A. Edgington, Some more weak Hilbert spaces .. 1-11
M. K. Montaza, Automorphisms with finite exact uniform rank 13-24
Z. Gajda and Z. Kominek, On separation theorems for subadditive and superaditive functionals .. 25-38
R. Piniz, A multiplier theorem for H-type groups 39-49
R. H. Torres, Spaces of sequences, sampling theorem, and functions of exponential type ... 51-74
H. Jiang, Weighted-BMO and the Hilbert transform 75-80
K. Rudul, A model for some analytic Toeplitz operators 81-86
A. J. Pryde, Inequalities for exponentials in Banach algebras 87-94

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA
Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

Correspondence concerning subscriptions, exchange and back fascicles should be addressed to

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

© Copyright by Instytut Matematyczny PAN, Warszawa 1991

Published by PWN—Polish Scientific Publishers

ISBN 83-01-10592-5 ISSN 0039-1223

PRINTED IN POLAND

STUDIA MATHEMATICA 100 (1) (1991)

Some more weak Hilbert spaces

by

ALEC EDGINGTON (Cambridge)

Abstract. We construct, by a variation of the method used to construct the Tsirelson spaces, a new family of weak Hilbert spaces which contain copies of l_2 inside every subspace.

Preamble. The notions of weak type 2 and weak cotype 2 were introduced by Milman and Pisier in [3]; Pisier presented weak Hilbert spaces (the intersection of these two classes) as objects of study in [4]. That Tsirelson's space T_2 is a weak Hilbert space had essentially been proved in [1], where it was also shown that T_2 contains no isomorph of l_2. Recently the theory of weak Hilbert spaces has developed apace: yet the scarcity of known examples remains irritating—until now, the spaces $T_g(0 < \delta < 1)$ and their duals, Hilbert space itself, and all subspaces of quotients of finite l_2-sums of these, were essentially the only examples known. In this paper we present a few more. There still remains, however, the problem of finding examples (if there are any) without an unconditional basis, or even without a basis.

Definitions. Given a sequence $\alpha \in (\mathbb{R}^+)^N$ such that

$$\sum_{m} \alpha_m = 1,$$

and

$$\delta_\alpha \leq \alpha_{m+1}/\alpha_m \leq \delta_\beta$$

for all α, where $0 < \delta_\alpha \leq \delta_\beta < 1$.

Write \mathbb{R}^{N^*} for the vector lattice of all finitely supported vectors in \mathbb{R}^{N^*}.

If x and y are two vectors in \mathbb{R}^{N^*} we denote by $x \cdot y$ the vector whose ith coordinate is x_iy_i.

Call a k-tuple $(y_i; i < k)$ acceptable (acc) if $y_i \in \mathbb{R}^{N^*}$, $supp(y_i) \subseteq [k, \infty)$, and

$$\sum_{i < k} ||y_i||^2 \leq 1.$$

For $x \in \mathbb{R}^{N^*}$ define

$$||x||_\alpha = \sup \{||x_n||; n \in \mathbb{N}^+\}, \quad ||x||_{\alpha + 1} = \sup \{\sum_{i < k} ||y_i||^2; (y_i) \text{ acc.}\}.$$

By induction we see that $|| \cdot ||_\alpha$ is a norm on \mathbb{R}^{N^*} which is 2-convex (i.e. $||x||^2 + ||y||^2 \leq ||x + y||^2$) and satisfies $||x||_\alpha \leq ||x||_\beta$ for all x. The canonical vectors $e_n (n \in \mathbb{N}^*)$ constitute a normalised 1-unconditional basis for

$$(\mathbb{R}^{N^*}, || \cdot ||_\alpha).$$

1980 Mathematics Subject Classification (1985 Revision): Primary 46B20, 46C59.
Finally, set
\[\|x\| = \left(\sum_m \alpha_m^2 \|x\|_m^2\right)^{1/2}, \]
and let \(X = X_k\) be the completion of \(\mathbb{R}^{N^*}\) with respect to the norm \(\|\cdot\|\). Note that \((e_n : n \in \mathbb{N}^*)\) is a normalized 1-unconditional basis for \(X\), hence \(X\) is 2-convex, and \(\|x\| \leq \|x\|_1\) whenever \(x \in \mathbb{R}^{N^*}\).

Lemma 0. If \(x \in X\) and \((y_i)\) is acceptable then
\[\|x\| \geq \delta_i \left(\sum_i \|y_i\| \right)^{1/2}. \]

Proof.
\[\delta_i^2 \sum_i \|y_i\| = \delta_i \sum_m \alpha_m^2 \|y_i\|_m^2 = \delta_i \sum_m \alpha_m^2 \sum_i \|y_i\|_m^2 \leq \delta_i \sum_m \alpha_m^2 \|x\|_m^2 \leq \sum_m \alpha_m^2 \|x\|_m^2 \leq \|x\|^2. \]

Theorem 1. \(X\) is a weak Hilbert space.

Proof. (The following argument is based on that employed in [5] to show that Tsirelson's space is a weak Hilbert space.)

(I) \(X\) has weak cotype 2: Write \(X_k = [e_n : n > k]\). Suppose \(y_0, \ldots, y_{k-1} \in X_k\). By 2-convexity we have
\[\left(\sum_i \|y_i\|^2\right)^{1/2} \leq \left(\sum_i \|y_i\|^2\right)^{1/2}. \]

Writing
\[x = \left(\sum_i \|y_i\|^2\right)^{1/2}, \quad (z_i)_n = \begin{cases} 0, & x_n = 0, \\ (y_i)_n / x_n, & x_n \neq 0. \end{cases} \]
we have \(z_i \cdot x = y_i\) and \(\sum |z_i|^2 \leq 1\), so by the above Lemma
\[\|x\| \geq \delta_i \left(\sum_i \|y_i\| \right)^{1/2}. \]

In other words,
\[\delta_i \left(\sum_i \|y_i\| \right)^{1/2} \leq \left(\sum_i \|y_i\|^2\right)^{1/2} \leq \left(\sum_i \|y_i\|^2\right)^{1/2}. \]

This implies (see [5], Lemma 13.3) that every \(k\)-dimensional subspace \(K \subseteq X_k\) has \(d_p = d(E, K) \leq 4/\delta_k\).

Now suppose \(E \subseteq X\), dim \(E = 2k\): then dim \((E \cap X_k) \geq k\), so \(\exists F \subseteq E \cap X_k \subseteq E\) with dim \(F = k\) and \(d_p \leq 4/\delta_k\). This shows (see [5], Thm. 10.2) that \(X\) has weak cotype 2.

(II) \(X\) has type 2: \(X\) has weak cotype 2 \(\Rightarrow\) (see [5], Prop. 10.7) \(X\) has cotype \(q\) (\(\forall q > 2\)). But \(X\) is 2-convex, so (see [2], (1.f.3) (1.f.9)) \(X\) has type 2.

We will now show that two more (a priori different) definitions actually yield the same norms as the \(\|\cdot\|_m\) defined above.

Definitions. Suppose \((y_i) : i < k\) is acceptable. Then \((y_i)\) is *allowable* (all.) if \(y_i = y_k\), where the \((E_i)\) are disjoint and \(\bigcup_i E_i \subseteq [k, \infty)\).

For \(x \in \mathbb{R}^{N^*}\), define
\[[x]_0 = \sup \{\|u_n\| : n \in \mathbb{N}^*\}, \quad [x]_m = \sup \{\sum_i \|y_i\|_m : (y_i)\ \text{all.}\}. \]

Proposition 2. \([x]_m = \|x\|_m\) for all \(m\).

Proof. (Again, the argument given here is based on the proof in [5] of the corresponding result in Tsirelson's space.) It is clear that \([x]_m \leq \|x\|_m\) for all \(x\). By 2-convexity,
\[|x|_m = \left(\sum_i \|y_i\|_m^2\right)^{1/2} \]
defines a norm on \(\mathbb{R}^{N^*}\). If \((y_i)\) is allowable then
\[\|x|_m = \left(\sum_i \|y_i\|_m^2\right)^{1/2} \leq \sum_i \|y_i\|_m^2 = \sum_i \|y_i\|_m^2, \]
since \(y_i = y_k\). For \(N \in \mathbb{N}\) set
\[C_i^N = \text{conv} \{(y_i) : i < k\}, \quad \text{supp}(y) \subseteq [k, k+N) \]
\[= \{z_i : i < k\}, \quad z_i \geq 0, \sum_i z_i < \infty, \text{supp}(z) \subseteq [k, k+N). \]

Therefore for all \((z_i) \in C^N_i\),
\[\|x|_m = \sum_i \|z_i\|_m = \|x|_m, \]
so
\[[x]_m = \left(\sum_i \|z_i\|_m^2\right)^{1/2} = \left(\sum_i \|z_i\|_m^2\right)^{1/2}. \]

But as \((z_i)\) runs over \(C^N_i\), \((z_i)\) runs over all (non-negative) acceptable \(k\)-tuples with supports inside \([k, k+N)\). Since \(N\) is arbitrary it follows that whenever \((y_i)\) is acceptable,
\[[x]_{m+1} = \sum_i \|y_i\|_m^2 = \sum_i \|y_i\|_m^2, \]
so \([x]_{m+1} = \|x\|_{m+1}\).
DEFINITIONS. An allanthus is a tree with a positive integer at each node, such that

(a) the number of branches emanating from a given node is less than or equal to the number at the node, and
(b) the number at the end of a branch is greater than or equal to the number at the node from which the branch emanates.

For example,

```
    2
   / \
  4   3
   \  /\
    6 4 5 7
```

is the beginning of an allanthus.

A subset $S \subseteq \mathbb{N}^+$ is m-OK if it occurs as the mth row of some allanthus. Thus $\{2\}$ is 0-OK, $\{2, 3\}$ is 1-OK, $\{3, 4, 5, 8\}$ is 2-OK, and $\{3, 4, 5, 6, 7\}$ is 3-OK. Note that if $f: \mathbb{N}^+ \rightarrow \mathbb{N}^+$ satisfies $f(n) \geq n \forall n$ and S is m-OK then $f(S)$ is m-OK, and any subset of an m-OK set ($m \geq 1$) is m-OK.

Notation. If $E \subseteq \mathbb{N}^+$ we write Ex for $\chi_{E}(x)$.

Proposition 3. If $x \in \mathbb{R}(\mathbb{N}^*)$ and $m \in \mathbb{N}$ then

$$[x]_m = \|x\|_m = \sup \{ \|S_{m+1}\|_2 : S \text{ m-OK} \}.$$

Proof. We proceed by induction, the case $m = 0$ being clear since the 0-OK sets are just the singletons. Assume the result for m, and suppose $x \in \mathbb{R}(\mathbb{N}^*)$.

Clearly $[x]_{m+1} \geq \|x\|_{m+1}$.

(I) $[x]_{m+1} \leq \sup \{ \|S_{m+1}\|_2 : S \text{ (m+1)-OK} \}$: Suppose

$$[x]_{m+1} = \sum_{i \in k} |E_i x|_m^2$$

where the (E_i) are disjoint and $E_i \subseteq [k, \infty)$. By hypothesis we can write

$$[E_i x]_m = \|S_{i, E_i x}\|_2$$

where S_i is the mth row of an allanthus A_i. We can assume that every node of A_i is $\geq k$. (Replace each node which is $< k$ by k, and we still have an allanthus.) In particular, the top node of each A_i is $\geq k$, so that

$$A_0 A_1 \ldots A_{k-1}$$

is an allanthus. Let S be its $(m+1)$th row, i.e. $S = \bigcup_{i} S_i$. Then

$$[x]_{m+1} = \sum_{i} [E_i x]_m^2 = \sum_{i} \|S_{i, E_i x}\|_2^2 \leq \|S x\|_2^2.$$

(II) Suppose $\{\|S_{m+1}\|_2 : S \text{ (m+1)-OK} \}$.

Let S be the $(m+1)$th row of an allanthus A. Observe that if we put each row of A in non-decreasing order from left to right we still have an allanthus. (Start at the top and work down.) Order each row by a succession of operations each of which replaces ... b ... a ... b ... a ... b ... where $a \leq b$.) Having done this, write A in the form

```
   A_0 A_1 \ldots A_{k-1}
```

where each A_i is an allanthus. Let S_i be the mth row of A_i; so $S = \bigcup_i S_i$. By deleting any repetitions among the S_i we may assume that the S_i are disjoint. Since the top node of A must be $\geq k$, we have $k \leq S_0 \ldots \leq S_{k-1}$ and

$$\|S x\|_2^2 = \sum_{i} \|S_i x\|_2^2 \leq \sum_{i} \|S_i x\|_2^2.$$

Lemma 4. Suppose $(u_i : i \in \mathbb{N})$ is a normalised block basic sequence in $X, N \in \mathbb{N}, e > 0$ and $M \in \mathbb{N}^*$. Then $\exists v \in \text{span}_{u_i} u_i$ such that

(a) $\|v\|_N = 1$,
(b) $\|v\|_m < \varepsilon \quad (\forall m < N)$, and
(c) $\sum_{i < M} \|E_{i, v}\|_2^2 < \varepsilon^2 \quad (\forall m < N)$ whenever $E_0 \ldots \leq E_{M-1}$.

Proof. We proceed by induction on N. If $N = 0$ just take $v = u_0/\|u_0\|_0$.

Now assume the result for N.

Take $k \in \mathbb{N}^*$, $k > 2M/e^2$, and choose $\varepsilon_i > 0$ ($i < k$) so that

$$\sum_{i} \varepsilon_i^2 < k e^2 / M - 2.$$

Choose $r_0 \geq k$ and for $i < k$, step-by-step choose $v_i \in \text{span}_{u_i} u_i$ such that

(a) $\|v_i\|_N = 1$,
(b) $\|v_i\|_m < \varepsilon_i \quad (\forall m < N)$, and
(c) $\sum_{i < M} \|E_{i, v_i}\|_2^2 < \varepsilon_i^2 \quad (\forall m < N)$ whenever $E_0 \ldots \leq E_{M-1}$, where $\text{supp} v_i = [r_i, r_{i+1})$

where $M_i \geq r_{i+1}$ (i.e. $i = 2, \ldots, k - 1$) and $M_0 \leq M_1 \leq \ldots \leq M_{k-1} \leq M_k$.

Write $H_i = [r_i, r_{i+1})$. Let $w = k^{1/2} \sum v_i$. So $\|w\|_{N+1} \geq 1$.

Now suppose $m < N$ and $r_0 \leq i < q_0 \ldots < q_i = r_i$; write $F_i = [q_i, q_{i+1})$.

Let i be such that $r_i \leq l < r_{i+1}$.

(I) $i = k - 1$: Then

$$\sum_{i < l} \|F_{i} w\|_m^2 = \frac{1}{k} \sum_{i < l} \|F_{i} v_{k-1}\|_m^2 \leq \frac{1}{k} \|v_{k-1}\|_{m+1}^2 \leq \frac{1}{k} \leq \frac{\varepsilon^2}{2M}.$$
(II) \(i < k - 1 \): Subdivide the \((F_0)\) at the \(k - i - 1\) points \(r_{i+1}, \ldots, r_{k-1} \) and relabel them as \(G_0 < \ldots < G_{r-1} \) where \(1 < l + k - i - 1 < r_{i+1} + k \leq M_{l+2} \). Then

\[
\sum_{k \leq l} \|F_kw\|_{\ell_2}^2 = \frac{1}{k} \sum_{k \leq l} \|F_kv\|_{\ell_2}^2 \leq \frac{1}{k} \sum_{k \leq l} \|G_kv\|_{\ell_2}^2 \\
\leq \frac{1}{k} \left(\sum_{k \leq l} \|G_kv\|_{\ell_2}^2 + \sum_{k \leq l} \|G_{k+1}v\|_{\ell_2}^2 + \sum_{l+2 < k \leq M_{l+2}} \|v\|_{\ell_2}^2 \right) \\
\leq \frac{1}{k} \left(\sum_{k \leq l} \|G_kv\|_{\ell_2}^2 + \sum_{k \leq l} \|G_{k+1}v\|_{\ell_2}^2 + \frac{k^2}{M} - 2 \right) \\
\leq \frac{1}{k} \left(1 + \frac{k^2}{M} - 2 \right) = \frac{e^2}{M}.
\]

Hence in any case we have \(\|w\|_{\ell_2}^2 < e^2/M \); also \(\|w\|_{\ell_3} = \frac{1}{k} \sup_{k \leq l} \|v\|_{\ell_2} \leq \frac{1}{k} \) \(< e^2/2M < e^2/\sqrt{M} \).

Thus for all \(m < N + 1 \), \(\|w\|_{\ell_m} < \sqrt{M} \leq e \), and for any \(E_0 < \ldots < E_{M-1} \), \(\sum_{k \leq l} \|E_kw\|_{\ell_m} \leq M \|w\|_{\ell_m} < e^2 \). Finally, set

\[
u = w/\|w\|_{\ell_{N+1}}.
\]

Corollary 5. If \((u_i) \in N \) is a block basic sequence on the \((e_n)\) \(\epsilon > 0 \) and \(N \in \mathbb{N} \), then \(\exists v \in \text{span} u_i \) with \(\|v\|_{\ell_1} = 1 \) and \(\sum_{n \leq N} \|u_n^* v\|_{\ell_2}^2 < e \).

Proof. By the Lemma we can obtain \(\nu \in \text{span} u_i \) with \(\|w\|_{\ell_m} = \alpha \nu \) (\(\forall m < N \)). Let \(v = \|w\| \). Then

\[
\left(\sum_{m < N} \frac{\alpha_m^2}{\|w\|_{\ell_m}^2} \right)^{1/2} \leq \frac{\sum_{m < N} \alpha_m^2}{\|w\|_{\ell_m}} < e.
\]

Theorem 6. Any infinite-dimensional subspace of \(X \) contains an isomorph of \(l_2 \).

Proof. Suppose \(Y \lesssim X \), \(\dim Y = \infty \), and \(1 > \epsilon > 0 \). So \(Y \) has a subspace which is isomorphic to the closed span of a block basic sequence \((u_i)\) on the \((e_n)\). By the above Corollary we can obtain disjointly supported \((v_i)\) in \(\text{span} u_i \) such that \(\|v_i\| = 1 \) and

\[
\sum_{q \leq m < q_{i+1}} \alpha_m^2 \|v_k\|_{\ell_m}^2 \geq (1 - \epsilon^2)/2,
\]

where \(q_0 < q_1 \ldots \)

Suppose \(\lambda \in \mathbb{R}^N \). By 2-convexity we have

\[
\sum_{k \leq l} \|F_kw\|_{\ell_2}^2 \leq \sum_{k \leq l} \|F_kw\|_{\ell_2}^2 = \sum_{k \leq l} \|G_kw\|_{\ell_2}^2.
\]

On the other hand,

\[
\sum_{k} \|\lambda_k v_k\|_{\ell_2}^2 = \sum_{k} \|\lambda_k v_k\|_{\ell_2}^2 \geq \sum_{j, k \leq l} \|\lambda_k v_k\|_{\ell_2}^2 \geq \sum_{j, k \leq l} \|\lambda_k v_k\|_{\ell_2}^2 \geq (1 - \epsilon^2) \sum_{j, k \leq l} \|\lambda_k v_k\|_{\ell_2}^2.
\]

This theorem sharply distinguishes \(X \) from the Tsirelson spaces, which contain no isomorphs of \(l_2 \) (see \([0]\)). We now recall their definition.

Definitions. Given \(0 < \delta < 1 \). For \(x \epsilon \mathbb{R}^{N_+} \) define

\[
\|x\|_{\ell_2,0} = \sup \{ \|x_i\| : n \epsilon N \},
\]

\[
\|x\|_{\ell_2,\delta} = \max \{ \|x\|_{\ell_2} / \delta \sup \{|y_i| / \|y\|_{\ell_2}^{1/2} : (y) \text{ acc} \} \},
\]

\[
\|x\|_{\ell_2} = \sup \{ \|x\|_{\ell_2,\delta} : n \epsilon N \}.
\]

Tsirelson's space \(T_\delta \) is the completion of \(\mathbb{R}^{N_+} \) with respect to the norm \(\| \cdot \|_{\ell_2} \).

Clearly if \(x \epsilon \mathbb{R}^{N_+} \) then \(\|x\|_{\ell_2,\delta} \lesssim \|x\|_{\ell_2} \), and \(\delta^n \|x\|_{\ell_2} \lesssim \|x\|_{\ell_2,\delta} \).

We can use the fact that \(T_\delta \not\cong l_2 \) to show:

Theorem 7. \(X \not\cong l_2 \).

Proof. Suppose \(X \cong l_2 \). Then the sequence \((e_n)\) is itself equivalent to the canonical basis of \(l_2 \). Now choose \(\delta < \delta_\| \), and observe that (for \(x \epsilon \mathbb{R}^{N_+} \))

\[
\|x\| = (\sum_{m < N} \|x_m\|^{1/2})^{1/2} \leq (1 - \delta_\|)^{1/2} \left(\sum_{m < N} \|x_m\|^{1/2} \right).
\]

\[
\|x\|_{\ell_2} \geq (1 - \delta_\|)^{1/2} \left(\sum_{m < N} \|x_m\|^{1/2} \right)^{1/2} \leq \left(\sum_{m < N} \|x_m\|^{1/2} \right)^{1/2} \|x\|_{\ell_2} \lesssim \|x\|_{\ell_2,\delta},
\]

a contradiction.

The above argument works equally well to show that no subsequence of the \((e_n)\) spans a Hilbert space. Thus we see that \(X \) is not isomorphic to an \(l_2 \)-sum of finite blocks taken from \(T_\delta \); indeed, \((e_n)\) is a normalised sequence tending weakly to zero which contains no Hilbertian subsequence; an easy compactness argument shows that this is impossible in such a space.

We now proceed to show that \(X \not\cong X_\alpha \) if \(\alpha \) and \(\alpha' \) are sufficiently different.

To this end, suppose that \(X \not\cong X_\alpha \). Then there is a normalised block basic sequence \((v_i)\) on the \((e_n)\), and a subsequence \(q_0 < r_1 < \ldots \) of \(N_+ \), such that \((v_i) \approx (e_{q_i})\). Now \(\|v_i\|_{\ell_2} \approx \alpha_{q_i}^{-1} \) for all \(i \), so by passing to a subsequence we may assume that, for some numbers \(\lambda_m \), \(\|v_i\|_{\ell_2} \rightarrow \lambda_m \) as \(i \rightarrow \infty \), for all \(m \).
We certainly have $\sum a_m^2 \leq 1$. In fact $\sum a_m^2 \leq 1$: for suppose not; then $\exists \epsilon > 0$, $M_0 < M_1 < \ldots$ and $i_0 < i_1 < \ldots$ such that

$$\sum_{M_0 \leq m < M_{i+1}} a_m^2 \|u_m\|_m^2 > \epsilon^2 \quad (\forall n).$$

Then for any $x \in \mathbb{R}^N$, $\|\sum_n x_n u_n\| > \sum_n |x_n|^2$ (by 2-convexity), and

$$\|\sum_n x_n u_n\| \geq \sum_k \sum_{M_k \leq m < M_{k+1}} a_k^2 \|u_m\|_m^2 > \epsilon^2 \sum |x_k|^2,$$

so that $(u_k) \not\to L$. But (u_k) is equivalent to a subsequence of the (e_i), so this is impossible.

We now prove a lemma which in both statement and proof is very similar to Lemma 4.

Definition. Given a subsequence $p = (p_0 < p_1 < \ldots)$ of N^+. Call a vector $x \in \mathbb{R}^N$ $(p, 0)$-good if $x_i = \delta_{p_i}$ for some n. Call x $(p, N+1)$-good if $x = k^{-1/2} \sum_{k \leq n} x_n$ where $k \in N^+$, the x_n are (p, N)-good and $l \leq \sum_{k \leq n} x_n < \sum_{k \leq n} x_{k+1}$ where $p_l \geq k$.

Lemma 8. Suppose $n_0 < n_1 < \ldots$ and $p_0 < p_1 < \ldots$ are two subsequences of $N^+, N \in N, \epsilon > 0$ and $M \in N^+$. For $x \in \mathbb{R}^N$ write

$$T(x) = \sum_i x_i e_{n_i}.$$

Then $\exists x \in \mathbb{R}^N$ such that

(a) x is (p, N)-good,

(b) $\|T(x)\|_m < \epsilon$ $(\forall m < N)$, and

(c) $\sum_{k \leq M} E_k(x) \|x_k\|_k < \epsilon^2$ $(\forall m < N)$ whenever $E_0 < \ldots < E_{M-1}$.

Proof. We use induction; if $N = 0$ set $x_i = \delta_{p_i}$. Assume the result for N. Take $k \in N^+$ such that $k > 2M/\epsilon^2$ and $i_0 \geq 0$ (i < k) such that

$$\sum_i e_i^2 < \epsilon^2k^2/M - 2.$$

Choose r_0 such that $n_{r_0} \geq k$ and $p_{r_0} \geq k$, and for $i < k$ choose $x_i \in \mathbb{R}^N$ such that

(a) x_i is (p, N)-good,

(b) $\|T(x_i)\|_m < \epsilon$ $(\forall m < N)$, and

(c) $\sum_{k \leq M} E_k(x\|x_k\|_k < \epsilon^2$ $(\forall m < N)$ whenever $E_0 < \ldots < E_{M-1}$.

where $\text{supp} x_i \subseteq [r_i, r_{i+1}], M_i \geq n_{r_i} + k$ for $i = 2, \ldots, k - 1$, and $M_0 \leq \ldots \leq M_k$. Write $H_i = [n_{r_i}, n_{r_{i+1}}].$

Finally, let $x = k^{-1/2} \sum_{i \leq n} x_n$. By construction x is $(p, N+1)$-good.

Suppose $n < N$ and $r_0 \leq q_0 \leq \ldots \leq q_i = r_k$ where $n_{r_i} \leq i \leq n_{r_{i+1}}$; write $F_i = [n_{r_i}, n_{r_{i+1}}]$. Let i be such that $n_{r_i} \leq i \leq n_{r_{i+1}}$.

(I) $i = k - 1$: Then

$$\sum_{s < i} \|F_s(T(x_i))\|_s^2 = \sum_{k \leq i} \|F_k(T(x_{k-1}))\|_k^2 \leq \frac{1}{k} \|T(x_{k-1})\|_k^2 \leq \frac{1}{k^2} \frac{\epsilon^2}{2M}.$$

(II) $i < k - 1$: Subdivide the F_s at the $k - i - 1$ points $r_{s_1}, \ldots, r_{s_{k-1}}$ and relabel them $G_0 < \ldots < G_{k-1}$ where $v < i + k - i < n_{r_{s_i}} + k \leq M_{i+2}$. Then

$$\sum_{s < i} \|F_s(T(x_i))\|_s^2 = \sum_{k < s \leq v} \|F_k(T(x_{k-1}))\|_k^2 \leq \frac{1}{k} \|F_k(T(x_{k-1}))\|_k^2 \leq \frac{1}{k} \|T(x_{k-1})\|_k^2 \leq \frac{1}{k^2} \frac{\epsilon^2}{2M}.$$

Hence in any case $\|T(x_i)\|_M^2 < \epsilon^2/M$; also $\|T(x_i)\|_M^2 = k^{-1} \sum_{k \leq i} \|G_k(T(x_{k-1}))\|_k^2 \leq \epsilon^2/k^2 < \epsilon^2/2M < \epsilon^2/M$. Therefore for all $m < N + 1$, $\|T(x_m)\|_m^2 < \epsilon^2/\sqrt{M}$, and for any $E_0 < \ldots < E_{M-1}$, $\|E_m(x)\|_m \leq \|T(x_m)\|_m < \epsilon^2$. \n
Lemma 9. Given $N \in N, \epsilon > 0$ and $K \in N, \exists x \in \mathbb{R}^N$ such that $\|x\|_M = 1, \|x_i\|_m < \epsilon$ $(\forall m < N)$ and $\sum_i x_i e_{n_i} < \epsilon$ $(\forall k \leq K)$

Proof. By deleting the first few u_i and e_{n_i}, we may assume that $\|u_i\|_k^2 < \lambda^2 - \epsilon^2$ for all i and all $k < K$.

Suppose $\text{supp} u_i \subseteq [p_i, p_{i+1})$. Apply Lemma 8 (in the space X_k) to obtain a vector $x \in \mathbb{R}^N$ such that x is (p, N)-good and $\|x_i e_{n_i} \|_m < \epsilon$ for all $m < N$. The former implies, firstly, that $\|x\|_M = 1$, and, secondly, that $(p_i: x_i \neq 0)$ is an N-OK set; hence for all $k < K$,

$$\|x_i u_i \|_{M+i} \geq \sum_{x_j \neq 0} |x_i u_i|_{M+i} \geq \lambda^2 - \epsilon^2.$$

Definition. Given α and α', write $\alpha \vdash \alpha'$ to mean that

$$\inf_{\alpha} \frac{\alpha}{\alpha_k} \inf_{\alpha' k} \frac{\alpha_k}{\alpha_n}$$

is unbounded as a function of N.

For example, if $\alpha_n = (1 - \delta)^{1/2} \delta^m$ and $\alpha' = (1 - \delta')^{1/2} (\delta')^m$ then $\alpha \vdash \alpha'$ provided $\delta > \delta'$.

More generally, if \(N \in \mathbb{N}^+ \) and \(S, S' \) are subsets of \(\mathbb{N} \) such that
\[
\text{card}(S \cap [rN, (r+1)N)) = k, \quad \text{card}(S' \cap [rN, (r+1)N)) = k',
\]
for each \(r \), and if
\[
\frac{a_{m+1}}{a_m} = \begin{cases} \delta, & m \in S, \\ \delta', & m \notin S, \end{cases}
\]
\[
\frac{a_{m+1}}{a_m} = \begin{cases} \delta, & m \in S', \\ \delta', & m \notin S'. \end{cases}
\]
then \(\alpha \not\succ \alpha' \) provided \(\delta > \delta' \) and \(k > k' \).

Theorem 10. If \(\alpha \not\succ \alpha' \) then \(X_\alpha \not\cong X_{\alpha'} \).

Proof. Write
\[
f(N) = \inf_k \frac{a_{N+k}}{a_k} (\geq \delta_k^N); \quad g'(N) = \sup_k \frac{a_{N+k}}{a_k} (\leq (\delta_k^N)^N).
\]

Given \(N \), take \(\varepsilon > 0 \) so small that
\[
1 - 2\varepsilon^2 \leq \frac{1}{1 + Ne^2 / g'(N)^2} \geq \frac{1}{4},
\]
and take \(K \in \mathbb{N} \) so large that
\[
\sum_{k \leq K} a_k^2 > \varepsilon^2.
\]

Apply Lemma 9 with these values of \(N, \varepsilon, K \) to get a vector \(x \in \mathbb{R}^N \). Then
\[
\left\| \sum_i x_i u_i \right\|^2 \geq \sum_k a_{N+k}^2 \left\| \sum_i x_i u_i \right\|_{N+k}^2 \geq f(N)^2 \sum_k a_k^2 (a_k^2 - \varepsilon^2) \geq f(N)^2 (1 - 2\varepsilon^2),
\]
while
\[
\left\| \sum_i x_i e_i \right\|^2 \leq Ne^2 + g'(N)^2 \sum_k a_k^2 = g'(N)^2 (1 + Ne^2 / g'(N)^2),
\]
so that
\[
\left\| \sum_i x_i u_i \right\| / \left\| \sum_i x_i e_i \right\| \geq \frac{1}{2} f(N) / g'(N),
\]
which by hypothesis is unbounded as a function of \(N \), contradicting the fact that \((u_i) \approx (e_i) \).

Acknowledgements. I am extremely grateful to Peter Casazza, for acquainting me with so much of the weak Hilbert space folklore, and to Charles Read, for his indispensable mathematical guidance.