez- Clearly |s,(m)] = Is, g(n}] = |3,,p.4(n)] for all
n. Now, if f,, f,.5, and f, 5, are the distributions obtained from s,, s, and
Sy.p,s Dy the generalized sampling theorem, then

fy(&) = Z n"?’e"f"«’:x[_“ml(f)’

nz1
2 - e
ha@ =3 w7 e My (@),
nzl
fy,ﬁ,a(@ = 2 "‘hy"-’l"ﬂffi"&e—m‘:X[wn.n](‘f)-
nzl

Assume 0 <y < 1/2, so that 5., 5, and s, 4 are not in L2{Z). It can be shown
(see [24], Vol. 1, pp. 68-70 and Vol. II, pp. 133-136) that

il - . .
Iy = (e, & 2888 e (O -l 6),
where ¢, is a constant and r, is a bounded function in [~m, 7],

{'y The author thanks the referee for suggesting the inclusion of some of these: remarks.
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Recall that B%*(R) coincides with the (homogeneous) Soboley space of
order o. Then fyeB‘i'Z(R) il and only if !fl“‘ﬂ,eIﬁ(R), It follows from Theorem
2 that s, By*(Z) if and only if & > 1/2—y.

Assume now that y-+f < I, Then the presence of the “mildly oscillatory”
factor ¢ in s, y produces a higher order singularity at the origin in the Fourier
transform side. In fact, it is possible to prove that f, 4(£) behaves at 0 like
|| 1AM B and s continuous outside the origin. See [25], Vol I,
pp. 200-202. Tt follows that s, & B4*(Z) only for o > (1/2~)/(1 — ). (Notice
that B24(Z) & BY9(Z) il o 2 o) -

Finally, a simple computation shows that f, ;4 is the restriction to the
interval [—m, 7] of the 2n-periodic extension of the function f, 4 5(& ~5). We
then see that the “highly oscillatory™ factor e prevents s, 4 ; from being in any
of the spaces B%*(Z), since for every xeR the function |£*f, ;s has
a non-square-integrable singularity at the point & 5 0,

§ 3. The @-transform for spaces of sequences. We will now describe an
“almost orthogonal” decomposition of the spaces BY(Z). We will closely
follow the pattern in [6]. Consider again a function @& (R) satisfying
supp ¢ = {&: n/d < &l < m}, ¢ =1 in a neighborhood of the set {—n/2, n/2},
and so that for some C, ¢ >0, [¢] > C on {& n/d+e < |¢| < m—e}. Let  be
another function in & (R) satisfying the same properties as ¢ and selected so
that

Y, SRR =

veZ,
For v, keZ, let g, (x) = 2" " p,(x—2""k) = 2" (2" x — k), Define v, in the
same way. In order to study discrete decompositions of the spaces B%4(R),
Frazier and Jawerth introduced the following associated spaces of sequences.
For zeR, and 0 < p, g < 0, let lif,‘,'“ be the collection of all doubly indexed
sequences ¢ = {t,},, such that

”tHl;;"‘(l!) o (Z (Z (2v(cz+ 1/2- 1IF)1 tvkl)p)qu)“q_
kez

vak ke

for all &= 4.

Although A% 1s u space of sequences, we will denote it by IJ";'“(R) to differentiate
it from the space £%9(Z) that we will be considering later, The g-transform
decomposition for the spaces B‘,’;“(R) is given by the Following result.

Turorem 5 (Frazier and Jawerth [6]). Every fe BE4(R) can be written in the

Jorm

f’;""“ Z 2 B (ka>l/"'vk‘

vedi kol

where the sequence of @-transform coefficients S, J' = {{f, Pud o 15 in BEU(R).
Conversely, for every sequence == {L,},,&b%4(R), Its inverse @-transform

Tu;:t = Z Z lvklf'/vk

vald ks
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is an element of B%'(R). Moreover, the operators S, By YR) - h4I(R) and
T, b=4(R) - BEU(R) so defined are bounded and 1,08, is the identity on
B%A(R). In particular,

IS Nz = 115, £l iz

We will prove an analogous result for the spaces B®4(Z). The starting point
for the decomposition of the spaces B%4(R) is the followmg simple identity: for
every distribution fe%'(R), and w1t11 convergence in &/P2(R),

(3.1) f= Zf*gav*wv'

veZi
A proof of this identity can be found in [18], pp. 52--54. A more detailed proof
is also given in [9]. The correct interpretation of (3.1) is that, given f'e #'(R)
there exist a number M 3> 0, and a sequence of polynomials {P,}x», of degree
at most M, such that

(3.2) = lim ( Z fx@xp,+P)+Py in Z'(R).
k= ymmy
For v < 1, let us define, as in the previous section, @f = R((X{-sm®,)" ), and

4 = R((4-nm¥,)"). Then we have
¥ (P(@D) " &P (&) =1

vel

for all £¢2nZ,

From this it is straightforward to check that the proof of (3.1) given in {9] can
be adapted to our discrete situation, so that for every se&'(Z),
(3.3) S= 3 §xFiwi
vyEk
where the convergence is now in %//#(Z). We-can also prove (3.2} by using

Lemma 3. In fact, if for se5(Z), E(s) is the distribution defined by the
generalized sampling theorem, then by (3.2),

E(s)=lim( F E(s)*G,x¥,Py)+Po.

ke —pgvgt

But, by Lemma 3 and the continuity of the operator R,

- R(EG) = lim{ ¥

ko L pgygi

s @l riri+ R(P)+ R(Py),

with convergence in '(Z).

For the next step in our program, we need to use the following version of
the sampling theorem whose proof is contained in the proof of Theorem 4, and
which turns out to be of crucial importance (see also [97). For convenience, in
the rest of this section we will denote the nth term of a sequence s 5 (Z)
by s(n). :
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Lemma 4. Suppose f€ &' (R), he & (R), and supp f, supph = {&: |&] < 2"n}
for some veZ. Then

Srh(xy= 3 27 f27 k)h(x~2""k).

KkeZ

Let A, = Juz{¢: {£—2nn| < 2'7}. From Lemma 4 we obtain the fol-
lowing discrete version.

LemMa 5. Suppose se &(Z), re.&“f’(Z), and supp P(s)*

,Supp P(r)" = 4,
Jor some v £ 0. Then

sur(n) =y 27

ke,

"lc)rz 277K).

Proof Notice that if v = 0, there is nothing to prove and, moreover, in this
case we may allow P(s)" and P(r)" to be supported in all R. For v < 0, let E(s)
and E(r) be the distributions defined by the generalized sampling theorem. We
have

sxr = R(E(s))*R{E()).

On the other hand, because of the condition on the supports of P(s)* and P()",

if ¢eC*(R), supp¢ <(—m,m), and ¢=1 on (suppP(s)* UsuppP(r)")
n(—m, ), then

R(E(s)*R(E() = R(($E()")" )+ R((SE)*)"),
It follows from Lemmas 3 and 4 that
skr = R(($E©")" ($EM™)")
= R(kzz 27 (GEE)) 2T RNGEM")Y (x—27"K)).

Since the convergence in Lemma 4 is pointwise, we finally get

s r(n) Z 27(QE(®)") (2"“k)(t/)E(r)")V(n--2""k)
kuZ
=3 27VE(S)2VK)E(F)(n=—2""k) = 32727k —27"k). m
kel kel

The other tool used in [6] to prove Theorem 5 is the Plancherel-Polya
inequality.

LemMa 6, Let 0 <p<oo
suppf < {1 || < 2'n}. Then

¥ sup

keZ zal2 - vE.27V{k+ 1)

and velZ. Suppose that fe (R) and

|f @7 < C,2% S Erm.

For a proof see e.g. [2], p. 101. The discrete analog of this lemma is easy to
obtain,
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LemMA 7. Let O<p<oo and v<0, Suppose that se%'(Z) and
supp P(s)" < A,. Then
) sup Is,” < C,2" |5 ez
ked ne[2 " VE,27 vkt 1)
Proof As in Lemma 4, for v =, there is nothing to prove and the
condition on supp P(s)" is unnecessary. For v <0,

= R(E(s)) = R{($E(5)*)"),
where ¢e C*(R), suppd = (—=n, n), and ¢ =1 on suppP(s)* n(—mr, ). But
then, by Lemma 6,
D sup Is,l? = T sup lBE®) @

keZ nel2 - VE,2 Mk + 1) keZ nel[27 vk, 2" v{k+ 1))

<) sup M’E (s) ,\)v (z),p <C,2 ”(f/’E(?) A)v Hinm)

keE ze(27Vk,2 " V{k+ 1))

< G2 |R((PEE) ) boy = €, 2 sl inczy. m

For v=<0 and keZ, we define ¢4 = R{p,,) and ¥4 = R(y,,), while for
v=1and keZ, ¢, = 1,0} and ¢, = 1,0, The different definition for v = 1
is necessary, as we will see, because y_,@y and f-nmi¥,; do not have
smooth 2m-periodic extensions if k % 0. We also define for ¢&R, and 0 < p, g
< o0, b%4(Z) to be the collection of all doubly indexed sequences of complex
numbcrs t = {t,}ve1kez, Such that

HtH,;;.q(z) — ( Z (Z (2v(at+ 1/2— 1/P)|tvk|)p)‘i/p)1/f1 < oo

v€ 1 kel
We can now prove the first part of the q;~tra.nsforrn decomposition of the
spaces B% VAN
TueoREM 6. Every se B%(Z) can be written in the form

E 2 <s, (P‘5k>'ﬁ€k,

v&]l keZ

where the sequence of g-transform coefficients S,s = {{s, %>},x is in b29(Z)
and satisfies

18,slmaz < Clisllipam.

Proof. Let 56 B%4(Z). By Lemma 5 and (3.3), we have
s()= 2, 227 GIRTRAC =27+ T 27 s (R (- —

VO keZ keZ

Z Z <S, €0€k>!f13k

vl keZ
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~ Thus, we only need to check that §,s = {(s, %>} is in b%9(Z). For v <0, we

have from Lemma 7,
(Z (2\;(” 1/2=1/p) |<s, (P‘\{k>|)p — E (2v(«+ 12 - 1/1:)!2_\:/2 §4 (Pv(2 vk)l)

keZ . ke?
< C2 |s* @I Lrczys
and, for v=1,
Z(2a~+~1/2~1,'p|<5’ PN = Z(Zw ”2”1”’Is*<ﬁ‘{(k)|)” <

kok ked
Thus,

C2% ||lsw e | Loz

o+ - 1/
18,08l gy = (T (X (rer 12 migs, o, SyaHPy

vEl keZ

£
S O[T (2% 5% oz

vl

= C||-5'“1§;‘,"1(Z)~ "

To prove the converse of Theorem 6, we need to recall one more result from
[6]. The following is a particular case of Lemma 3.3 in there (notice, however,
our different normalization of the functions i, with respect to the functions l,bQ
in [6]).

Lemma 8. For every M > N > 0, there exists a constant C >0 such thar

{0, ()] € C21320 N (1 427~ 27 k)™M
fvsp
| # (T Ot —nm W 1) V) ()] < C2M(1+ 27| x 27V kf) ™M
ifv<l, and
[yt (X)]  C2H220 N (1 20— 2™ )™M

ifu<y
From this Jemma, using the propertiss of the operator R, we immediately
get :
Limma 9. For every M > N > 0, there exists a constant C > 0 such that
(34) lplwria(n)]  C24320 7N (] 4 2¥ 27 RN
ifvep<s0
(3.5) @ w el € C2N (42" In—27Yk) ™™
ifv<1, and
(3.0) [y (m)] & C2M2 20~ IN(] 4 DM | — 2™ k)= M

.if,uSVs:O or p<y =1
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Notice also that we trivially have
an lo#yrde(m) = ol rp i ()l < C(L+|n—k)™H

since 4 and ¢ are the sequences of “Fourier coefficients” of smooth periodic
functions, We can now prove the converse of Theorem 6.

THEOREM 7. For every sequence t = {toetvn €DFUZL), ils inverse q-transform

’I:J'lt= Z Ztvk :!k

V<1 keZ
is an element of BYUZ) and satisfies

[ T, tl sz < Cllt] 2.

Proof. Assume first 0 <p< 1. Then
1Tt Fersczy = 21(2““||Twr*cpﬁnm)qs YT YT Il W b)Y
vE

vl neZ u<1 kel

< 073 T bl T Wit

vl u\vksZ
+ 2T Yl Y Wi lr) )
vE 1l vepEl ke nek

If we now use (3.4-7) we get
| T, tl|3sazy < C ¥ (2”“(2 2THRTUIVIBN N pplelpt di2e), |p)”")

vEl HEY e

+cz(2w( Z ol —op— NFHV(NF'"l)Ez.u(a 1/p+1/2)plt |p)1m)

vl v<puxtl keZ

<C Z (Z 7= (—u)N -ajp Z R = Lip+ 1f2“’|tu,c|1’)"“’

&1 pxy kel

+C Z( Z 2=y = 1/p |‘N+¢)p22u(a"1/rz+1/2)p|t |p)4/p
¥<1 veusl keZ
Hg<p
”thHB:q‘z) C Z 2 -ty u)(N-zz)q(Z Qe 1/p+1)2)p|t Ip)qlp

vEL pSy keZ

+C 2 Z 2l vH - 1p H\Hac)q(z gela- 1/p-|1/2}p|t |)q/n
?

&l veugl ke,

and, hence, taking N sufficiently large and noticing that the last two terms can
be viewed as the I'(Z)-norm of a convolution on Z, we obtam

(3.8) | TM"F" g < C Z (Z e~ 1/D+1[2)p” 'p)q/p

pEL keZ
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On the other hand, if ¢ > p, (3.8} follows from Young’s inequality by taking
again N sufficiently large.
Assume now that 1 < p < 0. Then

i 7::;”1%25"‘(2) =y (2" T.;J‘“P‘i"m(m)q
w1l

<C 3 (2" 3 (5T bl bieeoton) ")

nEy neZi kel
’ v e
+C T (2 T (S baihrottn)) ) = 1410,
vl vap®)l pell kak

We will only estimate the first term. The estimates for the second one are
entirely analogous. For more details see [6], p. 787. Using (3.4-7), we have

I1<C Z (Zva Z (E (E |t#k12u/22(,u~v)N(1+2u|n__2-uk1—M))p)1lp)d

vzl Sy ned kel

+C( 2 (5% 22259+ k=) ")

usl nel kel

£ C Z (zvo: Z (2~# Z(Z |E’MI2“/22(””“’N(1 +2”|2—"j—-2—"k|"‘“))”)up)q

v n&Ey JET keZ

£C Z (z (zu(c:-1Ip4v1./?.}p2(,uwu)(N~a)p Z(Z |L,1k|(1+1]**k|"M)) ) )4

vE L uEv e keZ

<C Z (Z (2;1(4—1,‘;:4- 1/31p (k= VNN —2)p Z |tnk|p)1/1’)q_

vE L pEy keZ

Finally, by considering separately the case ¢ > 1 and ¢ < 1, similar arguments
to the omes used in the case 0 < p <1 show that

<Ccy (Y gue=Liptiie|y (PR
HE L ke

As in the case of the spaces B%4(R), the independence of the choice of ¢ in
the definition of the spaces BE4(Z) follows easily from Theorems 6 and 7 (see
Remark 2.6 in [8]). We wnll now consider another application.

One of the important consequences of Theorem 5 is that it allows us to
reduce the study of certain problerms about distribution spaces to the study of
equivalent ones on ssquence spaces in a simplified way, Theorem 5 can be
rephrased by saying that the following diagram is commutative:

beaR
Sr,:;[ P ( )\*Tw .
By®)  — B3UR)
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1t is also possible to extend this commutativity to the “operator level”. In fact,
let & (B%4(R)) and £ (b%1(R)) denote, respectively, the spaces of bounded linear
operators on B%(R) and b%4(R), topologized with the operator norm. If we
define the maps S¥: Z(B%*(R))—~ Z(b%*(R)) by

S¥B=15,0B0T, if Be#(B%(R)),
and T Z(b51(R))~ & (B34(R)) by
TyAd =T,0408, if Ae 2 (h5R)),
then the following diagram is also commutative:
s Z (b2 (R))
. A
L (B2(R)) M,
. For any Be %(B%(R)), we have
I Bl

T

£ (By4(R)

~ |55 B

PELIwRY LR

and the operator S5B is given by the “matrix” with entries
Ayput = <B!//,ul7 ¢vk>;
ie, for a sequence t = {r,.} €b%*(R), S¥B(1) is the sequence given by

SzB(t)vk = Z Z <Bw|uh (ka>t,u!-
pelk leZ .
We refer the reader to [8] and [23] for more detailed explanations. Using
Theorems 6 and 7, we can repeat all of the above for the spaces B34(Z) and
b%%(Z) and obtain retract diagrams

by(Z 2(ba(Z
o e o, L@,
Bz M Bz 2(Bz) ~, Z(ByA(Z))

Notice that, even though B39(Z) is already a space of sequences, b%4(Z) has
a simpler structure since only “size™ is involved in its definition and, in fact, it is
a lattice,

Using the above techniques, we can describe a simple application to the
study of Fourier multiplier operators. Boundedness properties of multipliers
and related operators acting on IP(R) can be obtained from properties of some
associated operators acting on IF(Z). This has been extensively studied, See for
example [4] and, in particular, the more recent work [1]. Our techniques can
be used to obtain similar results for B%4(R) in a rather straightforward manner.

THEOREM 8. Let acR and 0 < p,q < 0o, Assume that me & (R) satisfies
suppm < {&: |{| < h}. Then the multiplier operator

Tmf= (mj‘)v’
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initially defined on .V’(R)ﬁBj‘,"‘(R), extends o a bounded operator on B‘;‘;q(R) if

and only if the operator
1 d y o ’-1’—E'< ’Q 'lF’l »E«.h J
"= 2 ( (21’1 ))“’

initially defined on & (Z)NB&4(Z), extends to a bounded operator on Be(Z.
Proof. First, observe that for every 1> 0,
(1 < CEmUp) g
1 gy € O LS

(sec [23]. p. 239) and, therefore, m defines a bounded Fourier multiplier
operator on B;‘;‘I(R) it and only if m((2h/n):) does. Next, as we have seen,
m((2h/r)) defines a bounded Fourier multiplier on B3?(R} if and only if the
matrix with entries

<;zm(%')*!/f#h (ka>, Vy k,!EZ,

defines a bounded operator on b%4(R). Similarly, T is bounded in B%4(Z) if and
only if the matrix with entries

<"§1R(rﬁ(%))**ﬁﬁn (P$k>: v, us 1, k leZ,

is bounded on F&(Z). But, since suppm((2h/n)) & [—n/2, 1/2],

<%7ﬁ(§%‘)*wm, (pvk> i <%R(m(§%'))*Wﬁh (ng.>: v, 1 S 1: k: IE Z:

and

<gﬁm(%“)*wu“ vak> = 0' v 1 or Iu‘ > 1= k: iEZ.

The theorem now easily follows. w

We want to conclude this paper with a few remarks. First of all, although for
simplicity in the exposition we have restricted ourselves to the one-dimensional case,
all the results of this section easily extend to the case of R" and Z. It is possible to:
obtain more general “molecular decompositions™ of the spaces B%4(Z) and most of
the Frazier-Jawerth theory about the spaces B49(R)} passes through to the discrete
case. As the reader may suspect, it should be also possible to consider discrete
versions of the Triebel-Lizorkin spaces. We will not pursue this here any furthe;.

Finally, we want to mention that a class of Besov spaces on the integers in
the diagonal case, i.e., BY/™?(Z), have been congidered by R. Rochberg in [211.
See also [197]. It would be of interest to relate those spaces to the ones defined

- in this paper. We think that the strategy of Theorem 8 may be carried over to

the study of operators more complicated than multipliers, in particular,
operators like the omes studied in [21] and {19].
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Weighted-BMO and the Hilbert transform
by
HUI-MING JIANG (Zhuzhow)

Abstract, [n 1967, I M., Stein proved that the Hilbert transform is bounded from L to BMO,
In 1976, Mugkenhoupt and Wheeden gave an analogue of Stein’s result. They gave a necessary and
sufficient condition for the boundedness of the Hilbert teansform from L2 to BMQ,,. We improve
the results of Mugkenhoupt and Wheeden's and give a necessary and sufficient condition for the
boundedness of the Hilbert transform from BMO,, (o BMQ,,.

Introduction. Let f(x) and w{x) be locally integrable in R" and w(x) = 0.
Then we say that feBM OW(R") if there is a constant C such that

***** I |/ (x)—fridx <

for all n-dimensional c,ubes I whose edges are parallel to the coordinate axes.
Here f; = (1/|{)) jfdx, = [ wdx. The norm in BMOQ,(R" is defined as
1

v

. .
I e = Sup o j; |f ()= f] dx.

The case w =1 corresponds to that of John and Nirenberg
A function f is said to belong to L5R"M if fw™'e L*(R™. The norm in
SR is defined as
1S R == 1S ]
Finally, if there is a constant C such that
j t|2n é Cro I Ilz f W
for all cubes I, then we say we Bz. Here x, is the center of I. From [1] we know
we A, implics we B,. _
Only the case n = 1 iy congidered in the following,

In {2] Muckenhoupt and Wheeden considered the modified version of the
Hilbert transform: let

Hf (x) *,,li‘(}% | '(|> l:x;§+ymil
x-y|=e 3
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