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On separation theorems
for subadditive and superadditive functionals

by

ZBIGNIEW GAJDA and ZYGFRYD KOMINEK (Katowice)

Abstract. We generalize the well known separation theorems for subadditive and superadditive
functionals to some classes of not necessarily Abelian semigroups. We also consider the problem of
supporting subadditive [unctionals by additive ones in the not necessarily commutative case. Our
results are motivated by similar extensions of the Hyers stability theorem for the Cauchy functional
equation. In this context the so-called weakly commutative and amenable semigroups appear
naturally. The relations between these two classes of semigroups are discussed at the end of the

DAaper.

1. Intreduction. In this paper we are concerned with the problem of
separation of subadditive and superadditive functionals defined on not
necessarily commutative semigroups. Results of this type, for Abelian semi-
groups, were first obtained by R. Kaufman [8] and P. Kranz [10]. They can
also be derived from the celebrated separation theorem of G. Rodé [12] (cf.
also H. Ko&nig [9]) which represents a far-reaching generalization of the
classical Hahn-Banach theorem. In spite of its highly abstract setting, Rodé’s
theorem does not yield any extensions of Kaufman’s and Kranz’s results
beyond the class of Abelian semigroups (some special noncommutative
versions of Rodé’s theorem have recently been discussed by A. Chaljub-Simon
and P. Volkmann [17). The main purpose of the present work is to replace the
commutativity assumption in separation theorems of Kranz’s type by some
essentially weaker conditions of algebraic or analytic nature. In this regard, we
follow the lines along which the Hyers stability theorem for the Cauchy
functional equation (see D. H. Hyers {7]) was generalized to certain classes of
not necessarily commutative semigroups.

In what follows R and N denote the sets of all reals and positive integers,
respectively, whereas (S, -) stands for a semigroup or, occasicnally, a group. To
emphasize the fact that the binary operation in S does not have to be
commutative we use for it the multiphcative notation.

We recall that a functional f: §-»R is said to be subadditive iff

(1) Ty <fF+1 ), x, yes.

1980 Mathematics Subject Classificarion (1983 Revision): Primary 39C05; Secondary 39B350,
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A functional g: SR is called superadditive iff /1= —g is subadditive or,
equivalently, iff g satisfies '
2 g(xy) z g(x)+9(),

Finally, a: S—R is additive iff it is simultancously subadditive and superad-
ditive; in other words, it satisfies the Cauchy functional equation

@) a(xy) = a(x)+a(y),

In the sequel we shall consider the question whether for any pair of
functionals f, g: §— R satisfying conditions (1), (2) respectively and such that

x, ye§.

x, yes.

(4) g <f(x), xe&,
one can find an additive functional a: §—R which separates | and ¢, ie,
(9) : gx) Salx) <f(x), xed.

Notice that, without additional hypotheses on the semigroup S, the answer
to this question may be negative. This becomes apparent if we call to mind the
example given by G. L. Forti in [3] (see also [4]). Taking for § the free group
with two generators Forti constructed a function ¢: §—-R with the following
properties:

(6) Py —p)—-ee{—1,0,1},

(7)  there exists no additive functional a: §—R for which a— ¢ is uniformly
bounded on §.

x, YES§,

If we now put /1= p+1 and g:= ¢ —1, then (6) irnplies that f is subadditive,
g is superadditive and obviously g < f. On the other hand, by (7), there is no
additive fanctional separating f and g. '

Forti’s example was originally intended to show that the Hyers theorem on
stability of the Cauchy functional equation does not hold on the free group
generated by two elements. It is known, however, that there are two kinds of
assumptions on the semigroup S, either of which is much weaker than
.commutativity, yet ensures that the Hyers theorem remains valid on § (see
[11], [14] and [13], [4]). We recall here these assumptions, since they will play
the crucial role in our further discussion of separation theorems.

The assumption of the first kind may be formulated in purely algebraic
terms:

(8) V.3

x.ye8 neN

(xy)?_n = xznyzn :

This implies that for any x, y €S there exists a sequence of positive integers s,
{depending on x and y} such that n,— o0 as k— oo and

(xp)2™ = x¥™p%™, keN,
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A semigroup S satisfving (8) will be called weakly commutative (cf. e.g. [14]). It
is clear that every Abelian semigroup is weakly commutative, but there exist
non-Abelian semigroups and even groups which satisfy (8). A simnple example is
provided by the multiplicative group consisting of the guaternions 1, — 1,1, —1,
j» —i k, —k (i,j and k being the quaternion imaginary umits).

The assumption of the secona type involves analytic properties of the space
conjugate to the Banach space #(S, R) of all bounded real-valued functions
defined on S (with the supremum norm). A linear functional M e 4(S, R)* is
called a right (resp. left) invariont mean iff

9 infp(x) < M(p) <supo(x) for all peB(S, R);
xe¥ xeS

(10) M(p,) = M(p) (resp. M(,p) = M(p)) for all pe4(S, R) and ae s,
where @, and ,p are the right and left translates of ¢ defined by

P, (%)= @xa), ,p0):=oplax), xes.

We say that the semigroup § is amenable iff (S, R)* contains at least one right
or left invariant mean (cf. e.g. [2]). One can prove that every Abelian semigroup
is amenable, but again, there are lots of non-Abelian amenable semigroups and
even groups. FFor instance, it is well known that every solvable group admits an
invariant mean (see [2]).

In this paper we confine our considerations to subadditive and superad-
ditive functionals which assume only finite real values, although in the
respective results of Kaufman and Kranz the value —oo is admissible. This
restriction is forced by the methods we apply and it enters into the price we pay
for the substantial weakening of the commutativity assumption.

2. Preliminary results. Let (S, -) be an arbitrary semigroup and let x, be
a fixed element of 5. A functional fi §—R satisfying

(11) | flxb) = kf(x,)

for some keN is said to be k-homogeneous at x,. If (11) holds for every keN,
then f is N-homogeneous at x,. Moreover, if f is k- (resp. N-} homogeneous at
every point of §, then we simply say that it is k- (resp. N-) homogeneous.

LemMa 1. Let (S,°) be a semigroup and let f2 S—R be subadditive or
superadditive. If f is 2-homogeneous, then it is N-homogeneous.

Proof First we consider the case where f is subadditive. If f is
2-homogeneous, then a simple induction shows that it is 2™homogeneous for
every meN.

Now, choose an arbitrary x,e $ and a positive integer k which is different
from 2™ for any meN. Then either k = 1 and the k-homogeneity of f is trivial,
or k=2"+r with some meN and re{l, ..., 2%—1}. Consequently,

S () = £ (3™ = £ (xhx3™7) < f () 2~ 7) £ o).
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Hence kf (x,) < f{x%), whereas the converse inequality follows from the fact
that f is subadditive.
If f is superadditive, just consider g:== —f.

LemMma 2. Let (S, -} be a semigroup and let f; S—+R be subaddiiive or
superadditive. If f is 2-homogencous, then
(12) fley)=Ff(yx), x, yes.

Proof. We only consider the subadditive case. By the previous lemma, the
2-homogeneity of f implies its N-homogeneity. Therefore, for every integer
k2 and for any x, yeS we have

J((xp)) _ flx(pf"1y)

R

k-1
sf(x);rf(y)+ . £

.Letting k—o we get fxy) <f(xy), which yields (12) since x and y are
interchangeable.

The next lemma is of the key importance for the proofs of separation
theorems on weakly commutative groups or semigroups. Roughly speaking, it
allows us to replace the subadditive and superadditive functionals we want to
separate by new ones which display some additional suitable properties.

LemMA 3. Let (S, *)} be a weakly commutative semigroup and assume thai

fig: SoR satisfy (1), (2) and (4). Then there exist f*, g*: S—R with the
Jollowing properties:

() 909 < *() <*() < S (¥), xeS;
(El) F* is subadditive and g* is superadditive;
(i'li) f* and g* are N-homogeneous;
(v) f*(xy) =f*(yx) and g*(xy) = g*(yx), x, yeS.
Moreover, if f (resp. g) is N-homogeneous at a point x,€5, then
() " (xg) = flxo) (resp. g*(xo) = g(x,).
Proof. For xe§ and neN we put
L= f(x*)/2",  g,(x):= g(x*")/2".

By a simple recurrence based on the subadditivity of f and the superadditivity
of g, one can check that

(13) g(x) € g,(x) € goy1 () S frr1 (X) £, () < f(x), neN.

For each xe8§, the sequences { £, }nen and {g,(x)},en, being monotone and
bounded, are convergent in R. Therefore we may define f*, g*: S—R by

)= B £, (),

g*(x):= ljgn g,(x), =xeS§.
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From (13) it follows immediately that (i} holds.
Now fix x, veS and, using the weak commutativity of S, find a sequence
{m}en of positive integers such that nm,— oo as k— oo and

(ey)?™ = x¥™y?™,  keN.
Then we.get
fHxy) = Ein;f (GeyP™)/2m = ’}Lﬂ;f (x2™ y2) 2

< lim £ (22 Bim £ (722 = )+ 00,

which means that f* is subadditive. A similar argument ensures the superad-
ditivity of g*.
Further, observe that for each xeS, one has

J*e6) = lim £ ()20 = 2 Tim £ (x¥7)/27 = 21 *(x)

and analogously,
g*(x?) = 2¢*(x).
On account of Lemma 1, the last two identities guarantee the N-homogeneity -
of f* and g*, whereas Lemma 2 implies (iv).
Finally, if f is N-homogeneous at x,€S5, then f,(xo) =f(x,) for all neN.
Consequently, f*(xo) = lim, - f,(Xo} == f (x,). The same argument works for

g*.
3. Separation theorems. We start this section with two results which rely
upon the weak commutativity of S.

THEOREM 1. Suppose that (S, ) is a weakly commutative semigroup and let
£, 9: SR fulfil (1), (2) and (4). Moreover, assume that

(14) sup{ f(x})—glx): xe§} < 0.
Then there exists exactly one additive functional a: §—R which satisfies (5).

Proof Let f* g*: S—R be the functionals associated with f and ¢
according to Lemma 3. Using assertions (iii) and (i) of that lemma, we obtain

K{f* () — g*(x)) = F* () —g* () < () —g (%)

for every xeS and keN, which combined with (14) implies that f* = g*,
Evidently, a:= f* is then additive and satisfies (5).
If b: S—R is another additive functional separating f and g, then

kla(x)—b)| = a(c) =DM < 1 (x*)—a (")

for each xe§ and ke N, whence b = a in virtue of (14). This finishes the proof.
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Hypothesis (14) is fairly restrictive. It can be omitted if we assume that S is
a weakly commutative group (and not just a semigroup),

TueOREM 2. Let (S, -) be a weakly commutative group. If f, g: S —R sutisfy
(1), (2) and (4), then there exists an additive functional a: S — R such that (5) holds
true.

Proof. Consider the family % of all pairs (¢, /) where ¢: $—R is
subadditive, i: §-+R superadditive and y{x) € @(x), x& 5. In # we introduce
a partial order =< by putting (@, ;) <X(ps, ¥5) iff Y (x) <P (x) <
©,(x) € @, (x), xe8. It is easily seen that every linearly ordered subfamily of
& has an upper bound in #. Since (f, g)e &, the Kuratowski-~Zorn lemma
implies that there exists in & a maximal pair, say (F, G), which succeeds (/, g)
in the sense of the order <.

Now, let F* and G* be the functionals linked with F and G by Lemma 3.
Owing to the maximality of (F, G) we get F* = F and G* = G. In particular,

(15) Flxy)=F(yx), G(xy)=Glyx), x,yes.

Let e stand for the identity element of S. Since the value of any subadditive
(resp. superadditive) functional at e is nonnegative (resp. nonpositive), it is
clear, by the maximality of (F, G), that F(e) = G(e) = 0 (otherwise we could
modify the value of F or G at e so as to obtain a pair (F, G)e & exceeding
(F, G)). We would be through with the proof if we knew that F and G coincide
on the whole of S. Then a:= F = G would be the required additive functional
separating f and g. For the indirect proof suppose that there exist ce§ and
a real number r such that

(16) Glc) < r < Fle).

We shall show that then either
A) mr+F(s) > G(c™s) for every meN, and se§, or
B) F(c"t) 2 nr+ G(t) for every neN, and teS§,

where N := Nu{0} and we adopt the convention that the Oth power of any
element of S is equal to e. Supposing that neither A) nor B) holds, we would be
able to find m, neN, and s, te§ such that

mr+F(s) < G(c"s) and  F{c"1) < nr+G(1),
whence,
nF(s)+mF (c"t) < mG (1) +nG(c™s).

Consequently, referring several times to the fact that F is subadditive, G is
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superadditive and they fulfil (15), we would derive

F(s"t" "™ & nF(s)+F(t"c™) = nF(s)+ F(t™~ "™~ Vemp)
nF(s)+F(t" " D Pl < ...
nF(s)+mF("t) < mG{t}+nG(c™s)
G{t™ +(nr—2DG("s)+ G(c"s)+ G{sc™)
G{t")+(n—2)G(c"s)+ G(c™s* ™)
= G+ n—2)G(")+G(c*"s*) < ...
< G(E")+G(c™s") € G(C™s"™) = G(s"t"c™),

y/

AN A

which is impossible since G is dominated by F.
Further we assume A) and, for each xcS, we put

Folx):= inf{mr+ F(5): c™s=x, meN,, SES}.‘
Directly from A) and (16) it follows that
(17) G(x) € Fo(x) € F(x), xe8,
(18) Fole} < r < Fle).
Next we choose arbitrary m, neN, and x, yeS. The subadditivity of F jointly
with (15) yields
mr+Fe ™ x)+nr+Flc™"y) = (m+nmr+ Flye ™+ F{c™"x)
2 (m4+mr+Flye™™x) = (m+n)r+F{c™" "xy).
Hence, by the definition of F,, we get
Fo(x)+Fo(y) = Folxy),

which means that F, is subadditive. By (17), the pair (Fy, G) belongs to #, and

(F, G) X (F,, G). This, combined with (18), contradicts the maximality of (F, G}

and completes the proof in case A) :
Assuming B), we put

Go(x):= sup{nr+G(t): "t =x, neNy, teS}
for every xe&§. Then, similarly to case A), one can show that
(19) G(x) € Gox) < F(x), xe8,

{20) Gle) < r < Gylo)

and G, is superadditive. By (19) and (20), we have (F,. o) =< (F, G, and
(F, Gy) # (F, @), contrary to the maximality of the latter pair. Thus, the whole
proof is finished.
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Now we present a series of results in which the amenability assumption on
S intervenes. We start with the following

THEOREM 3. Suppose (S, *) to be an amenable semigroup and let f, g: §—R
satisfy (1), {2) and (4). Moreover, assume that

(21) sup{|f(xy)—f (vx): x, yeS} < 0.
Then there exists an additive functional a: SR fulfilling (5).

Proof. To fix ideas, assume that there exists a left invariant mean M in
(S, R)*. Notice that, by (4) and (2), we have

Fxp)—g () 2 g(xy)—9() 2 g(x),
Therefore, a functional h: S—R is well defined by
h{x):= inf{ f (xy)—g(y): y&s},
Making use of (1), we easily derive
(22)  hixy)=inf{f (y2)—g(2): zeS} < inf{f () +f (v2)—4(2): z€5)
=f()+inf{f(y2)—g(2): z&8} =F(x)+h(),

Hypothesis (21) implies that there exists a constant K = 0 such that
S(xy) = f(yx)—K, x, yeS. Hence and from (2) it follows that

(23) h(xy) = inf{ f (xyz)—g(2): zeS}
= inf{f (yz2x)— K —g(zx}+g(x): ze 8}
= — K +g(x)+inf{ f (yzx)~g{zx): ze S}
> —K+g(x)+inf{ f (yw)—g(w): weS}
= K +g(x)+h{y),

Putting (22) and (23) together, we infer that for any xeS, the function
Say—h(xy)—h(y)eR is bounded from above by f(x) and from below by

g(x) K.
Now, we define ¢: §S—R as follows:
a(x):= M,(h(xy)—h(y)),

wht?re the subscript y indicates that the mean M is applied to a function of the
v'arlal?}e y. The following simple calculation based on the left invariance and
linearity of M shows that a is additive:

a(u)+a() = M {h(uy)—h())+ M, (h(vy)—h(y))
= M, (h(uvy) — (o) + M, (h(vy)— h(¥)
= M, (ko) ~h(y) = auo),

x, ye&s.

xefs.

x, yES.

x, yeS.

XxXe¥s,

u, veS.
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From (9) and the definition of a we deduce that
(24) gx)—K < alx) < f(x),

It remains to eliminate the constant K. Take a positive integer n. Then, by the
additivity of a and the superadditivity of g combined with (24), we obtain

xeS.

cnax) =ax") 2z gx")—K=zngx)—K, xeS,
which, jointly with (24), implies that
F)zalx) zgx}—K/m, xe8, neN.

‘Passing to the limit as n— o0, we arrive at (5).

For a right invariant mean, the proof is analogous, with h replaced by
h(x): = inf{ f(yx)—a(y): yes},
Remark 1. Theorem 3 remains valid if we replace (21) by

219 sup{lg(xy)—g(yx)|: x, ye§} < 0.

Indeed, if we assume (21°), then Theorem 3 (in its original form) allows us to
separate —g and —f by an additive functional 4: S—R. It is evident that
a:= —d-is also additive and fulfils (5), as required.

We do not know whether amenability of § alone (without (21) and (217) is
enough to ensure that Theorem 3 holds true. On the other hand, it is worth

xes.

‘noticing that without the amenability assumption Theorem 3 is no longer true,

even if (21) and'(21") are both satisfied. To see this, we refer once more to the
example of G. L. Forti mentioned in the introduction. It is well known that the
free group generated by two elements is not amenable (see e.g. [6], Theorem
17.16) and, as one can easily verify, Forti’s function ¢ satisfies

p(xy)—p(yx)e{—1,0, 1}

for all x and y. Consequently, the functicnals f:= @+1 and g:= @—1 satisfy
(21) and (21"), respectively. It was already noticed, however, that f and g do not
admit separation by an additive functional.

Our next result is an analogue of Theorem 1 for amenable semigroups. We
obtain it as a corollary from Theorem 3 (cf. also [5], where a direct proof of
a similar result was given).

THEOREM 4. Assume that (S,') is an amenable semigroup. If f,g: S—+R
satisfy (1), (2), (4) and (14), then there exists a unique additive functional a: §—R
which fulfils (5).

Proof Using (1), (2) and (4), we obtain
Flep)=f (1) <f ) —g(yx) <f )+ B)—g()—9()

= [/ () -g+[f ) —g()],  x, yeS.

3 — Studin Mathsmatica 100.1
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Hence, on account of (14) and the symmetry between x and y, we infer that

- f satisfies (21). Now, the existence assertion is a direct consequence of Theorem
3. To show the uniqueness, we argue in exactly the same way as in the proof of
Theorem 1.

Remark 2. Prof. A. Smajdor observed that our Theorems 1 and 4 may also
be deduced from the stability of the Cauchy functional equation (which is valid
on both weakly commutative and amenable semigroups). [n fact this uniform
argument works for any semigroup on which the Hyers stability theorem holds
true.

THEOREM 5. Let (S, -} be an amenable semigroup and lei f, g: §- R satisfy
(1), (2) and (4). Moreover, assume that f or g is 2-homogeneous. Then there exists
an additive functional a: §—R fulfilling (5).

Proof In virtue of Lemma 2, either f(xy)=S(yx), x,yeS, or
g(xy) = g(yx), x,yeS. Accordingly, we have either (21} or (21} trivially
satisfied. To accomplish the proof it is enough to apply Theorem 3.

Theorems 3, 4 and 5 contain various supplementary hypotheses concerning
f or g (apart from the minimal system of assumptions consisting of (1), (2) and
(4)). If the semigroup S is amenable and, at the same time, weakly commutative,
then these additional hypotheses become redundant.

THEOREM 6. Suppose that (S, -) is a semigroup which is both amenable and
weakly commutative. Then for any functionals f, g: SR satisfying (1), (2} and
{(4) there exists an additive functional a: S—R fulfilling (3).

Proof. We associale with [ and ¢ the functionals f* and ¢* given by
Lemma 3. In particular, assertion (iv) of that lemma implies that f* and g*
satisfy (21) and (21"), respectively. Thus, Theorem 3 together with assertions (i)
and (ii) of Lemma 3 ensure that /* and g* can be scparated by an additive
functional a: §—R which, automatically, separates f and g too.

4. Supporting functionals. In this section (S, ) is assumed to be a group (not
necessarily Abelian). We consider the question whether for a given subadditive
functional fi S—R and a point x,e S, one can find an additive functional
a: S—R with '

(22)
(23)

ax) < f (x),
alxg) = f(x).

If (22) and (23) are fulfilled, then we say that a supports f at x,. From the
separation theorem of P. Kranz [10] one can easily deduce that, provided § is
commutative, the subadditive functional f is supported by at least one additive
functional at any point of S at which f is N-homogeneous. In what follows we
present similar results for weakly commutative and amenable groups.

xel,
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First notice that regardless of whether § is Abelian or not, the
N-homogeneity of f at x,eS is necessary for the existence of an additive
functional supporting f at x,. Indeed, if f is subadditive and an additive
functional a: S —R supports f at x,, then for any neN we have

a(x}) < f(x}) < nf(x,) = rax,) = a(xp),
whence f(x}) = nf(x,).
THEOREM 7. Let (S, ) be a weakly commutative group and let f- S—R be

subadditive. If f is N-homogeneous at x,€S, then there exists an additive
functional a: §—R satisfying (22) and (23).
Proof One can readily check that g: §—»R defined by
glx):=—f(x7Y,
is superadditive and lies below f. Consider f*, g* given by Lemma 3. Since f is

N-homogeneous at x,, Lemma 3(v) states that f*(xy) = f(xo)-
By the sybadditivity of f*, we have

fHx8)—f*(x"1xp) < f*(x), xeS, neN.
We also know that f* is N-homogenecus (in fact, we need here its
N-homogeneity at x, only). Hence

o)+ *(8) =f*(xp™),  neN.
Referring again to the subadditivity of f*, we obtain
FroeT gty < T Txg) % (xg),  xeS, neN,
which, in conjunction with the previous identity, yields
FHOE)—f* (7 xG) < fFOBT—f*xTIxpTY),  xef, nelN.

As a result, for each fixed xeS, the sequence {f*(x)—f *{x“lxo)},,eN is
nondecreasing and bounded above by f*(x). We put

h(x}:= ILm [F*ea)—f*(x"'xq)], xeSs.

xXE€ 8,

Then
hx) S f*(x) <f(x), x&8,

h(xg) = f*(xo) =1 (xo)-
We now verify that A is superadditive. By Lemma 3,

BO)HRG) = lim [ ()= *0cxp)]+ lim (1)~ *0 0]
= lim [f*(3)—/*(x x)—* (5]
< lim [F*G3)=f6 oy )]

= lim [f*(e8)~f*(v™ " x7 x5")] = h(xy).

n—roo
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Finally, with the aid of Theorem 2, we separate k and f* by an additive
functional a: S —R. Since h, f* and f assume the same value at x,, it is clear
that @ supports f at this point and the proof is finished.

CoROLLARY 1. If (S, <) is a weakly commutative group and f. S—R is
a subadditive and 2-homogeneous functional, then f is supported by an additive
Sfunctional at any point of S.

TeeoREM 8. Assume that (S, ) is aﬁ amenable group and let 2 S SR he
a subadditive functional satisfying (21). If fis N-homogeneous at x, &€ 5, then there
exists an additive functional a: §—R which fulfils (22} and (23).

Proof. By the same reasoning as in the proof of the preceding theorem
(with f* replaced by f) we can show that, lor each fixed xe S, the sequence
{f(x8)—f (x~*x%)}nen is pondecreasing and bounded above by f(x). Thus

h{x):= Hm [f(xp)—f(x"*x5)], xeS,
satisfies
hix) < f{x), xe8, hixy) =f(x).
Hypothesis (21) guarantees the existence of a constant X 2 0 such that
flxy) 2/ (yx)—K,

If we combine this relation with the N-homogeneity of f at x, and its
subadditivity, then as in the proof of Theorsm 7 we get the estimate

h(x)+h(y) < h(xy)+2K,

x, yes.

x, ye8.

Consequently, the functional A(x):= h(x)—2K, x&S, is superadditive and,
obviously, it is dominated by f. By Theorem 3, f and / can be separated by an
additive functional g, ie.

h(x)—2K < a(x) <f(x), xeS.

Applying an argument similar to that completing the proof of Theorem 3, we
may remove the constant 2K from the last inequality. Then clearly a supports
[ at x,, which was to be shown.

CoroLrLary 2. If (S, *) is an amenable group and f: §— R is subadditive and
2-homogeneous, then f is supported by an additive functional at every point of S.

This clearly results from Theorem 8 and Lemma 2.

5. Concluding remarks and examples. In fact, in Theorems 7 and § it is
enough to assume that f is 2"-homogeneous at x, for every neN. This
assumption implies that f is N-homogeneous at x,, which may be deduced
from the second paragraph of the proof of Lemma 1, We should also mention
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that the mere 2-homogeneity of f at x, does not necessarily force its
N-homogeneity at this point and is too weak for the assertions of Theorems
7 and 8 to hold true (even in the Abelian case). We owe this observation to the
referee, whom we wish to thank most cordially at this place.

In this paper we have dealt with two classes of semigroups: weakly
commutative and amenable. The question arises of relation between these two
classes. It turns out that they intersect {both contain the class of commutative
semigroups) but neither of them is included in the other. The latter fact is
illustrated by the following two examples:

ExamprLE 1. Let {S, -) be the group of all nonconstant affine mappings of the
real line onto itself (with superposition as the binary operation). Then § can be
identified with the set (R\{0}) xR in which the group operation is defined as

follows:
(a, b)(c, d):= (ac, ad+b), a,ccR\{0}, b, dcR.

The group S is solvable and hence amenable. To see the solvability of S, one
can check that the sequence {(1, 0)} < {(1, b): beR} = § has Abelian factors.
On the other hand, if a > 1, then there is no integer k > 2 for which

24 (@, ay(a, 0) = (1, af*(a, OF
Indeed, it is easy to verify that
(@, a)(a, O = (", a+a®+ ... +d),
whereas
| (1, a)*(a; OF = (", ka).

If (24} were satisfied, we WOI.Ild‘ have a+a?+ ... +a* = ka, which is false
whenever @ > 1 and k 2. In particular, § is not weakly commutative.

EXAMPLE 2. Let §:= X x ¥, where X and Y are two sets with card X = 2
and card Y 3= 2. If we introduce a binary operation in § by setting

(X1, ¥1) (%, ¥2)i= (X0, ¥o)s (xp y9eS, i=1,2,

then S becomes a semigroup. It is weakly commutative, since
((x1> ¥1) (x4, J’z))2 = (X2, y1} = (%1, J’z)z'(xza yof

for all (;, y)}e S, i =1, 2. On the other hand, there exists neither right nor left
invariant mean in #(S, R)* (ie., S is not amenable). Supposing, for instance,
that M e (S, R)* is a right invariant mean, we take a nonconstant bounded
function ¢: X - R and we put

yix, y):=elx), (x, y)eS.
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Then ¥ e%(S, R} and 3 = @(a) = const. for each fixed (a, h)eS. Con-
sequently,

M) =M@ up = 0@, aes,

which is impossible, since we have chosen a nonconstant ¢. The nonexistence
of a left invariant mean in #(S, R)* may be shown in a similar way.
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A multiplier theorem for H-type groups
by

RITA PINI (Verona)

Abstract. We prove an LP-boundedness result for a convolution operator with rough kernel
supported on a hyperplane of a group of Heisenberg type.

In recent years, several results have been proved in which the Cal-
deron—Zygmund theory of singular integrals has been extended to the more
general setting of nilpotent Lie groups (see e.g. [8], [15], [19]). In particular, .
F. Ricdi ([157) showed that the classical theory of Calderén—Zygmund kernels
on R has very natural extensions to kernels on nilpotent Lie groups.

As a further generalization, more singular convolution operators, for
instance convolution with distributions which are extensions of Calderdén-
Zygmund kernels supported on submanifolds, have been considered.

In this context, we would like to mention some results concerning Hilbert
transforms along homogeneous curves in Stein and Wainger ([19]) and Christ
([2]). Subsequently, Geller and Stein ([7]) studied smooth homogensous
kernels supported by a hyperplane of the (2n+1)-dimensional Heisenberg
group; such operators arise in the study of the g-Neumann problem on the
Siegel upper half-space. Miiller ([13], [14]) showed that Theorem 1.1in [7] has
rather general extensions for more general homogeneous Lie groups and for an
even larger class of submanifolds.

Recently, Ricci and Stein unified and extended in a series of papers
([16]-[18]) some results of these previous works; particularly, in ([17]), they
considered singular integral operators on homogeneous Lie groups defined by
smooth kernels supported on lower-dimensional analytic submanifolds and
having the critical degree of homogeneity. To prove the IL*-boundedness, they
make a sirong use of the smoothness assumption.

In this paper we work on groups of Heisenberg type; we study convolution
operators with rough kernels carried by the subspace complementary to the
center. We improve Geller and Stein’s result, by proving the IF-boundedness of
the convolution operator under some minimal assumptions on the regularity of
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